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In-Plane Elastic Stability of Arches under a Central
Concentrated Load

M. A. Bradford, M.ASCE1; B. Uy, M.ASCE2; and Y.-L. Pi3

Abstract: This paper is concerned with the in-plane elastic stability of arches with a symmetric cross section and subjected to a central
concentrated load. The classical methods of predicting elastic buckling loads consider bifurcation from a prebuckling equilibrium path to
an orthogonal buckling path. The prebuckling equilibrium path of an arch involves both axial and transverse deformations and so the arch
is subjected to both axial compression and bending in the prebuckling stage. In addition, the prebuckling behavior of an arch may become
nonlinear. The bending and nonlinearity are not considered in prebuckling analysis of classical methods. A virtual work formulation is
used to establish both the nonlinear equilibrium conditions and the buckling equilibrium equations for shallow arches. Analytical solutions
for antisymmetric bifurcation buckling and symmetric snap-through buckling loads of shallow arches subjected to this loading regime are
obtained. Approximations for the symmetric buckling load of shallow arches and nonshallow fixed arches and for the antisymmetric
buckling load of nonshallow pin-ended arches, and criteria that delineate shallow and nonshallow arches are proposed. Comparisons with
finite element results demonstrate that the solutions and approximations are accurate. It is found that the existence of antisymmetric
bifurcation buckling loads is not a sufficient condition for antisymmetric bifurcation buckling to take place.

DOI: 10.1061/~ASCE!0733-9399~2002!128:7~710!

CE Database keywords: Bifurcation; Buckling; Concentrated loads; Arches.

Introduction

This paper is concerned with the in-plane elastic stability of
arches subjected to a central concentrated load~Fig. 1!. When the
lateral displacements and twist rotations of an arch are fully re-
strained, the arch~Fig. 1! may buckle in an in-plane antisymmet-
ric bifurcation mode@Fig. 2~a!# or in an in-plane symmetric snap-
through mode@Fig. 2~b!#.

The classical methods for predicting elastic buckling loads
consider bifurcation from a prebuckling equilibrium path to an
orthogonal buckling path~Timoshenko and Gere 1961; Vlasov
1961; Simitses 1976; Trahair and Bradford 1998!. The analysis of
prebuckling equilibrium is linear and so the stress resultants can
be linearized. Nonlinearities are not considered in the pre-
buckling analysis and so their effects on buckling cannot be in-
cluded in the buckling analysis. These classical methods are suit-
able for the elastic buckling analysis of columns, beams, and
frames. For example, in the case of a column, the prebuckling or
primary equilibrium path involves linear axial deformation only,
and so the column is under a uniform axial compressive action in
its prebuckling configuration. The flexural buckling path that is

orthogonal to the prebuckling path at the point of bifurcation
involves primarily transverse deflections. In the case of an arch,
however, the prebuckling equilibrium path involves both axial
and transverse deformations and so the arch is under both axial
compression and bending in its prebuckling configuration. More-
over, the transverse deformations are significant prior to buckling
and the prebuckling elastic behavior may become nonlinear, so
that these effects necessarily need to be accounted for in the in-
plane buckling analysis of an arch.

Closed form solutions for the classical buckling load for pin-
ended and fixed circular arches subjected to a radial load uni-
formly distributed around the arch axis are given in several pub-
lications such as Timoshenko and Gere~1961!, Vlasov ~1961!,
Simitses~1976!, and Pi and Bradford~2002!. However, for arbi-
trary loading, numerical methods such as finite element~FE!
methods are often used for the prebuckling linear elastic analysis,
and an eigenvalue formulation is then invoked to determine the
buckling loads~Rajasekaran and Padmanabhan 1989; Kang and
Yoo 1994!. The discrepancies between the classical buckling
loads and test results has been realized by a number of researchers
~Gjelsvik and Bodner 1962; Dickie and Broughton 1971!, and
discrepancies between the numerical eigenvalue-based results and
the test results have also been identified~Pi and Trahair 1998; Pi
and Bradford 2001!. These discrepancies arise owing to the lin-
earization of the prebuckling path. The buckling of sinusoidal
shallow arches was studied by Timoshenko and Gere~1961! and
Simitses ~1976!. Gjelsvik and Bodner~1962! used an energy
method to investigate the instability of fixed shallow circular
arches of rectangular solid cross section subjected to central point
loading, and approximate solutions were obtained. Schreyer and
Masur ~1966! performed an exact analysis for shallow circular
arches and derived analytical solutions, but their analysis was
limited to fixed arches of a rectangular solid cross section and
their solutions for the symmetric buckling mode were very com-
plicated. Dickie and Broughton~1971! used a series method to
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study the buckling of shallow circular pin-ended and fixed arches.
However, their study was again confined to rectangular solid
cross sections and only approximate numerical solutions were
given. In addition to a rectangular cross section, other shapes such
as I sections and rectangular hollow sections are widely used for
aches, as are a number of materials. Most of the pertinent research
findings have been summarized inHandbook~1971! andGuide to
stability design~1976, 1988!. Pi and Bradford~2002! recently
studied the in-plane elastic stability of circular arches with a sym-
metric cross section and subjected to a radial load uniformly dis-
tributed around the arch axis. This analysis incorporated a non-
linear formulation for the prebuckling configuration. Research
using numerical methods for the in-plane buckling of arches has
been extensive in recent years~Noor and Peters 1981; Stolarski
and Belytschko 1982; Calhoun and DaDeppo 1983; Elias and
Chen 1988; Wen and Suhendro 1991; Pi and Trahair 1998!. It has
been shown~Wen and Suhendro 1991; Pi and Trahair 1998! that
the assumption of a linear prebuckling configuration with an ei-
genvalue approach for determining the buckling loads is not suit-
able for the in-plane elastic buckling analysis of shallow arches,
and nonlinear analysis needs to be deployed. It is not widely
recognized that classical buckling theory cannot correctly predict
the in-plane buckling load of shallow arches and this issue is
addressed herein.

The purposes of this paper are: to investigate analytically the
in-plane elastic stability of both pin-ended and fixed circular
arches with a symmetric cross section and subjected to a central
concentrated load; to use a virtual work procedure to establish the
nonlinear equilibrium conditions for shallow arches; to perform a
nonlinear buckling analysis to obtain analytical solutions for the
buckling load of shallow arches; and to propose approximations
to the symmetric buckling load of shallow arches and nonshallow
fixed arches and for the antisymmetric buckling load of nonshal-
low pin-ended arches.

Nonlinear In-Plane Equilibrium

Differential Equilibrium Equations

Because classical buckling theory does not account for the often
significant effects of prebuckling deformation and nonlinearity on

buckling, it cannot be used to predict accurately the in-plane
buckling of shallow arches. A virtual work procedure is used in
this section to investigate the in-plane buckling of shallow arches
by accounting for the effects of prebuckling deformations and
nonlinearity. The FE results reported by Pi and Trahair~1998!
demonstrated that the nonlinearity is due to large transverse de-
formation and that the axial displacementsw of shallow arches
are quite small prior to buckling, so that their effects on the radial
deformation may be ignored without error. Thus the longitudinal
normal strain of a pointP can be written as

eP5em1eb (1)

where the membrane strainem and the bending straineb are given
by

em5w82
v
R

1
1

2
~v8!2 and eb52yv9 (2)

where the term (v8)2/2 is used to account for the large transverse
deformation and it is the source of nonlinearity.

The nonlinear in-plane equilibrium equations for a shallow
arch subjected to a central concentrated loadQ can be derived
from the principle of virtual work that requires

dU5E
V
desdV2Qdv050 (3)

for all sets of kinematically admissible virtual displacementsdw
anddv, wherev05central radial displacement.

Because the deformations of an arch prior to buckling are sym-
metric under a central concentrated load, half of the arch can be
used for the derivation as shown in Fig. 3, in which case the
virtual work statement of Eq.~3! can be written as

E
0

S/2FEAS dw82
dv
R

1v8dv8D em1EIxv9dv9Gds2
Q

2
dv050

(4)

Integrating Eq.~4! by parts leads to the differential equilibrium
equations

2EAem8 50 (5)

for the axial direction and

EIxv iv2EAv9em2EA
em

R
2EAv8em8 50 (6)

for the radial direction.
When the right-hand half of an arch is used, integrating Eq.~4!

also leads to the boundary conditions for a pin-ended arch

v850 at s50 (7)

which represents that the slope of the midsurface of the arch is
equal to zero

Fig. 1. Arches and loading

Fig. 2. Buckling modes

Fig. 3. Half of arches
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EIxv-2
Q

2
50 at s50 (8)

which represents that the shear force at the midsurface of the arch
is equal to zero, and

EIxv950 at s5S/2 (9)

which represents that the bending moment at the pin-end (s
5S/2) vanishes. In addition, the displacement boundary condi-
tion at s5S/2 for the right-hand half of a pin-ended arch isv
50.

The boundary conditions for a fixed arch can be obtained in
the same way and are identical to Eqs.~7! and~8!. The displace-
ment boundary conditions ats5S/2 for the right-hand half of a
fixed arch arev5v850.

When the left-hand half of an arch is used, the boundary con-
dition ~8! becomes

EIxv-1
Q

2
50 at s50 (10)

the boundary condition~9! for a pin-ended arch becomes

EIxv950 at s52S/2 (11)

and the corresponding displacement boundary conditions ats5
2S/2 arev50 for a pin-ended arch andv5v850 for a fixed
arch.

From Eq.~5!, the membrane strainem is constant and can be
written as

em52
N̄

EA
(12)

whereN̄5actual axial compression force in the arch.
Introducing a parameterm defined by

m25
N̄

EIx
(13)

and substituting Eqs.~5!, ~12!, and~13! into Eq. ~6! leads to the
differential equilibrium equation for the radial direction as

v iv

m2
1v95

21

R
(14)

Nonlinear Equilibrium Conditions for Pin-Ended Arch

The radial displacementsv, which satisfy the boundary condi-
tions ~7!–~9!, ~10!, ~11!, andv50 at s56S/2, can be obtained
by solving Eq.~14! as

v5
1

m2R
H cos~mS/2!2cos~ms!

cos~mS/2!
1

1

2
@~mS/2!22~ms!2#J

1
Q

2EIxm
3
$tan~mS/2!cos~ms!2~mS/2!2H~s!@sin~ms!

2~ms!#% (15)

where the step functionH(s) is defined as

H~s!5H 21 when s,0

1 when s>0
(16)

The nonlinear equilibrium conditions for shallow arches can be
established by considering that the constant membrane strain

given by Eq.~12! should be equal to the average membrane strain
over the arch lengthS calculated from Eq.~2!, so that

2
N̄

EA
5

1

SE2S/2

S/2 S w82
v
R

1
v82

2 Dds (17)

Using the boundary conditionsw50 at s56S/2, it is clear that

1

SE2S/2

S/2

w8ds50 (18)

and from Eq.~13!, the left-hand side of Eq.~17! can be rewritten
as

2
N̄

EA
52

N̄

EIx

I x

A
52m2r x

2 (19)

wherer x5radius of gyration of the cross section about the major
principal axis given byr x5AI x /A.

Considering Eq.~18! and substituting Eqs.~15! and ~19! into
Eq. ~17! leads to the nonlinear equilibrium condition for pin-
ended shallow arches given by

A1Q̄21B1Q̄1C150 (20)

where the coefficientsA1 , B1 , andC1 are given by

A15
1

4~mS/2!4 F323
tan~mS/2!

mS/2
1tan2~mS/2!G (21)

B15
1

~mS/2!4 F 1

cos~mS/2!
212

~mS/2!tan~mS/2!

2 cos~mS/2! G (22)

C15S mS

2ls
D 2

1D1 (23)

with

D15
1

4~mS/2!2 F11tan2~mS/2!2
tan~mS/2!

~mS/2!
2

2~mS/2!2

3 G
(24)

ls5modified slenderness for an arch defined by

ls5
Q

2

~S/2!

r x
5

S2

4r xR
(25)

andQ̄5dimensionless load defined by

Q̄5
p2Q

QNP
(26)

and in which NP5second mode buckling load of a pin-ended
column about its major axis under uniform axial compression
given by

NP5
p2EIx

~S/2!2
(27)

Nonlinear Equilibrium Conditions for Fixed Arch

Following the previous procedure, the solution of Eq.~14! for
fixed arches, which satisfies the boundary conditions~7!, ~8!,
~10!, andv5v850 at s56S/2, can be obtained as
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v5
1

m2R
H ~mS/2!@cos~mS/2!2cos~mS!#

sin~mS/2!
1

1

2
@~mS/2!2

2~ms!2#J 1
Q

2EIxm
3
$tan~mS/4!@cos~ms!11#1H~s!@~ms!

2sin~ms!#2~mS/2!% (28)

Considering Eq.~18! and substituting Eqs.~19! and~28! into Eq.
~17! leads to the nonlinear equilibrium condition for fixed arches
given by

A2Q̄21B2Q̄1C250 (29)

where the coefficientsA2 , B2 , andC2 are given by

A25
1

4~mS/2!4 F31tan2S ~mS/2!

2 D2
6

~mS/2!
tanS mS/2

2 D G
(30)

B25
1

2~mS/2!3 F tanS mS/2

2 D2
mS/2

2
2

~mS/2!

2
tan2S mS/2

2 D G
(31)

C25S mS

2l2
D 2

1
1

4~mS/2!2 F ~mS/2!2 cot2~mS/2!

2~mS/2!cot~mS/2!1
~mS/2!2

3 G (32)

and the dimensionless loadQ̄ is defined by

Q̄5
~1.4303p!2Q

QNF
(33)

in which NF5second mode buckling load of a fixed column about
its major axis under uniform axial compression given by

NF5
~1.4303p!2EIx

~S/2!2
(34)

Buckling Analysis

Buckling Equations

For the stability of an equilibrium position defined byv andw to
be neutral, it is required that

d2U50 (35)

for the buckling displacementsvb5dv and wb5dw that take
place from the prebuckling equilibrium positionv and w to the
adjacent buckling equilibrium positionv1vb and w1wb under
constant loads.

The neutral equilibrium condition of Eq.~35! is equivalent to a
variation of the virtual work~3! as

E
2S/2

S/2 FEAS wb8emb2
vbemb

R
1v8vb8emb1vb8

2emD1EIxvb9
2Gds50

(36)

whereemb5membrane strain during buckling given by

emb5dem5wb82
vb

R
1v8vb8 (37)

The left-hand side of Eq.~36! can be considered as a function of
the buckling displacementsvb and wb . The buckling displace-
ments that make the functional stationary satisfy the Euler–
Lagrange equations of variational calculus, from which and by
considering Eqs.~12! and ~13!, the buckling differential equilib-
rium equation in the axial direction can be obtained as

emb8 50 (38)

from which the membrane strainemb during buckling is a con-
stant; and the buckling differential equilibrium equation in the
radial direction can be obtained as

vb
iv1m2vb95

emb

r x
2 S 1

R
1v9D . (39)

Buckling of Pin-Ended Shallow Arch

For antisymmetric bifurcation buckling, the buckling displace-
mentvb is antisymmetric while the prebuckling displacementv is
symmetric, so that the termsvb andv8vb8 are antisymmetric and
their integrals within the interval@2S/2,S/2# vanish. In addition,
the boundary conditions require thatwb50 at s56S/2, so that
the average strainemb during buckling is obtained as

emb5
1

SE2S/2

S/2

embds5
1

SE2S/2

S/2 S wb82
vb

R
1v8vb8Dds50 (40)

Substitutingemb50 into Eq.~39! leads to the linear homogeneous
differential equation for antisymmetric buckling of a shallow arch
given by

vb
iv

m2
1vb950 (41)

The solution of Eq.~41! that satisfies the boundary conditions
vb50 at s56S/2 is

vb5CFsin~ms!2
s sin~mS/2!

S/2 G (42)

whereC5amplitude parameter.
For a pin-ended arch, using the boundary conditionsvb950 at

s56S/2, Eq. ~42! leads to

sin~mS/2!50 (43)

whose fundamental solution is

mS

2
5p (44)

so that, with the use of Eq.~13!, the corresponding actual axial
compressionN̄ in a pin-ended arch during bifurcation antisym-
metric buckling is

N̄5
p2EIx

~S/2!2
(45)

which is equal to the familiar second mode buckling loadNP of a
pin-ended column under uniform compression.

Substituting Eq.~44! into the nonlinear equilibrium condition
~20! leads to

3Q̄sb
2 28Q̄sb1p22

2p4

3
1

4p6

ls
2

50 (46)
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Solving Eq.~46! for Q̄sb leads to the antisymmetric buckling load of a pin-ended shallow arch given by

Q̄sb'1.3364.5A120.65
p4

ls
2

(47)

Whenls>A0.65p2'7.96, a real antisymmetric buckling solution~47! exists, so that antisymmetric buckling of the pin-ended arch may
occur.

For the symmetric snap-through buckling of a pin-ended arch, the buckling displacementvb is symmetric. Substituting Eq.~15! into
Eq. ~39! leads to the buckling equilibrium equation

vb
iv

m2
1vb95

emb

m2r x
2

1

R H cos~ms!

cos~mS/2!
2

Q̄@ tan~mS/2!cos~ms!2H~s!sin~ms!#

~mS/2! J (48)

The solution of Eq.~48!, which satisfies the boundary conditionsvb5vb950 at s5S/2, is

vb5
1

m2r x
2

emb

m2R
H ~mS/2!sin~mS/2!cos~ms!2~ms!sin~ms!cos~mS/2!

2 cos2~mS/2!
112

cos~ms!

cos~mS/2!

1
Q̄

2 F ~ms!sin~ms!sin~mS/2!

mS/2 cos~mS/2!
1S tan~mS/2!

~mS/2!
2

1

cos2~mS/2!
D cos~ms!1H~s!S ~ms!cos~ms!

~mS/2!
2

sin~ms!

~mS/2! D G J (49)

The average buckling membrane strain of Eq.~37! over the arch
lengthS is equal to the constant buckling membrane strainemb ,
which leads to an equation for the relationship between the di-
mensionless buckling loadQ̄ss and the dimensionless parameter
mS/2 during symmetric snap-through buckling given by

A3Q̄ss
2 1B3Q̄ss1C350 (50)

where

A35
A1

2
1

tan2~mS/2!

4~mS/2!4
2

tan~mS/2!1tan3~mS/2!

4~mS/2!3
(51)

B35B11
11sin2~mS/2!

4~mS/2!2 cos3~mS/2!
2

sin~mS/2!

4~mS/2!3 cos2~mS/2!
(52)

and

C35
3D1

2
1

~mS/2!2tan~mS/2!2tan3~mS/2!

4~mS/2!
2S mS

2l D 2

(53)

and whereA1 , B1 , andD1 are given by Eqs.~21!, ~22!, and~24!.
For a given value ofm, a solution for the symmetric snap-

through buckling loadQ̄ss and the corresponding value ofls can
be obtained by solving Eqs.~20! and ~50! simultaneously. How-
ever, the value ofls rather than the value ofm is usually known
for a shallow arch. In this case, an iterative process needs to be
used to obtain a solution ofQ̄ss by solving Eqs.~20! and ~50!
simultaneously.

The value of the modified slendernessls that defines a switch
between the buckling modes can be found whenQ̄ss5Q̄sb at
mS/25p, which leads tols'9.80. Whenls.9.80, a pin-ended
arch may buckling in an antisymmetric mode, but when 7.96
<ls<9.80, both symmetric and antisymmetric buckling may
occur. It will be shown next that symmetric buckling occurs first
and that antisymmetric buckling occurs on the descending branch
of the load-displacement curve. When the modified slenderness
ls,7.96, a pin-ended arch may buckle only in a symmetric
mode.

Because the iterative solution process for the symmetric buck-
ling load of an arch is complicated, an approximation for the
symmetric buckling load of a pin-ended arch whose modified
slendernessls<9.80 is proposed as

Q̄ss'110.03ls
2 (54)

The lowest symmetric buckling load for a pin-ended arch can be
obtained from Eq.~20! as ~Bradford et al. 2000!

lim
mS/2→p/2

Q̄5
p

2
(55)

In this case, the actual axial compressionN̄ in the pin-ended arch
is related to the lowest symmetric snap-through buckling loadQss

as

Qs5
NPQ

2p
5

2QN̄

p
(56)

From Eq.~15!, the central radial displacementvc of a pin-ended
arch (s50) is

vc5
1

v2R
H 12

1

cos~mS/2!
1

~mS/2!2

2
2

Q̄@ tan~mS/2!2~mS/2!#

~mS/2! J
(57)

Hence the corresponding central radial displacementvc at Q̄ss

5p/2 can be obtained from Eq.~57! as ~Bradford et al. 2000!

lim
mS/2→p/2

vc5
S2

p2R
S 12

2

p
1

p2

8
2

p

2

6A 4

p2
1

8

p
1

p2

6
232

p4

4ls
2D (58)

The value of the central radial displacementvc is real when
(4/p2)1(8/p)1(p2/6)232(p4/4ls

2)>0, that is when ls

>3.91. Whenls,3.91, a pin-ended arch does not buckle.
Solution ~47! for antisymmetric buckling and the approxima-

tion ~54! for symmetric buckling of a pin-ended arch are com-
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pared with FE predictions in Figs. 4 and 5. The symmetric buck-
ling solution for arches with modified slendernessls<9.80
obtained by simultaneously solving Eqs.~20! and ~50! is also
shown in Fig. 4. Fig. 4 shows the variation of the dimensionless
buckling loadQ̄ with the modified slendernessls while Fig. 5
shows the variation of the dimensionless buckling loadQ̄ with the
included angleQ. The FE packageABAQUS~1998! and the FE
program developed by Pi and Trahair~1998! were used for the
numerical analysis, and the results ofABAQUSare identical to
those of Pi and Trahair. In the FE analysis, an I-section, a rectan-
gular hollow section, and a rectangular solid cross section were
used. The dimensionless of the I-section are: the overall depth
D50.2613 m, the flange widthB50.151 m, the flange thickness
t f50.0123 m, and the web thicknesstw50.0077 m. The dimen-
sions of the rectangular hollow section are: the overall heightD
50.4 m, the widthB50.25 m, and the wall-thicknesst50.003
m. The dimensionless of the rectangular solid cross section are:
the heightD50.005 m and the widthB50.010 m. The Young’s
modulus of elasticity was assumed to be equal toE5200,000
MPa for the three sections.

It can be observed from Fig. 4 that the approximation~54! is
almost identical to the solution from Eqs.~20! and~50! for sym-
metric buckling of pin-ended arches with the modified slender-
nessls<9.80. Both of these agree extremely well with the FE
predictions. The solution~47! for antisymmetric buckling almost
coincides with the FE results for pin-ended arches with the modi-

fied slenderness 40>ls>9.80. It can be seen from Fig. 5 that the
solution~47! and the approximation~54! agree very well with the
FE results when the included angleQ<90°(p/2).

When the included angleQ>90°(p/2), the solution~47! ap-
proaches a certain value (Q̄sb55.83) with the increase of the
modified slenderness and of the included angleQ, and tends to be
higher than the FE predictions. The included angleQ
590°(p/2) can be used as a criterion for distinguishing between
shallow and nonshallow pin-ended arches based on their in-plane
instability under a central concentrated load. The antisymmetric
buckling load of nonshallow arches@Q>90°(p/2)# can be ap-
proximated by

Q̄sb55.8320.85S Q2
p

2 D 2

(59)

where the included angleQ is expressed in radians. Fig. 5 shows
that the approximation~59! agrees very well with the FE results.

Buckling of Fixed Shallow Arch

For antisymmetric buckling of fixed shallow arches, the use of the
boundary conditionvb5vb850 at s56S/2 in Eq. ~42! produces

tan~mS/2!5mS/2 (60)

The lowest solution of Eq.~60! is

mS

2
'1.4303p (61)

so that, with the use of Eq.~13!, the corresponding actual axial
compressionN̄ in a fixed arch at antisymmetric buckling is

N̄'
~1.4303p!2EIx

~S/2!2
(62)

which is equal to the second mode buckling loadNF of a fixed
column under uniform compression.

Substituting Eqs.~60! and ~61! into Eq. ~29! leads to

6.22Q̄sb
2 213.983~1.4303p!Q̄sb1

~1.4303p!4

3

1
43~1.4303p!6

ls
2

50 (63)

and solving Eq.~63! for Q̄sb leads to the antisymmetric buckling
load of fixed shallow arches given by

Q̄sb'1.4303p3S 1.1260.18A1215
p4

ls
2 D (64)

Whenls>A15p2('38.15), a real antisymmetric buckling solu-
tion ~64! exists, so that antisymmetric buckling of the fixed arch
may occur. Solution~64! can be reduced to that of Schreyer and
Masur ~1966! for fixed shallow arches with a rectangular solid
cross section subjected to a central concentrated load.

For symmetric snap-through buckling of a fixed arch, substi-
tuting Eq. ~28! into Eq. ~39! leads to the buckling equilibrium
equation

Fig. 4. Buckling of pin-ended arches against slenderness

Fig. 5. Buckling of pin-ended arches against included angle
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vb
iv

m2
1vb95

emb

m2r x
2

1

R H ~mS/2!cos~ms!

sin~mS/2!
2

Q̄@ tan~mS/4!cos~ms!2H~s!sin~ms!#

~mS/2! J (65)

The solution of Eq.~65!, which satisfies the boundary conditionsvb5vb850 at s5S/2, is

vb5
emb

m4r x
2R

H ~mS/2!@cos~mS/2!2cos~ms!2~ms!sin~ms!#

2 sin~mS/2!
1

~mS/2!2@12cos~mS/2!cos~ms!#

2 sin2~mS/2!

2
Q̄

2 Fcos~mS/2!2cos~ms!1cos~mS/2!cos~ms!21

~mS/2!sin~mS/2!
1

@12cos~mS/2!#@11cos~ms!#

sin2~mS/2!
2

~ms!sin~ms!@12cos~mS/2!#

~mS/2!sin~mS/2!

2
H~s!@~ms!cos~ms!2sin~ms!#

~mS/2! G J (66)

The average buckling membrane strain of Eq.~37! over the arch
lengthS is equal to the constant buckling membrane strainemb ,
which leads to an equation for the relationship between the di-
mensionless loadQ̄ and the dimensionless parametermS/2 during
symmetric snap-through buckling given by

A4Q̄21B4Q̄1C450 (67)

where

A45
1

~mS/2!3 H 3 tan~mS/4!

4 sin~mS/2!
2

3 sin~mS/2!

8~mS/2!2
2

tan2~mS/4!

4 sin~mS/2!

2
tan3~mS/4!sin2~mS/2!

4~mS/2!2
2

tan~mS/4!sin2~mS/2!

8~mS/2!

2
tan2~mS/4!cos~mS/2!

8~mS/2! J (68)

B45
tan~mS/4!

4~mS/2!3
1

tan2~mS/4!

4~mS/2!sin~mS/2!
2

tan~mS/4!

4~mS/2!2 sin~mS/2!
(69)

and

C45
~mS/2!cos~mS/2!

4 sin3~mS/2!
2

1

8 sin2~mS/2!
2

cot~mS/2!

~mS/2!
2S mS

2ls
D 2

(70)

Alternatively, the symmetric buckling of pin-ended and fixed
arches can be obtained by finding the maximum value ofQ̄ by
differentiating Eq.~20! for pin-ended arches or by differentiating
Eq. ~29! for fixed arches using

dQ̄

d~mS/2!
50 (71)

However, implementing this process becomes very complicated
and this is not pursued further.

For a given value ofm, a solution for the symmetric snap-
through buckling loadQ̄ss and the corresponding value ofls can
be obtained by solving Eqs.~29! and ~67! simultaneously. How-
ever, again the value ofls rather than the value ofm is usually
known for a specific shallow arch. In this case, an iterative pro-
cess again needs to be used to obtain a solution forQs by solving
Eqs.~29! and ~67! simultaneously.

The value of the modified slendernessls for distinguishing
between the buckling modes may be found whenQ̄ss5Q̄sb at
mS/251.4303p. However, there is no real-value solution forls .
This indicates that symmetric buckling governs the buckling of
fixed arches subjected to a central concentrated load. It will be
shown next that symmetric buckling occurs first and that antisym-
metric buckling occurs in the unstable region, i.e., on the de-
scending branch of the load-displacement curve when the modi-
fied slendernessls>38.15. When the modified slendernessls

,38.15, the fixed arch may buckle only in a symmetric mode.
Because the solution processes for a symmetric buckling mode

are complicated, approximations for the symmetric buckling load
of fixed arches are proposed as

Q̄ss'3.3010.17ls20.002ls
2 for 11,ls<38 (72)

and

Q̄ss'5.8810.03ls20.0001ls
2 for ls.38 (73)

The lowest symmetric buckling load for a fixed arch can be ob-
tained from Eq.~29! as ~Bradford et al. 2000!

lim
mS/2→p

Q̄5
p2

2
(74)

In this case, the actual axial compressionN̄ in a fixed arch is
relate to the lowest symmetric snap-through buckling loadQss as

Qss5
NFQ

23~1.4303p!2
5

N̄Q

2
(75)

From Eq.~28!, the central radial displacementvc of the fixed arch
(s50) is

vc5
1

m2R
H ~mS/2!@cos~mS/2!21#

sin~mS/2!
1

~mS/2!2

2

1
Q̄@2 tan~mS/4!2~mS/2!#

~mS/2! J (76)

Thus the corresponding central radial displacementvc at Q̄ss

5p2/2 can be obtained from Eq.~76! as ~Bradford et al. 2000!

lim
mS/2→p

vc5
S2

p2R
S 16A12

p2

48
2

p4

ls
2 D (77)

The value of the central radial displacementvc is real when 1
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2(p2/48)2(p4/ls
2)>0, that is when ls>1.122p2('11.07).

When the modified slendernessls<11.07, a fixed shallow arch
does not buckle.

FE methods~ABAQUS1998; Pi and Trahair 1998! have been
used to investigate the buckling behavior of fixed arches under a
central concentrated load. In the FE analysis, the cross sections
and material properties are the same as those used for the pin-
ended arches. The results confirm that symmetric buckling domi-
nates. The points of antisymmetric bifurcation buckling are lo-
cated in the unstable region, i.e., on the descending branch of the
load-deflection curve and so antisymmetric bifurcation buckling
may not really occur. The approximations~72! and~73! for sym-
metric buckling are compared with the FE results in Figs. 6 and 7.
The solutions for symmetric buckling obtained by simultaneously
solving Eqs.~29! and ~67! for ls<38 are also shown in Fig. 6.
Comparisons with the FE results shows that Eq.~72! provides
reasonable approximation for the symmetric buckling of fixed
arches with the modified slendernessls<38 while Eq.~73! pro-
vides a lower bound approximation for the symmetric buckling of
fixed arches with the modified slendernessls.38. The solutions
for symmetric buckling obtained by simultaneously solving Eqs.
~29! and ~67! for ls<38 agree well with the FE results.

In addition, the solution~64! is compared with the FE results
for antisymmetric buckling in Fig. 6. This solution almost coin-
cides with the FE results for shallow arches.

Structural Behavior of Arches

Typical variations of the dimensionless loadQ̄ with the dimen-
sionless central vertical displacementvc / f for pin-ended shallow
arches are shown in Fig. 8, with Fig. 9 showing the counterparts
for fixed shallow arches, wheref is the arch rise. Four types of
buckling and postbuckling behavior can be observed in Fig. 8,
while three types of buckling and postbuckling behavior can be
observed in Fig. 9. For the first type, there is no buckling as
shown in Figs. 8~a! and 9~a!. Pin-ended arches with a modified
slendernessls<3.91 and fixed arches withls<11.02 are of this
type. For the second type, the arches buckle in a symmetric mode
without bifurcation as shown in Figs. 8~b! and 9~b!. Pin-ended
arches with a modified slenderness 3.91<ls<7.96 and fixed
arches with 11.02<ls<38.15 are of this type. For the third type,
the arches buckle in the symmetric snap-through mode first and
then bifurcate antisymmetrically in the unstable region, i.e., on
the descending branch of the load-deflection curve as shown in
Figs. 8~c!, and 9~c and d!. Pin-ended arches with a modified slen-
derness 7.96<ls<9.80 and fixed arches withls>38.15 are of
this type. For the fourth type, the arches undergo antisymmetric
bifurcation buckling, and the load carrying capacity of the arches
decreases rapidly after this as shown in Fig. 8~d!. Pin-ended shal-
low arches with a modified slendernessls>9.80 are of this type,
but fixed shallow arches do not display this behavior as shown in
Fig. 9~d!. This indicates that the existence of antisymmetric bifur-
cation buckling loads is not a sufficient condition for antisymmet-

Fig. 6. Buckling of fixed arches against slenderness

Fig. 7. Buckling of fixed arches against included angle

Fig. 8. Buckling and postbuckling behavior of pin-ended arches

Fig. 9. Buckling and postbuckling behavior of fixed arches
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ric bifurcation buckling to take place. The linear buckling loads
predicted by the finite element programPRFSA~Papangelis et al.
1998! ~that is based on classical buckling theory! are also shown
in Figs. 8 and 9. It can be seen that the linear buckling loads are
very unconservative. It can also be seen from Figs. 8 and 9 that
the deflections are substantial when buckling occurs so that clas-
sical buckling theory, which does not consider the effects of pre-
buckling deformations on buckling, cannot be used to predict the
buckling load of shallow arches.

FE results for the buckling and postbuckling behavior of shal-
low arches with the same modified slendernessls , but with dif-
ferent cross section and different material properties are shown in
Fig. 10. Aluminum solid rectangular sections and steel I-sections
were used for this study. The dimensions of these sections are
identical with those considered previously, and the Young’s
modulus of elasticity was taken asE5200,000 MPa for steel and
E580,150 MPa for aluminum. It can be observed in Fig. 10 that
the dimensionless load-deflection relationships betweenQ̄ and
vc / f for prebuckling, buckling, and postbuckling can be defined
by the modified slendernessls .

Concluding Remarks

The in-plane elastic stability of both pin-ended and fixed circular
arches with a symmetric cross section subjected to a central con-
centrated load has been studied in this paper. Nonlinear equilib-
rium conditions for shallow arches have been established by the
use of a virtual work formulation. Nonlinear buckling analysis
provides accurate solutions for the symmetric and antisymmetric
buckling of both pin-ended and fixed shallow arches. Approxi-
mate solutions have been proposed for the symmetric buckling
load of pin-ended and fixed shallow arches. Comparisons with FE
predictions have shown that the closed form solutions~47! for the
antisymmetric buckling load of pin-ended shallow arches and the
approximations~54! and~72! for the symmetric buckling load of
pin-ended and fixed shallow arches are reasonably accurate. The
approximation~59! provides good lower bound antisymmetric
buckling loads for pin-ended nonshallow arches while Eq.~73!
provides a reasonable approximation for symmetric buckling
loads of fixed nonshallow arches. The symmetric mode governs
the in-plane buckling of fixed arches under a central concentrated
load. Existence of antisymmetric bifurcation buckling loads is not
a sufficient condition for the antisymmetric buckling to take
place.

A criterion for the classification of different types of funda-
mental buckling behavior has been established. The included

angleQ590°(p/2) can be used as the criterion for distinguishing
between shallow and nonshallow pin-ended arches. For pin-ended
nonshallow arches with the included angleQ>90°(p/2), the
buckling load can be predicted by the approximation~59!. When
Q590°(p/2), the solution~47! can be used to predict the buck-
ling load of shallow arches whose modified slendernessls

>9.80 while the approximation~54! can be used to predict the
buckling load of arches with 3.91<ls<9.80. For fixed arches
with the modified slenderness 11.02,ls<38, Eq. ~72! can be
used to approximate the symmetric buckling load while the ap-
proximation~73! can be used for the symmetric buckling load of
fixed arches withls.38. Buckling does not occur for pin-ended
arches with the modified slendernessls<3.91 or for fixed arches
with the modified slendernessls<11.02.
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