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In praise of sparsity and convexity

Robert J. Tibshirani

Department of Statistics, Stanford, CA

To celebrate the 50th anniversary of COPSS, I discuss some examples of excit-
ing developments of sparsity and convexity, in statistical research and practice.

42.1 Introduction

When asked to reflect on an anniversary of their field, scientists in most fields
would sing the praises of their subject. As a statistician, I will do the same.
However, here the praise is justified! Statistics is a thriving discipline, more
and more an essential part of science, business and societal activities. Class
enrollments are up—it seems that everyone wants to be a statistician—and
there are jobs everywhere. The field of machine learning, discussed in this
volume by my friend Larry Wasserman, has exploded and brought along with
it the computational side of statistical research. Hal Varian, Chief Economist
at Google, said “I keep saying that the sexy job in the next 10 years will
be statisticians. And I’m not kidding.” Nate Silver, creator of the New York
Times political forecasting blog “538” was constantly in the news and on
talk shows in the runup to the 2012 US election. Using careful statistical
modelling, he forecasted the election with near 100% accuracy (in contrast
to many others). Although his training is in economics, he (proudly?) calls
himself a statistician. When meeting people at a party, the label “Statistician”
used to kill one’s chances of making a new friend. But no longer!

In the midst of all this excitement about the growing importance of statis-
tics, there are fascinating developments within the field itself. Here I will
discuss one that has been the focus my research and that of many other
statisticians.
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FIGURE 42.1
Estimation picture for the lasso (left) and ridge regression (right). Shown are con-
tours of the error and constraint functions. The solid blue areas are the constraint
regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively, while the red ellipses are

the contours of the least squares error function. The sharp corners of the constraint
region for the lasso yield sparse solutions. In high dimensions, sparsity arises from
corners and edges of the constraint region.

42.2 Sparsity, convexity and `1 penalties

One of the earliest proposals for using `1 or absolute-value penalties, was the
lasso method for penalized regression. Given a linear regression with predictors
xij and response values yi for i ∈ {1, . . . , N} and j ∈ {1, . . . , p}, the lasso
solves the `1-penalized regression

minimizeβ

1

2

N∑
i=1

yi − p∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj |

 .

This is equivalent to minimizing the sum of squares with constraint |β1|+· · ·+
|βp| ≤ s. It is similar to ridge regression, which has constraint β2

1 +· · ·+β2
p ≤ s.

Because of the form of the `1 penalty, the lasso does variable selection and
shrinkage; while ridge regression, in contrast, only shrinks. If we consider a
more general penalty of the form (βq1 + · · ·+ βqp)1/q, then the lasso uses q = 1
and ridge regression has q = 2. Subset selection emerges as q → 0, and the
lasso corresponds to the smallest value of q (i.e., closest to subset selection)
that yields a convex problem. Figure 42.1 gives a geometric view of the lasso
and ridge regression.

The lasso and `1 penalization have been the focus of a great deal of work
recently. Table 42.1, adapted from Tibshirani (2011), gives a sample of this
work.
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TABLE 42.1
A sampling of generalizations of the lasso

Method Authors
Adaptive lasso Zou (2006)
Compressive sensing Donoho (2004), Candès (2006)
Dantzig selector Candès and Tao (2007)
Elastic net Zou and Hastie (2005)
Fused lasso Tibshirani et al. (2005)
Generalized lasso Tibshirani and Taylor (2011)
Graphical lasso Yuan and Lin (2007b), Friedman et al. (2010)
Grouped lasso Yuan and Lin (2007a)
Hierarchical interaction models Bien et al. (2013)
Matrix completion Candès and Tao (2009), Mazumder et al. (2010)
Multivariate methods Joliffe et al. (2003), Witten et al. (2009)
Near-isotonic regression Tibshirani et al. (2011)

The original motivation for the lasso was interpretability: It is an alterna-
tive to subset regression for obtaining a sparse model. Since that time, two
unforeseen advantages of convex `1-penalized approaches have emerged: Com-
putational and statistical efficiency. On the computational side, convexity of
the problem and sparsity of the final solution can be used to great advantage.
When most parameter estimates are zero in the solution, those parameters
can be handled with minimal cost in the search for the solution. Powerful and
scalable techniques for convex optimization can be unleashed on the problem,
allowing the solution of very large problems. One particularly promising ap-
proach is coordinate descent (Fu, 1998; Friedman et al., 2007, 2010), a simple
one-at-a-time method that is well-suited to the separable lasso penalty. This
method is simple and flexible, and can also be applied to a wide variety of other
`1-penalized generalized linear models, including Cox’s proportional hazards
model for survival data. Coordinate descent is implemented in the popular
glmnet package in the R statistical language, written by Jerome Friedman,
Trevor Hastie, and myself, with help in the Cox feature from Noah Simon.

On the statistical side, there has also been a great deal of deep and inter-
esting work on the mathematical aspects of the lasso, examining its ability to
produce a model with minimal prediction error, and also to recover the true
underlying (sparse) model. Important contributors here include Bühlmann,
Candès, Donoho, Greenshtein, Johnstone, Meinshausen, Ritov, Wainwright,
Yu, and many others. In describing some of this work, Hastie et al. (2001)
coined the informal “Bet on Sparsity” principle. The `1 methods assume that
the truth is sparse, in some basis. If the assumption holds true, then the pa-
rameters can be efficiently estimated using `1 penalties. If the assumption does
not hold—so that the truth is dense—then no method will be able to recover
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the underlying model without a large amount of data per parameter. This is
typically not the case when p� N , a commonly occurring scenario.

42.3 An example

I am currently involved in a cancer diagnosis project with researchers at Stan-
ford University. They have collected samples of tissue from 10 patients un-
dergoing surgery for stomach cancer. The aim is to build a classifier than
can distinguish three kinds of tissue: Normal epithelial, stromal and cancer.
Such a classifier could be used to assist surgeons in determining, in real time,
whether they had successfully removed all of the tumor. It could also yield
insights into the cancer process itself. The data are in the form of images, as
sketched in Figure 42.2. A pathologist has labelled each region (and hence the
pixels inside a region) as epithelial, stromal or cancer. At each pixel in the
image, the intensity of metabolites is measured by a kind of mass spectrom-
etry, with the peaks in the spectrum representing different metabolites. The
spectrum has been finely sampled at about 11,000 sites. Thus the task is to
build a classifier to classify each pixel into one of the three classes, based on
the 11,000 features. There are about 8000 pixels in all.

For this problem, I have applied an `1-regularized multinomial model. For
each class k ∈ {1, 2, 3}, the model has a vector (β1k, . . . , βpk) of parameters
representing the weight given to each feature in that class. I used the glmnet

package for fitting the model: It computes the entire path of solutions for all
values of the regularization parameter λ, using cross-validation to estimate
the best value of λ (I left one patient out at a time). The entire computation
required just a few minutes on a standard Linux server.

The results so far are encouraging. The classifier shows 93–97% accuracy
in the three classes, using only around 100 features. These features could yield
insights about the metabolites that are important in stomach cancer. There
is much more work to be done—collecting more data, and refining and testing
the model. But this shows the potential of `1-penalized models in an important
and challenging scientific problem.

42.4 The covariance test

So far, most applications of the lasso and `1 penalties seem to focus on large
problems, where traditional methods like all-subsets-regression can’t deal with
the problem computationally. In this last section, I want to report on some
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FIGURE 42.2
Schematic of the cancer diagnosis problem. Each pixel in each of the three
regions labelled by the pathogolist is analyzed by mass spectometry. This
gives a feature vector of 11, 000 intensities (bottom panel), from which we try
to predict the class of that pixel.

very recent work that suggest that `1 penalties may have a more fundamental
role in classical mainstream statistical inference.

To begin, consider standard forward stepwise regression. This procedure
enters predictors one a time, choosing the predictor that most decreases the
residual sum of squares at each stage. Defining RSS to be the residual sum
of squares for the model containing j predictors and denoting by RSSnull the
residual sum of squares for the model omitting the predictor k(j), we can form
the usual statistic

Rj = (RSSnull − RSS)/σ2

(with σ assumed known for now), and compare it to a χ2
(1) distribution.

Although this test is commonly used, we all know that it is wrong. Fig-
ure 42.3 shows an example. There are 100 observations and 10 predictors in
a standard Gaussian linear model, in which all coefficients are actually zero.
The left panel shows a quantile-quantile plot of 500 realizations of the statis-
tic R1 versus the quantiles of the χ2

(1) distribution. The test is far too liberal

and the reason is clear: The χ2
(1) distribution is valid for comparing two fixed

nested linear models. But here we are adaptively choosing the best predictor,
and comparing its model fit to the null model.

In fact it is difficult to correct the chi-squared test to account for adaptive
selection: Half-sample splitting methods can be used (Meinshausen et al., 2009;
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FIGURE 42.3
A simple example with n = 100 observations and p = 10 orthogonal predictors.
All true regression coefficients are zero, β∗ = 0. On the left is a quantile-quantile
plot, constructed over 1000 simulations, of the standard chi-squared statistic R1,
measuring the drop in residual sum of squares for the first predictor to enter in
forward stepwise regression, versus the χ2

1 distribution. The dashed vertical line
marks the 95% quantile of the χ2

(1) distribution. The right panel shows a quantile-
quantile plot of the covariance test statistic T1 for the first predictor to enter in the
lasso path, versus its asymptotic distribution E(1). The covariance test explicitly
accounts for the adaptive nature of lasso modeling, whereas the usual chi-squared
test is not appropriate for adaptively selected models, e.g., those produced by forward
stepwise regression.

Wasserman and Roeder, 2009), but these may suffer from lower power due to
the decrease in sample size.

But the lasso can help us! Specifically, we need the LAR (least angle regres-
sion) method for constructing the lasso path of solutions, as the regularization
parameter λ is varied. I won’t give the details of this construction here, but we
just need to know that there are a special set of decreasing knots λ1 > · · · > λk
at which the active set of solutions (the non-zero parameter estimates) change.
When λ > λ1, the solutions are all zero. At the point λ = λ1, the variable
most correlated with y enters the model. At each successive value λj , a vari-
able enters or leaves the model, until we reach λk where we obtain the full
least squares solution (or one such solution, if p > N).

We consider a test statistic analogous to Rj for the lasso. Let y be the
vector of outcome values and X be the design matrix. Assume for simplicity
that the error variance σ2 is known. Suppose that we have run LAR for j − 1
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steps, yielding the active set of predictors A at λ = λj . Now we take one

more step, entering a new predictor k(j), and producing estimates β̂(λj) at
λj+1. We wish to test if the k(j)th component βk(j) is zero. We refit the lasso,
keeping λ = λj+1 but using just the variables in A. This yields estimates

β̂A(λj+1). Our proposed covariance test statistic is defined by

Tj =
1

σ2
{〈y,Xβ̂(λj+1)〉 − 〈y,XAβ̂A(λj+1)〉}. (42.1)

Roughly speaking, this statistic measures how much of the covariance between
the outcome and the fitted model can be attributed to the k(j)th predictor,
which has just entered the model.

Now something remarkable happens. Under the null hypothesis that all
signal variables are in the model: As p → ∞, Tj converges to an exponential
random variable with unit mean, E(1). The right panel of Figure 42.3 shows
the same example, using the covariance statistic. This test works for testing
the first variable to enter (as in the example), or for testing noise variables
after all of the signal variables have entered. And it works under quite general
conditions on the design matrix. This result properly accounts for the adap-
tive selection: The shrinkage in the `1 fitting counteracts the inflation due to
selection, in just the right way to make the degrees of freedom (mean) of the
null distribution exactly equal to 1 asymptotically. This idea can be applied
to a wide variety of models, and yields honest p-values that should be useful
to statistical practitioners.

In a sense, the covariance test and its exponential distribution general-
ize the RSS test and its chi-squared distribution, to the adaptive regression
setting.

This work is very new, and is summarized in Lockhart et al. (2013). The
proofs of the results are difficult, and use extreme-value theory and Gaus-
sian processes. They suggest that the LAR knots λk may be fundamental in
understanding the effects of adaptivity in regression. On the practical side, re-
gression software can now output honest p-values as predictors enter a model,
that properly account for the adaptive nature of the process. And all of this
may be a result of the convexity of the `1-penalized objective.

42.5 Conclusion

In this chapter I hope that I have conveyed my excitement for some recent
developments in statistics, both in its theory and practice. I predict that con-
vexity and sparsity will play an increasing important role in the development
of statistical methodology.
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