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In-Plane Elastic Stability of Arches under a Central
Concentrated Load

M. A. Bradford, M.ASCE?; B. Uy, M.ASCE?; and Y.-L. Pi3

Abstract: This paper is concerned with the in-plane elastic stability of arches with a symmetric cross section and subjected to a central
concentrated load. The classical methods of predicting elastic buckling loads consider bifurcation from a prebuckling equilibrium path to
an orthogonal buckling path. The prebuckling equilibrium path of an arch involves both axial and transverse deformations and so the arcl
is subjected to both axial compression and bending in the prebuckling stage. In addition, the prebuckling behavior of an arch may becom
nonlinear. The bending and nonlinearity are not considered in prebuckling analysis of classical methods. A virtual work formulation is

used to establish both the nonlinear equilibrium conditions and the buckling equilibrium equations for shallow arches. Analytical solutions
for antisymmetric bifurcation buckling and symmetric snap-through buckling loads of shallow arches subjected to this loading regime are
obtained. Approximations for the symmetric buckling load of shallow arches and nonshallow fixed arches and for the antisymmetric
buckling load of nonshallow pin-ended arches, and criteria that delineate shallow and nonshallow arches are proposed. Comparisons wi
finite element results demonstrate that the solutions and approximations are accurate. It is found that the existence of antisymmetri
bifurcation buckling loads is not a sufficient condition for antisymmetric bifurcation buckling to take place.

DOI: 10.1061(ASCB0733-93992002128:1710

CE Database keywords: Bifurcation; Buckling; Concentrated loads; Arches.

Introduction orthogonal to the prebuckling path at the point of bifurcation
involves primarily transverse deflections. In the case of an arch,
This paper is concerned with the in-plane elastic stability of however, the prebuckling equilibrium path involves both axial
arches subjected to a central concentrated (6&gl 1). When the and transverse deformations and so the arch is under both axial
lateral displacements and twist rotations of an arch are fully re- compression and bending in its prebuckling configuration. More-
strained, the arckFig. 1) may buckle in an in-plane antisymmet- over, the transverse deformations are significant prior to buckling
ric bifurcation moddFig. 2(@)] or in an in-plane symmetric snap- and the prebuckling elastic behavior may become nonlinear, so
through moddFig. 2(b)]. that these effects necessarily need to be accounted for in the in-
The classical methods for predicting elastic buckling loads plane buckling analysis of an arch.
consider bifurcation from a prebuckling equilibrium path to an Closed form solutions for the classical buckling load for pin-
orthogonal buckling patifTimoshenko and Gere 1961; Vlasov ended and fixed circular arches subjected to a radial load uni-
1961; Simitses 1976; Trahair and Bradford 199he analysis of formly distributed around the arch axis are given in several pub-
prebuckling equilibrium is linear and so the stress resultants canlications such as Timoshenko and Ge&i®961), Vlasov (1961),
be linearized. Nonlinearities are not considered in the pre- Simitses(1976, and Pi and Bradford2002. However, for arbi-
buckling analysis and so their effects on buckling cannot be in- trary loading, numerical methods such as finite elemtt)
cluded in the buckling analysis. These classical methods are suit-methods are often used for the prebuckling linear elastic analysis,
able for the elastic buckling analysis of columns, beams, and and an eigenvalue formulation is then invoked to determine the
frames. For example, in the case of a column, the prebuckling orbuckling loads(Rajasekaran and Padmanabhan 1989; Kang and
primary equilibrium path involves linear axial deformation only, Yoo 1994. The discrepancies between the classical buckling
and so the column is under a uniform axial compressive action in loads and test results has been realized by a number of researchers
its prebuckling configuration. The flexural buckling path that is (Gjelsvik and Bodner 1962; Dickie and Broughton 187and
discrepancies between the numerical eigenvalue-based results and
Iprofessor, School of Civil and Environmental Engineering, Univ. of the test results have also been identififdand Trahair 1998; Pi
New South Wales, Sydney 2052, NSW, Australia. and Bradford 2001 These discrepancies arise owing to the lin-
2Senior Lecturer, School of Civil and Environmental Engineering, earization of the prebuckling path. The buckling of sinusoidal
Univ. of New South Wales, Sydney 2052, NSW, Australia. shallow arches was studied by Timoshenko and GE®€1) and
3Senior Research Fellow, School of Civil and Environmental Eng- Simitses (1976. Gjelsvik and Bodner(1962 used an energy
ineering, Univ. of New South Wales, Sydney 2052, NSW, Australia. ~ method to investigate the instability of fixed shallow circular
Note. Associate Editor: Guillermo D. Hahn. Discussion open until 5ccpeg of rectangular solid cross section subjected to central point

December 1, 2002. Separate discussions must be submitted for individua oading, and approximate solutions were obtained. Schreyer and

papers. To extend the closing date by one month, a written request mus . .
be filed with the ASCE Managing Editor. The manuscript for this paper tMasur (1966 performed an exact analysis for shallow circular

was submitted for review and possible publication on December 13, @rches and derived analytical solutions, but their analysis was

2000; approved on September 18, 2001. This paper is part dbtiaal limited to fixed arches of a rectangular solid cross section and
of Engineering MechanicsVol. 128, No. 7, July 1, 2002. ©ASCE, ISSN  their solutions for the symmetric buckling mode were very com-
0733-9399/2002/7-710-719/$8:68.50 per page. plicated. Dickie and Broughtoil971) used a series method to
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(a) Pin-ended arch (b) Fixed arch

(a) Geometry and cross-section  (b) Central concentrated
load
Fig. 3. Half of arches

Fig. 1. Arches and loading

study the buckling of shallow circular pin-ended and fixed arches.
However, their study was again confined to rectangular solid
cross sections and only approximate numerical solutions were
given. In addition to a rectangular cross section, other shapes suc
as | sections and rectangular hollow sections are widely used for . . .
aches, as are a number of materials. Most of the pertinent researctt\’y qccou.ntlng for the effects of prebucklmg deformations and
findings have been summarizedHiandbook(1971) andGuide to nonlinearity. The FE result_s rep_ort(_ad by Pi and TrahaBog
stability design(1976, 1988 Pi and Bradford(2002 recently demon_strated that the nor_1l|near|ty is due to large transverse de-
studied the in-plane elastic stability of circular arches with a sym- formation and that the axial displacememtsof shallow arches

metric cross section and subjected to a radial load uniformly dis- are quite_small prior t_o buckling_, so that their effects on th.e ra_dial
tributed around the arch axis. This analysis incorporated a non_deformatlor! may be !gnored W'thOl.Jt error. Thus the longitudinal
linear formulation for the prebuckling configuration. Research normal strain of a poink can be written as

using numerical methods for the in-plane buckling of arches has €p=€mnte€p 1)
been extensive in recent yedidoor and Peters 1981; Stolarski
and Belytschko 1982; Calhoun and DaDeppo 1983; Elias and
Chen 1988; Wen and Suhendro 1991; Pi and Trahair 199Bas
been shownWen and Suhendro 1991; Pi and Trahair 199t )
the assumption of a linear prebuckling configuration with an ei- eEm=W'— rRT E(U') and ep=—yv" )
genvalue approach for determining the buckling loads is not suit- o

able for the in-plane elastic buckling analysis of shallow arches, Where the term«’)“/2 is used to account for the large transverse
and nonlinear analysis needs to be deployed. It is not widely deformation and it is the source of nonlinearity.

recognized that classical buckling theory cannot correctly predict "€ nonlinear in-plane equilibrium equations for a shallow

the in-plane buckling load of shallow arches and this issue is &'ch subjected to a central concentrated I@adan be derived
addressed herein. from the principle of virtual work that requires

buckling, it cannot be used to predict accurately the in-plane
uckling of shallow arches. A virtual work procedure is used in
this section to investigate the in-plane buckling of shallow arches

where the membrane straip, and the bending strai, are given
by

The purposes of this paper are: to investigate analytically the
in-plane elastic stability of both pin-ended and fixed circular BUZJ decdV—Qdv=0 (3)
arches with a symmetric cross section and subjected to a central v
concentrated load; to use a virtual work procedure to establish thefor all sets of kinematically admissible virtual displacemeds
nonlinear equilibrium conditions for shallow arches; to perform a anddv, wherev,= central radial displacement.
nonlinear buckling analysis to obtain analytical solutions for the Because the deformations of an arch prior to buckling are sym-
buckling load of shallow arches; and to propose approximations metric under a central concentrated load, half of the arch can be
to the symmetric buckling load of shallow arches and nonshallow used for the derivation as shown in Fig. 3, in which case the
fixed arches and for the antisymmetric buckling load of nonshal- virtual work statement of Eq3) can be written as
low pin-ended arches.

ds— %61}0:0
4)

Differential Equilibrium Equations Integrating Eq.(4) by parts leads to the differential equilibrium

. . equations
Because classical buckling theory does not account for the often

significant effects of prebuckling deformation and nonlinearity on —EAe,=0 (5)

dv
EA(SW’— F-i—v'ﬁv’)em-i-Elxv”Sv”

fS/Z
Nonlinear In-Plane Equilibrium 0

Q for the axial direction and
Q

€m

El,w'"—EAv"e,—EA R

~EAv'e/ =0 (6)

for the radial direction.

/ } TN : . . .

N N N N When the right-hand half of an arch is used, integrating(&Qq.
(a) Anti-symmetric (b) Symmetric also leads to the boundary conditions for a pin-ended arch
bifurcation buckling snap-through buckling v'=0 at s=0 @)

which represents that the slope of the midsurface of the arch is

Fig. 2. Buckling modes equal to zero
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Q given by Eq.(12) should be equal to the average membrane strain
Elw”-5=0 at s=0 (8) over the arch lengtl$ calculated from Eq(2), so that
which represents that the shear force at the midsurface of the arch N 1(s2 LV v'?
is equal to zero, and TEA S) VTR 2 ds 17
ElL,v"=0 at s=S/2 9
X © Using the boundary conditiongs=0 ats=*S/2, it is clear that

which represents that the bending moment at the pin-end (
=S/2) vanishes. In addition, the displacement boundary condi- 1(s2 wds=0 (18)
tion at s=S/2 for the right-hand half of a pin-ended archus S)_ g -
=0.

The boundary conditions for a fixed arch can be obtained in and from Eq.(13), the left-hand side of Eq17) can be rewritten
the same way and are identical to E¢/8. and(8). The displace- as
ment boundary conditions at=S/2 for the right-hand half of a — —
fixed arch ares=v’'=0. _l:_ll_xz_ 2,2 (19)

When the left-hand half of an arch is used, the boundary con- EA El, A B Tx

dition (8) becomes
® wherer,=radius of gyration of the cross section about the major

. Q B principal axis given by ,= I, /A.
Elo”+5=0 at s=0 (10) Considering Eq(18) and substituting Eqg15) and (19) into
the boundary conditior®) for a pin-ended arch becomes Eq. (17) leads to the n_onllnear equilibrium condition for pin-
ended shallow arches given by
Elw"=0 at s=-S/2 (11)

and the corresponding displacement boundary conditiorss=at

—S/2 arev=0 for a pin-ended arch and=v’=0 for a fixed where the coefficientd,, B;, andC; are given by
arch.

A,Q2+B;Q+C,=0 (20)

From Eg.(5), the membrane straiq,, is constant and can be 1 tan(wS/2)
written as A1:4(}.LS/2)4 -3 52 +tarf(p.S/2) (21)
N
€m=— =~ 12 1 1 S/2)tan(.S/2
m="EA (12) B,— _ (nS2tan(p )} 22
— ) ) _ (nS/2)% cog wS/2) 2 cogpS/2)
whereN=actual axial compression force in the arch.
Introducing a parametqr defined by nS\?2
N 2\
2=— 13
TENL R
and substituting Eq¥5), (12), and(13) into Eq. (6) leads to the )
differential equilibrium equation for the radial direction as D,= {l+tanz(pu8/2)— tar(uSIZ)_ 2(pnS/2) }
. _1 4(nS/2)2 (nS2) 3
- +v"= F (14) (24)
B Ns=modified slenderness for an arch defined by
2
Nonlinear Equilibrium Conditions for Pin-Ended Arch A= % (S/2) — 48 = (25)
r)( rX
The radial displacements, which satisfy the boundary condi- — _ _
tions (7)—(9), (10), (11), andv =0 ats=*+S/2, can be obtained = andQ=dimensionless load defined by
by solving Eq.(14) as =20
= 26
1 (cogpS/2)—cogus) 1 Q ONp (26)

v= +5[(0S2)2 = (ns)?]

L cognS/2) and in whichNp=second mode buckling load of a pin-ended
column about its major axis under uniform axial compression

. iven b

{tanp.S/2)co8 p5) — (S/2) ~ H(S)[SiN(us) given by

2El,p 2
N om El, 27)
—(ns)1} (15) P (s2)2
where the step functioH (s) is defined as
—1 when s<0 Nonlinear Equilibrium Conditions for Fixed Arch

H(9)=1 (16)

when s=0 Following the previous procedure, the solution of Et4) for
The nonlinear equilibrium conditions for shallow arches can be fixed arches, which satisfies the boundary conditi¢ns (8),

established by considering that the constant membrane strain(10), andv=v'=0 ats==*=S/2, can be obtained as
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b=
n2R

1 [(uS/2)[cogpnS2)—cogpS)] 1
[ SNLS2) +5l(nsi2)?

—(us)z]] + Sitan(nS/4)[cog ps)+ 1]+ H(s)[(ps)
2E I,

—sin(s)]—(nS/2)} (28)

Considering Eq(18) and substituting Eq€19) and(28) into Eq.
(17) leads to the nonlinear equilibrium condition for fixed arches
given by

A,Q2+B,Q+C,=0 (29)
where the coefficientd,, B,, andC, are given by
(MS/Z)) 6 r(pS/ZH
Ay=—| 3+t r?( - t
Zaus2AlT O T2 )T ws N 2
(30)
1 S/2 S/2 S/2 SI2
B,= [tar(ILJL )— a ( )tanz(u ”
2(nS/2)3 2 2 2 2
(31)
o s
Co=|o—| + ———|(nS/2)?cof(n.S/2
2 (2)\2 21522 (nS/2) (nS/2)
(nS/2)2
—(nS/2)cot( nS/2) + 3 (32)
and the dimensionless Iozﬁ is defined by
— (1.43037)%Q
= TON. (33)

in which Ng=second mode buckling load of a fixed column about
its major axis under uniform axial compression given by
_(1.4303-:)2EIX

527 (34)

F

Buckling Analysis

Buckling Equations

For the stability of an equilibrium position defined byandw to
be neutral, it is required that

52U=0 (35)

for the buckling displacements,=dv and w,=38w that take
place from the prebuckling equilibrium positianandw to the
adjacent buckling equilibrium position+uv, and w+w, under
constant loads.

The neutral equilibrium condition of E¢35) is equivalent to a
variation of the virtual work(3) as

J‘S/Z
—S/2|

wheree,,=membrane strain during buckling given by

Ub€mb
Wp€mb— T+U'U{)€mb+v(>2€m

n2

EA +El,w}?|ds=0

(36)

;_Ub ’
EmeSGmZWb* E+U’Ub (37)

The left-hand side of Eq.36) can be considered as a function of
the buckling displacements, andw, . The buckling displace-
ments that make the functional stationary satisfy the Euler—
Lagrange equations of variational calculus, from which and by
considering Eqs(12) and (13), the buckling differential equilib-
rium equation in the axial direction can be obtained as

€mp=0 (38)
from which the membrane straiy,, during buckling is a con-
stant; and the buckling differential equilibrium equation in the

radial direction can be obtained as

. €
iv 2 y_ -mb
Vp t U=
Iy

(39)

1 4
§+U .

Buckling of Pin-Ended Shallow Arch

For antisymmetric bifurcation buckling, the buckling displace-
mentv,, is antisymmetric while the prebuckling displacemeris
symmetric, so that the terms, andv'vy, are antisymmetric and
their integrals within the intervdl— $/2,5/2] vanish. In addition,
the boundary conditions require tha,=0 ats= *S/2, so that
the average straia,,;, during buckling is obtained as

1 (S?2 1 (92
s emsio=s]
Substitutinge ,,,= 0 into Eq.(39) leads to the linear homogeneous

differential equation for antisymmetric buckling of a shallow arch
given by

Up L
RV

W~ ds=0 (40)

l)ibU 4
The solution of Eq.(41) that satisfies the boundary conditions
v,=0 ats=*S/2is

ssin(wS/2)

7 (42)

vp=C| sin(ps)—

whereC=amplitude parameter.

For a pin-ended arch, using the boundary conditigfis 0 at
s==*95/2, Eq.(42) leads to

sin(nS/2)=0 (43)
whose fundamental solution is
S

“7 — (44)

so that, with the use of Eq13), the corresponding actual axial
compressiorN in a pin-ended arch during bifurcation antisym-
metric buckling is

w2El,

N s22

(45)

which is equal to the familiar second mode buckling ld&dof a
pin-ended column under uniform compression.

Substituting Eq(44) into the nonlinear equilibrium condition
(20) leads to

AT
N2

24

3Q2,— 8Qgp+ m2— (46)
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Solving Eq.(46) for 6sb leads to the antisymmetric buckling load of a pin-ended shallow arch given by

4
— u
Qsp~1.33+4.54/ 1—0.65)\—2 (47)

S

When\ = /0.65r2~7.96, a real antisymmetric buckling soluti¢fi7) exists, so that antisymmetric buckling of the pin-ended arch may
occur.

For the symmetric snap-through buckling of a pin-ended arch, the buckling displacegnsrdymmetric. Substituting Eq15) into
Eq. (39) leads to the buckling equilibrium equation

v, ,_emn L [ cogs) a[taf(MS/Z)COS(MS)—H(S)Sin(us)]] )
w2 b ;LZI’)Z( R coqpnS/2) (nS/2)
The solution of Eq(48), which satisfies the boundary conditiong=v,=0 ats=S/2, is
- 1 emp | (nS2)sin(p.S2)codpws)—(ps)sin(ps)coguS2)  cogus)
w22 u2R 2 co2(pnS/2) cognS/2)
Q[ (rs)sin(ws)sin(nS/2 tan(nS/2 1 s)cogus) sSin(us
Q| (ps)sin(ps)sin(p.S/2) nus2) cos{ps)+H(s)((M )cogus)  sin(p. )) (49)
2| pSl2cogpS/2) (LS2)  co(nS/2) (nS/2) (nS2)
[
The average buckling membrane strain of E&¥) over the arch Because the iterative solution process for the symmetric buck-
length Sis equal to the constant buckling membrane steig, ling load of an arch is complicated, an approximation for the

which leads to an equation for the relationship between the di- symmetric buckling load of a pin-ended arch whose modified
mensionless buckling loa@. and the dimensionless parameter slenderness <9.80 is proposed as
wS/2 during symmetric snap-through buckling given by

o e Qoe~1+0.03\2 (54)
2 _
AsQsstBaQsst C3=0 (50) The lowest symmetric buckling load for a pin-ended arch can be
where obtained from Eq(20) as(Bradford et al. 200D
A, tarf(nS/2) tanpS/2)+tarf(pS/2 o=
A3:—l+ (P« )_ I'(p, ) (P« ) (51) lim in (55)
2 a(psi2)* 4(nS/2)® pSi2— /2
1+sir?(.S/2) sin(.S/2) In this case, the actual axial compresshoiin the pin-ended arch
B;=B;+ - is related to the lowest symmetric snap-through buckling Qad
4(nS/2)% coS(nS2)  4(nS/2)% cog(nS/2) as
(52) _
Np® 26N
and Q== (56)
3D; (pnS2)—tannS/i2)—tarf(nsS/2) [ wnS\?
3:T+ Hp92) BN From Eg.(15), the central radial displacememnt of a pin-ended
(53) arch 5=0) is
and wheréd;, B;, andD; are given by Eqs(21), (22), and(24). 1 1 (n.S/2)? 6[tar( wS/2)—(nS/2)]
For a given value of., a solution for the symmetric snap- Y™ 5o 1- cogp.S2) R (wS/2)
through buckling load), and the corresponding value ®f can (57)

be obtained by solving Eq$20) and (50) simultaneously. How- _
ever, the value ok rather than the value qf is usually known  Hence the corresponding central radial displacemgnét Qs
for a shallow arch. In this case, an iterative process needs to be=/2 can be obtained from E¢57) as (Bradford et al. 200D
used to obtain a solution d@.s by solving Egs.(20) and (50) P
simultaneously. lim v,e=——
The value of the modified slendernessthat defines a switch ps2-m2 R
between the buckling modes can be found wign=Q,, at
wS/2=, which leads to\ ¢~9.80. When\ ;>9.80, a pin-ended 4 8 m? w4
arch may buckling in an antisymmetric mode, but when 7.96 + ;’L;J“E_S_m
<\¢=<9.80, both symmetric and antisymmetric buckling may s
occur. It will be shown next that symmetric buckling occurs first The value of the central radial displacemant is real when
and that antisymmetric buckling occurs on the descending branch(4/w?) + (8/w) + (q-r2/6)—3—(w4/4)\§)>0, that is when g
of the load-displacement curve. When the modified slenderness=3.91. When\<3.91, a pin-ended arch does not buckle.
\s<7.96, a pin-ended arch may buckle only in a symmetric Solution (47) for antisymmetric buckling and the approxima-
mode. tion (54) for symmetric buckling of a pin-ended arch are com-

1 2 w2 g
e 2

(58)
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Finite elemant results for 0.58/r=37.5
Finite element resuits for 0.58/rx=50
Finite element results for 0.5S/rx=75
Finite element resuits for 0.58/rx=100

fied slenderness 40\s=9.80. It can be seen from Fig. 5 that the
solution(47) and the approximatiotb4) agree very well with the
FE results when the included andgbe<90°(w/2).

When the included angl®=90°(w/2), the solution(47) ap-
proaches a certain value(,=5.83) with the increase of the
modified slenderness and of the included artdlend tends to be

3

3 |

7] u? o

é H higher than the FE predictions. The included angke

§ 3 7 __ Solution (47) =90°(w/2) can be used as a criterion for distinguishing between
g1 § Solution of (20) and (50) shallow and nonshallow pin-ended arches based on their in-plane
a8 - -~ Approximation (54)

instability under a central concentrated load. The antisymmetric
buckling load of nonshallow archg$)=90°(w/2)] can be ap-
proximated by

020030 40 50 ~ 60 70 B
Modified Slenderness As — w\2
Qsp=5.83-0.85 O > (59)

Fig. 4. Buckling of pin-ended arches against slenderness

where the included angl® is expressed in radians. Fig. 5 shows

) o o ) that the approximatiof59) agrees very well with the FE results.
pared with FE predictions in Figs. 4 and 5. The symmetric buck-

ling solution for arches with modified slendernesg<9.80
obtained by simultaneously solving Eq®R0) and (50) is also
shown in Fig. 4. Fig. 4 shows the variation of the dimensionless
buckling loadQ with the modified slenderness; while Fig. 5
shows the variation of the dimensionless buckling I@adith the
included angle®. The FE packagdBAQUS(1998 and the FE

Buckling of Fixed Shallow Arch

For antisymmetric buckling of fixed shallow arches, the use of the
boundary condition,=v;,=0 ats=*S/2 in Eq. (42) produces

program developed by Pi and Trah&ir9989 were used for the tan(p.5/2)=pS/2 (60)
numerical analysis, and the results ABAQUSare identical to The lowest solution of Eq(60) is

those of Pi and Trahair. In the FE analysis, an I-section, a rectan-

gular hollow section, and a rectangular solid cross section were S

used. The dimensionless of the I-section are: the overall depth ILJL7%1.4301% (61)

D=0.2613 m, the flange widtB=0.151 m, the flange thickness
t;=0.0123 m, and the web thicknegs=0.0077 m. The dimen-
sions of the rectangular hollow section are: the overall heiyht
=0.4 m, the widthB=0.25 m, and the wall-thicknegs=0.003

m. The dimensionless of the rectangular solid cross section are:
the heightD=0.005 m and the widttB=0.010 m. The Young’s
modulus of elasticity was assumed to be equaEte 200,000
MPa for the three sections.

It can be observed from Fig. 4 that the approximatib4) is
almost identical to the solution from Eq&0) and (50) for sym-
metric buckling of pin-ended arches with the modified slender-
nessi;=<9.80. Both of these agree extremely well with the FE

so that, with the use of Eq13), the corresponding actual axial
compressiorN in a fixed arch at antisymmetric buckling is

—  (1.43037)2El,
NN—(S/Z)Z (62)

which is equal to the second mode buckling Iddd of a fixed
column under uniform compression.
Substituting Eqs(60) and (61) into Eq. (29) leads to

predictions. The solutiof47) for antisymmetric buckling almost -, —  (1.43037)%
coincides with the FE results for pin-ended arches with the modi- 6.2, 13.98¢(1.43037) Qsp+ 3
4x(1.43037)8
7 . ' . _ . . ' ' + — 7 =0 (63)
S
i = and solving Eq(63) for 6sb leads to the antisymmetric buckling
o 5t BN ] load of fixed shallow arches given by
© N
§ al l‘."\i o -
g 4 Qsp=1.4303rx | 1.12:018\/1-155 (64)
i ,' o
2 It $7 ___ Solution 47) T s
/dy  ---- Approximati . . :
§ al 41’9‘,"’/7 ,,,,,, Ag,'::ﬁ;;’:ﬁg: gg | When\ = \/15m2(~38.15), a real antisymmetric buckling solu-
Je¥ * iinite e:ement resulnt::oro.grxals tion (64) exists, so that antisymmetric buckling of the fixed arch
1" ° inite element results for 0.5S/n=50 ;
13 * Finite elemont results for 0.68/r—75 may occur. Solutior{64) can be reduced to that of Schreyer and
: +  Finite element results for 0.55/r=100 Masur (1966 for fixed shallow arches with a rectangular solid
O4——2—25—60 —B0~—T00— 120 T40—T50 T80 cross section subjected to a central concentrated load.

Included angle @ (degrees) For symmetric snap-through buckling of a fixed arch, substi-

tuting Eq. (28) into Eq. (39) leads to the buckling equilibrium

Fig. 5. Buckling of pin-ended arches against included angle equation
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€mp 1| (nS/2)codpus)

Qltan(p.S/4)cog us) —H(s)sin(ps)]

iv
v_b_l,_ "m—
2

w2 P22 R| sin(pS2) (nLS2) ©9
The solution of Eq(65), which satisfies the boundary conditiong=v=0 ats=S/2, is
L (nS/2)[coq . S/2) —cog us) — (ps)sin(us)] N (nS/2)’[1—cog pnS/2)cog ps)]
b pf‘riR 2 sin(pnS/2) 2 sirt(nS/2)
B § cogwS/2)—cogus)tcogpuS/2)codmus)—1 [1—cogpS/2)][1+cogws)] (ws)sin(us)[1—cogwS/2)]
2 (nS/2)sin(1nS2) SirA(nS/2) (rS/2)sin(nS/2)
_ H(9)[(p.s)cog ps) —sin(ps)] } (66)

(nS2)

The average buckling membrane strain of E&¥) over the arch
length Sis equal to the constant buckling membrane steig,

The value of the modified slenderness for distinguishing
between the buckling modes may be found wien=Q,, at

which leads to an equation for the relationship between the di- |, S/2=1.4303r. However, there is no real-value solution fay.

mensionless loa@® and the dimensionless parameie$/2 during
symmetric snap-through buckling given by

A4Q?+B,Q+Cy=0 (67)
where

tarf(u.S/4)
4 sin(nS/2)

1 [3tarm3/4) 3 sin(p.S/2)
Ag

:(MS/2)3 4 Sil’(pS/Z)_ 8(1S/2)2

B tarf(wS/4)sirt(nS/2) 3 tan wS/4)sird(nS/2)
4(nS/2)? 8(nS/2)

(68)

tar?(uS/4)cog . S/2)
B 8(n.S/2)

_ tan( wS/4)
4(psi2)

tarf(u.S/4)
4(nS/2)sin(nS/2)

tan(wS/4)

4(nS/2)2 sin(.S/2)
(69)

4

and

_(MS/Z)COS{MS/Z) 1
 4siB(pS2)

B cot(nS/2) (M_S>2
8si(ns2) (rS2) 2\s
(70)

Alternatively, the symmetric buckling of pin-ended and fixed

arches can be obtained by finding the maximum valu® dfy

differentiating Eq.(20) for pin-ended arches or by differentiating

Eq. (29) for fixed arches using
dQ

dus O (72)

However, implementing this process becomes very complicated

and this is not pursued further.

For a given value ofx, a solution for the symmetric snap-

through buckling load)s and the corresponding value ®f can
be obtained by solving Eq$29) and (67) simultaneously. How-
ever, again the value of; rather than the value qf is usually

known for a specific shallow arch. In this case, an iterative pro-

cess again needs to be used to obtain a solutio@fdsy solving
Egs.(29) and(67) simultaneously.
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This indicates that symmetric buckling governs the buckling of
fixed arches subjected to a central concentrated load. It will be
shown next that symmetric buckling occurs first and that antisym-
metric buckling occurs in the unstable region, i.e., on the de-
scending branch of the load-displacement curve when the modi-
fied slenderness =38.15. When the modified slenderness
<38.15, the fixed arch may buckle only in a symmetric mode.

Because the solution processes for a symmetric buckling mode
are complicated, approximations for the symmetric buckling load
of fixed arches are proposed as

Qss~3.30+0.17,—0.0022 for 11<\,<38 (72)

and

Qss~5.88+0.03,—0.00002 for A;>38  (73)

The lowest symmetric buckling load for a fixed arch can be ob-
tained from Eq.(29) as(Bradford et al. 200D

. p 11-2
lim Q= ? (74)
nS2—m

In this case, the actual axial compressﬁnin a fixed arch is
relate to the lowest symmetric snap-through buckling IQadas

. Ne®  NO
2X(1.43031)2 2

From Eq.(28), the central radial displacemen of the fixed arch
(s=0) is

Qss (75)

1 [(nS2[cospnSi2—1]  (nSi2)2
T Sin(nS2) T
Q[2 tar(p.S/4) — (nS/2)]
(52 ] (76)

Thus the corresponding central radial displacementat 655
=m?/2 can be obtained from E§76) as (Bradford et al. 2000

S? w2
lim ve=——| 1= 1-——— 77
wS2—m ¢ m2R s ( )

The value of the central radial displacementis real when 1
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Fig. 6. Buckling of fixed arches against slenderness

e
6} - - - Linear buckling
load
4
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2 2
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Fig. 8. Buckling and postbuckling behavior of pin-ended arches

—(n?48)— (w*/\2)=0, that is when\=>1.12272(~11.07).
When the modified slendernesg=<11.07, a fixed shallow arch
does not buckle.

FE methoddABAQUS1998; Pi and Trahair 1998ave been

Structural Behavior of Arches

Typical variations of the dimensionless Ioéjwith the dimen-
sionless central vertical displacement/f for pin-ended shallow
arches are shown in Fig. 8, with Fig. 9 showing the counterparts

used to investigate the buckling behavior of fixed arches under afor fixed shallow arches, wherfeis the arch rise. Four types of
central concentrated load. In the FE analysis, the cross sectionduckling and postbuckling behavior can be observed in Fig. 8,
and material properties are the same as those used for the pinwhile three types of buckling and postbuckling behavior can be

ended arches. The results confirm that symmetric buckling domi-

nates. The points of antisymmetric bifurcation buckling are lo-

observed in Fig. 9. For the first type, there is no buckling as
shown in Figs. 8) and 9a). Pin-ended arches with a modified

cated in the unstable region, i.e., on the descending branch of theslendernesa =<3.91 and fixed arches with,<11.02 are of this

load-deflection curve and so antisymmetric bifurcation buckling
may not really occur. The approximatiofi&2) and(73) for sym-
metric buckling are compared with the FE results in Figs. 6 and 7.
The solutions for symmetric buckling obtained by simultaneously
solving Egs.(29) and (67) for A ;<38 are also shown in Fig. 6.
Comparisons with the FE results shows that E4R) provides
reasonable approximation for the symmetric buckling of fixed
arches with the modified slendernesg<38 while Eq.(73) pro-
vides a lower bound approximation for the symmetric buckling of
fixed arches with the modified slendernass-38. The solutions
for symmetric buckling obtained by simultaneously solving Egs.
(29 and(67) for A ;<38 agree well with the FE results.

In addition, the solutior{64) is compared with the FE results
for antisymmetric buckling in Fig. 6. This solution almost coin-
cides with the FE results for shallow arches.

8t
7+
IC
8o
2
54 -
|2}
c
_E 3r ——— Approximation (72) :
a8  eee Approximation (73)
2t x  Finite element results for 0.58/1x=37.5
o Finite element results for 0.5S/rx=50
1 o Finite element results for 0.58/r=75 1
+  Finite element results for 0.58/rx=100
0522080 —8v——TOU 720 T40 760 T80
Included angle @ (degrees)
Fig. 7. Buckling of fixed arches against included angle

type. For the second type, the arches buckle in a symmetric mode
without bifurcation as shown in Figs.(l® and 9b). Pin-ended
arches with a modified slenderness 394,=<7.96 and fixed
arches with 11.0& X <38.15 are of this type. For the third type,
the arches buckle in the symmetric snap-through mode first and
then bifurcate antisymmetrically in the unstable region, i.e., on
the descending branch of the load-deflection curve as shown in
Figs. 8c¢), and 9c and d. Pin-ended arches with a modified slen-
derness 7.98\,<9.80 and fixed arches withg=38.15 are of
this type. For the fourth type, the arches undergo antisymmetric
bifurcation buckling, and the load carrying capacity of the arches
decreases rapidly after this as shown in Figl) 8Pin-ended shal-
low arches with a modified slenderness=9.80 are of this type,

but fixed shallow arches do not display this behavior as shown in
Fig. 9d). This indicates that the existence of antisymmetric bifur-
cation buckling loads is not a sufficient condition for antisymmet-

0.5 1 1.5
velf
1 @

buckling load

5
As = 60.55
5152 O—us 15
velf velf

Fig. 9. Buckling and postbuckling behavior of fixed arches
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8 8 angle® =90°(w/2) can be used as the criterion for distinguishing
6 ; between shallow and nonshallow pin-ended arches. For pin-ended
4 s nonshallow arches with the included andbe=90°(w/2), the
o2 C4 buckling load can be predicted by the approximatibg). When
Of__ Steel I-sectic 3 0 =90°(w/2), the solution(47) can be used to predict the buck-
g T section f ...... ﬁ}ﬁﬁ,’ﬁiﬁ,’ﬂ%’mwa,wm ling load of shallow arches whose modified slenderniss
4] ® Anti-symmetrical buckling ol @ Anti-symmetrical buckiing =9.80 while the approximatiob4) can be used to predict the

0 05 1 15§ 2 25 0 04 08 12 186 2
velf veft
(a) Pin-ended arches (b) Fixed arches

buckling load of arches with 3.94\,<9.80. For fixed arches
with the modified slenderness 1102 ,<38, Eq.(72) can be
used to approximate the symmetric buckling load while the ap-
proximation(73) can be used for the symmetric buckling load of
fixed arches with\ s>38. Buckling does not occur for pin-ended
arches with the modified slenderness=3.91 or for fixed arches
with the modified slenderness<11.02.

Fig. 10. Comparison of buckling and postbuckling behavior

ric bifurcation buckling to take place. The linear buckling loads

predicted by the finite element progrddRFSA(Papangelis et al.

1998 (that is based on classical buckling theoaye also shown Acknowledgment
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