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Grid-convergence trends of two-dimensional Euler solutions are investigated. The airfoil geometry under study is

based on the NACA0012 equation. However, unlike the NACA0012 airfoil, which has a blunt base at the trailing

edge, the study geometry is extended in chord so that its trailing edge is sharp. The flow solutions use extremely- high-

quality grids that are developedwith the aid of the Karman–Trefftz conformal transformation. The topology of each

grid is that of a standard O-mesh. The grids naturally extend to a far-field boundary approximately 150 chord

lengths away from the airfoil. Each quadrilateral cell of the resultingmesh has an aspect ratio of one. The intersecting

lines of the grid are essentially orthogonal at each vertex within the mesh. A family of grids is recursively derived

startingwith the finestmesh. Here, each successively coarser grid in the sequence is constructed by eliminating every

other node of the current grid, in both computational directions. In all, a total of eight grids comprise the family, with

the coarsest-to-finestmeshes having dimensions of 32 � 32–4096 � 4096 cells, respectively. Note that thefinest grid in

this family is composed of over 16 million cells, and is suitable for 13 levels of multigrid. The geometry and grids are

all numerically defined such that they are exactly symmetrical about the horizontal axis to ensure that a nonlifting

solution is possible at zero degrees angle-of-attack attitude. Characteristics of threewell-known flow solvers (FLO82,

OVERFLOW, and CFL3D) are studied using a matrix of four flow conditions: (subcritical and transonic) by

(nonlifting and lifting). The matrix allows the ability to investigate grid-convergence trends of 1) drag with and

without lifting effects, 2) drag with and without shocks, and 3) lift and moment at constant angles-of-attack. Results

presented herein use 64-bit computations and are converged to machine-level-zero residuals. All three of the flow

solvers havedifficultymeeting this requirement on thefinestmeshes, especially at the transonicflowconditions. Some

unexpected results are also discussed. Take for example the subcritical cases. FLO82 solutions do not reach

asymptotic grid convergence of second-order accuracy until the mesh approaches one quarter of a million cells.

OVERFLOW exhibits at best a first-order accuracy for a central-difference stencil. CFL3D shows second-order

accuracy for drag, but only first-order trends for lift and pitching moment. For the transonic cases, the order of

accuracy deteriorates for all of the methods. A comparison of the limiting values of the aerodynamic coefficients is

provided. Drag for the subcritical cases nearly approach zero for all of the computational fluid dynamics methods

reviewed. These and other results are discussed.

Nomenclature

Cd = drag coefficient drag
q1Cref

Cl = lift coefficient lift
q1Cref

Cm = pitching-moment coefficient
CP = pressure coefficient P�P1

q1
Cref = airfoil reference chord 1:0
count = drag coefficient unit 0:0001
� = error of functional
F = functional Cl, Cd, Cm

f, m, c = fine, medium, coarse meshes
G = Newton-method function
h = cell size
i = grid index, circling the airfoil

j = grid index, airfoil to far field
LE = airfoil leading edge
M = Mach number V

a
NC = number of cells in one direction
P = power of Karman–Trefftz mapping
p = order of accuracy
q = dynamic pressure 1

2
�V2

r = radial coordinate
R = radius of a circle
R = ratio of grid-convergence deltas
TE = airfoil trailing edge
t = thickness of an airfoil
V = velocity
Xref = moment reference center�0:25

x = horizontal physical coordinate
y = vertical physical coordinate
z = physical plane z� x� iy
� = angle of attack
� = normalized error parameter
� = mapped plane �� �� i�� rei�

� = vertical mapped coordinate

� = angular coordinate
� = horizontal mapped coordinate
� = radius of curvature

	 = trailing-edge included angle

1 = signifies freestream conditions
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I. Introduction

I N RECENT years, the AIAA computational fluid dynamics
(CFD) Drag Prediction Workshop (DPW) Series [1] has drawn

much attention to state-of-the-art CFD as a tool for accurate
aerodynamic performance assessments of aircraft, especially in the
transonic-flight regime. More specifically, the DPW Series has
focused on CFD methods based on the Reynolds-averaged Navier–
Stokes (RANS) equations, and on test cases concerned with
predominantly turbulent high-Reynolds-number flows. The second
and third workshops (DPW-II and DPW-III) have included grid-
convergence studies. These investigations have yielded mixed
results. As a consequence, there may be a need for the CFD
community to pause for amoment and take a fresh look at the topic of
grid convergence. To understand the issues contributing to the grid-
convergence results documented by the DPW Series for 3-D RANS
solutions, a systematic study of grid-convergence characteristics of
each of the fundamental building blocks of a 3-D RANS CFD
methodmight be required. For example, it may be necessary to study
grid-convergence properties for an algorithm on 1-D problems with
exact solutions. For the most part, this has already been done
extensively in academic settings. However, previous studies con-
ducted on 2-D cases occurred at a time when the limiting factor was
computational resources. In addition, 2-D problems receive less
investigation than 1-D cases by academia, and less attention than 3-D
solutions by industry. This situation is the motivation for the current
work [2] presented herein, which focuses on 2-D Euler solutions.

This paper is organized in the following manner. Section II
outlines the approach taken in thiswork to study grid convergence on
2-D Euler flows. Section III provides a description of the subject
geometry, which is a slightly modified NACA0012 airfoil.
Section IV gives a description of the grid-generation process and
the resulting family of grids used for the grid-convergence studies.
Section V discusses the estimation of the order of accuracy of a CFD
method and the effects on this estimate using data with errors.
Section VI provides grid-convergence trends of lift, drag, and
pitchingmoment. Tables of data are embeddedwithin the text, and all
figures are appended to the end of the paper.

II. Approach

This section briefly outlines the approach taken in the current work
to study grid-convergence properties of various CFD methods on
steady-state solutions of 2-D inviscid, compressible flows.

1) The test case is a standard public-domain symmetric airfoil,
which is defined by an analytic equation.

2) All numerical calculations are performed with 64-bit
computations.

3) All iterative results are converged to machine-level-zero
residuals.

4) An extremely high-quality O-mesh is generated about the
airfoil. The discrete grid nodes of the piecewise-linear airfoil surface
reside on the analytic definition.

5) The O-mesh is composed of essentially orthogonal grid lines
and quadrilateral cells of aspect ratio one. Although this class of grid
is not necessarily themost efficient use of cell count, nonetheless it is
adopted in this work to avoid any issues related to grid stretching or
cell aspect ratios.

6) All grids are constructed to be exactly symmetric about the
horizontal axis. This permits the possibility of a nonlifting solution at
0 deg angle-of-attack.

7) The cell dimension of thefinest grid is selected as a power of 2 to
help facilitate construction of a family of grids, as well as to facilitate
multigrid acceleration.

8)A family of eight grids is constructed (startingwith thefinest) by
removing every other grid line in both computational directions to
create the next coarser grid in the sequence. The coarsest grid used
contains 32 � 32 cells, whereas the finest mesh consists of 4096 �
4096 elements.

9) Several flow conditions are studied to address different
attributes. A zero-lift condition at a subcriticalMach number anchors
the study, whereas a heavily investigated transonic flow condition

frames the other extreme of this investigation. Two additional
conditions are included to provide buildups between the two
extremes. The resulting 2 � 2matrix of conditions is (subcritical and
transonic) by (nonlifting and lifting).

10) Solutions of the 2-D Euler equations are obtained on all grids
of the family for each freestream condition under study usingFLO82,
whereas OVERFLOWand CFL3D solutions have a focus onmeshes
of dimension 256 � 256 and larger.

11) Four sets of lifting data are generated using the three CFD
methods. Two sets include the influence of a point vortex on the far-
field boundary condition, whereas two omit this direct effect. CFL3D
is run both ways.

12) The order of accuracy of the CFD methods is estimated using
solutions from the three finest meshes of the family. These grid-
convergence trends are conducted for all four flow conditions, using
all three CFD methods.

13) Estimates are alsomade for the limiting values of drag, lift, and
pitching moment.

14) Note that the drag of an inviscid subcritical flow is precisely
zero. This is compared with the estimated limiting values of drag for
the subcritical flow conditions to help quantify that the solutions on
the finest meshes have indeed reached the asymptotic region of grid
convergence for each of the CFD methods.

The next section describes the airfoil geometry under study.

III. NACA0012 Geometry

This section provides a description of the airfoil used in this study.
This geometry is a slightly modified NACA0012. A detailed
description of this subject geometry is given in Eqs. (1–3). To set the
stage for working toward machine-level-zero precision, the values
presented in this section are provided to 10 decimal places.

Abbott and von Doenhoff [3] give the analytic equation defining
theNACA0012 airfoil. This defining equation and itsfirst and second
derivatives are:

y�x� � � 0:12

0:2
�0:2969

���

x
p

� 0:1260x � 0:3516x2

� 0:2843x3 � 0:1015x4� (1)

yx�x� � � 0:12

0:2

�

0:14845
���

x
p � 0:1260 � 0:7032x

� 0:8529x2 � 0:4060x3
�

(2)

yxx�x� � � 0:12

0:2

�

�0:074225
�����

x3
p � 0:7032� 1:7058x � 1:2180x2

�

(3)

The numerator of the lead terms in Eqs. (1–3), that is, 0.12, is the
thickness of the airfoil. The standard NACA0012 airfoil is defined
over the interval 0 � x � 1. However, at x� 1, the y coordinate does
not vanish, and, therefore, the trailing edge (TE) is not sharp, but
rather has about a 0.42%-thick blunt base.

To avoid issues related to the solution of inviscid flows about aft-
facing steps, the airfoil chord is extended so that the trailing-edge
point coincides with the neighboring root of Eq. (1). (Although the
actual chord length of this airfoil is slightly greater than one, a
reference chord of one is adopted throughout this work to define the
nondimensional aerodynamic coefficients of lift, drag, and pitching
moment.) The resulting sharp trailing-edge location is

xTE � 1:0089304115 (4)

At the sharp trailing-edge location, the slope of the airfoil is

yx�xTE� �	0:1418768821 (5)
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Hence, the included angle of the sharp trailing-edge geometry is

	TE � 2atan�jyx�xTE�j� � 0:2818725 rad� 16:1501066197 deg

(6)

The included TE angle of Eq. (6) will be needed in the next section to
transform the airfoil geometry to a near circle by means of the
Karman–Trefftz mapping. Another quantity needed for this trans-
formation is the leading-edge radius of the NACA0012. This value is
given by Abbott and von Doenhoff [3] as

�LE � 1:1019t2 � 1:1019�0:122� � 0:01586736 (7)

For completeness, the location and value of the maximum thickness
are also provided. Here xtmax is determined by finding the root of
Eq. (3) in the interval 0 � x � xTE, and tmax � 2ymax.

xtmax � 0:2998278780 tmax � 0:1200345462 (8)

The next section describes the generation of the grids and the grid
family used herein.

IV. Grid Generation and Family of Meshes

This section describes the grid generation adopted for this study.
Recall that our approach specified that the mesh be of extremely high
quality. To accomplish this the Karman–Trefftz conformal transfor-
mation [4] is used, which is defined as

�

� � �1

� � �2

�

�
�

z� z1

z� z2

�

P

; P�
�




2
 � 	

�

(9)

Here, z� x� iy is the physical plane containing the NACA0012
contour, while �� �� i� is the mapped plane where the airfoil is
transformed to a near circle. The singular points of the transformation
are z1, z2, and �1, �2, respectively, in the physical andmapped planes;
	 is the trailing-edge included angle provided by Eq. (6).

Removing the corner of the trailing edge can be accomplished by
placing the first singular point at the sharp trailing edge, and using
the correct power of the transformation as defined in Eq. (9).
Furthermore, by placing the second singular point at half the leading-
edge (LE) radius inside the airfoil contour at the LE, a near circle is
obtained in the mapped plane. Hence

z1 � xTE � i0� 1:0089304115 z2 �
1

2
�LE � i0� 0:0079337

(10)

Under the transformation of Eq. (9), the singular points of Eq. (10)
and the leading-edge point map to the following locations

�1�0:77043505 �2�0:24642903 �LE�0:20139626 �TE��1

(11)

Figure 1 illustrates the Karman–Trefftz transformation, based on
Eqs. (1–11), of the NACA0012 airfoil contour to a near circle in the
mapped plane. Note that the singular points of this transformation are
depicted as symbols in this figure.

To generate theO-mesh about the near circle contour in the � plane,
the center of this quasi circle is arbitrarily set as the midpoint of the
mapped chordline

�c 

1

2
��LE � �TE� � 0:4859156 (12)

Relative to this center point, the discrete points of the quasi circle are
redistributed by linear interpolation with constant angular spacing.
Unfortunately, this interpolation in the mapped plane introduces
small errors in the airfoil coordinates when transformed back to
physical space. To remedy this, the z coordinates are projected back
onto the airfoil contour of Eq. (1). This process is repeated until the
coordinates in both the z and � planes of all geometry points have
converged to machine level zero.

With the quasi circle defined by nodes at constant-� spacing, the
field mesh is generated with concentric quasi circles that emanate
outward to the far-field boundary. To achieve quadrilateral cells with
an aspect ratio of one, the radial spacingmust equal the spacing in the
angular direction, hence�r� r��. If the quasi circle was actually a
perfect circle of radius R1, the radii of the concentric circles can be
defined as follows

Rj � R1e
�j�1�2


NC ; 1 � j � NC� 1 (13)

Here, the j subscript signifies the grid index in the computational
direction normal to the quasi-circle contour, andNC is the number of
cells in the j direction. R1 is set as the discrete arclength of the quasi
circle divided by 2
.

To conform the mesh to the quasi circle at the near-field boundary,
a perturbation of the perfect concentric circles of Eq. (13) is
introduced

ri;j �
ri;1�RNC�1 � R1� � RNC�1�Rj � R1�

�RNC�1 � R1�
;

1 � i; j � NC� 1

(14)

Here, the i subscript signifies the grid index in the angular direction
that wraps around the quasi circle. As it turns out, if jmax � imax, the
resulting far-field boundary is about 150 chord lengths away from the
airfoil surface in the physical plane. In this work jmax � imax �
NC� 1 is adopted for all grids.

To ensure that the final grid is exactly symmetric about the x axis,
the grid coordinates are processed in the following manner

�x̂; ŷ�i;j �
1

2
��x;y�i;j��x;�y�ic;j�; 1� i� ile; 1� j� jmax

(15)

where ic� �imax�1 � i� is the complementary index to i and
ile� �NC

2
� 1�. Then the coordinates of the final grid are replaced

with the averaged values of (x̂, ŷ)

�x; y�i;j � �x̂; ŷ�i;j; ; �x; y�ic;j � �x̂;�ŷ�i;j; ;
1 � i � ile; 1 � j � jmax�

(16)

Figure 2 illustrates the resulting O-mesh in the mapped plane
(NC� 128) by application of Eqs. (1–14). Applying the inverse of
Eq. (1) to this mesh constructs an extremely high-quality O-mesh in
the physical plane about the airfoil contour. The first five grids of the
family are shown in Figs. 3–8. Figure 8 provides an extreme close-up
view of the last 2% of the airfoil with surrounding grid for the
(512 � 512) mesh. In the finest mesh of our family, each cell of the
(512 � 512) mesh is further populated with 64 cells.

The next section discusses several issues related to the estimation
of the order of accuracy of a CFD method.

V. Estimating Order of Accuracy

Estimating the order of accuracy of a CFDmethod has been a topic
of ongoing discussion. For example, see Baker [5] and Salas [6].Fig. 1 NACA0012 in physical and transformed planes.
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Following thework of Baker in his analysis of the database generated
by the Second Drag Prediction Workshop (DPW-II), we begin our
discussion with a generalized equation of computing the order of
accuracy

�F f � Fm�hp
c � �F c � F f�hp

m � �Fm � F c�hp
f � 0 (17)

Here, F is the discrete functional computed on fine, medium, and
coarsemeshes of a family of grids, signified by subscriptsf,m, and c,
respectively. The length scale of the cells of a mesh is designated h,
and the estimate of the order of accuracy is the power p.
Equation (17) requires hf < hm < hc. Further, �F c; Fm; F f �
must be a monotonic sequence.

Fig. 2 Closeup of transformed 128 � 128 O-mesh.

Fig. 3 Closeup of the 32 � 32 O-mesh.

Fig. 4 Closeup of the 64 � 64 O-mesh.

Fig. 5 Closeup of the 128 � 128 O-mesh.

Fig. 6 Closeup of the 256 � 256 O-mesh.

Fig. 7 Closeup of the 512 � 512 O-mesh.

Fig. 8 Extreme closeup of O-mesh near trailing edge.
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In the present work, the family of grids has the relation

hc � !hm � !2hf � 2hm � 4hf (18)

Here, !� 2 is the ratio of cell sizes between grid family levels. Also
note that

�F c � F f� � �F c � Fm� � �Fm � F f� (19)

Combining Eqs. (17–19) and manipulating gives the following
relationship between the ratio of functional changes betweenmeshes
R and an estimate for the order of accuracy p

R �
�F f � Fm�
�Fm � F c�

� �!p � 1�
�!2p � !p� �

�2p � 1�
�4p � 2p� (20)

If the sequence �F c; Fm; F f � is monotonic, then R> 0 and p
can be solved. However, if R > 1, the order of accuracy becomes
negative.

To solve for p in Eq. (20), let

G �p� � �!2p � !p�R � !p � 1� �4p � 2p�R � 2p � 1� 0

(21)

The first derivative of G with respect to p is

Gp�p� � ln �!2�!2pR � ln �!�!p�R� 1�
� ln�4�4pR � ln�2�2p�R� 1� (22)

Now p from Eq. (20) can be solved for with the Newton method

pn�1 � pn � G�pn�
Gp�pn� (23)

where n is the iteration count and p0 > p always yields a convergent
series for p > 0.

In the present work, an estimate of the limiting value of F as
h ! 0 can then be computed with

F ? � F f �
�F f � Fm�
�!p � 1� � F f �

�F f � Fm�
�2p � 1� (24)

Because drag for any subcritical inviscid flow is identically zero,
Eq. (24) can be manipulated to estimate an alternative order of
accuracy for drag using only themedium and fine-mesh results. Here
C?

d � 0, and we get

�p� log!

�

Cdm

Cdf

�

� log2

�

Cdm

Cdf

�

(25)

Now p from Eqs. (17–23) can be compared with �p for trends of the
subcritical cases to assess how close the CFD data have captured the
asymptotic range as well as the physically correct limiting value of
drag.

A. Effect of Functional Error on Estimate of Order of Accuracy

The results of Eqs. (23) and (24) assume that the evaluations of the
functional in the monotonic sequence �F c; Fm; F f � are known
exactly. In the state of the practice, however, this is typically not
the case; flow solutions are routinely not sufficiently converged to
yield a valid outcome. For example, data from the Drag Prediction
Workshop Series [1] have been independently reviewed by Baker [5]
and Salas [6] with the conclusion that the DPW data are not suitable
to establish an estimate on the order of accuracy of the CFDmethods
used in the workshops. It is for this reason that the organizers of the
DPW series plotted the aggregate of the grid-convergence data
against a givenmetric that tends as�x2. This decisionwasmadewith
the understanding that the assumption of second-order accuracymay
not be correct, yet is no worse than attempting to solve for pwith the
uncertainty of the data provided.

To better understand how an error in the discrete function
evaluations can affect the estimate on the order of accuracy, let us

assume that inaccurate values ofF are given. This approximate value
of the discrete functional is then

F̂ � F � � (26)

where

�� �jF f � Fmj � �RjFm � F cj (27)

Here � is a normalized error parameter that multiplies the delta
functionals between the medium and fine meshes to provide the

absolute error �. When an error is introduced into the functional F̂ ,

the evaluation ofR in Eq. (20) gives an erroneous result R̂, which can
be contaminated to an extent bounded by the range

�jF f � Fmj � 2�

jFm � F cj � 2�

�

� R̂ �
�jF f � Fmj � 2�

jFm � F cj � 2�

�

(28)

Combining Eqs. (26–28) gives

R

�

�1 � 2��
�1� 2�R�

�

� R̂ � R

�

�1� 2��
�1 � 2�R�

�

(29)

Figure 9 illustrates the impact of errors in the functionals on the
estimation of order of accuracy p. Here, the error bands are depicted
with several values of �, specifically � 1

16
; 1
8
; 1
4
�. For example, if the

error in the functional evaluations is characterized by �� 1
8
, then a

scheme that is estimated to be first-order accurate may actually be a
scheme of order as high as 1.5 or as low as 0.3. Further, note that if
�  1

2
, the error in the estimate of p is unbounded from below.

To better understand the nature of the impact of functional errors
on the estimate on order of accuracy, in the presentwork let us require
that � < 1

16
. This requires that the absolute drag must be accurately

computed to within an error of � < 6 � 10�8 for the FLO82 subcrit-
ical cases; this is six counts-of-a-count in drag. In the DPW
databases, which are loosely based on hc � 1:5hm � 2:25hf (!�
1:5), the effect of � is amplified relative to that indicated by Fig. 9;
however, the deltas between the fine and medium meshes are much
larger on the 3-D RANS solutions than they are for the 2-D Euler
results of this study. Nonetheless, a DPW-class grid-convergence
study to accurately estimate order of accuracywould require � � 0:1
counts.

To minimize the effect of an inaccurate evaluation of the discrete
functionals, all flow solutions of the present work are converged
to machine-level-zero steady states using 64-bit computations.
Although this standard may be appropriate for the finest grid used in
this study, eventually quadruple precisionwill be required if the grids
are refined much further.

Figures 10–12 provide examples of the convergence histories of
residuals for FLO82,OVERFLOW, andCFL3D, respectively, for the
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Fig. 9 Effect of discrete-function error on estimate of order of

accuracy.
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subcritical lifting condition ofM� 0:5, and �� 1:25 deg. We note
that the convergence rates of the transonic conditions are consider-
ably slower for all three methods, and therefore additional cycles are
required to reach equivalently converged solutions.

The next section discusses the results of our study on grid
convergence.

VI. Results

This section provides grid-convergence trends for the three CFD
methods. The CFDmethods are FLO82, OVERFLOW, and CFL3D;
their results will be independently discussed in the subsections that
follow. At the end of this section, a comparison is made of the
continuum estimates of the aerodynamic coefficients for the
modified NACA0012 airfoil under study.

Solutions of the 2-D Euler equations for nonlifting and lifting
cases at both subcritical and supercritical transonic flow conditions
are investigated. Thematrix offlow conditions under consideration is
provided in Table 1.

The aerodynamic coefficients of lift, drag, and pitching moment
are based on a reference chord length of Cref � 1:0 and a moment
center of Xref � 0:25.

Figures 13–16 provide the surface pressure distributions and
flowfield Mach contours about the modified NACA0012 airfoil for
the four flow conditions of Table 1, as computed by FLO82 on the
finest mesh of (4096 � 4096) cells. Mach contours are at intervals of
0.05, and sonic lines (if present) are highlighted in bold. Also
provided are minimum and maximum values of local Mach number
in the discrete fine-mesh solution.

Figures 13 and 14 depict the subcritical cases of nonlifting and
lifting flows, respectively. Note that the maximum local Mach
number of these solutions are 0.6198906 and 0.6753743 for the
nonlifting and lifting flow conditions, respectively. Recall that the
drag of an inviscid subcritical flow is zero.

Similarly, Figs. 15 and 16 depict the transonic cases of nonlifting
and lifting flows. The nonlifting case exhibits a fairly strong shock on
both surfaces, while the lifting condition is characterized by a very
strong shock on the upper surface and a fairly weak shock on the
lower surface.

Choice of this set of flow solutions allows the ability to investigate
grid-convergence trends of: 1) drag with and without lifting effects
(Kutta condition), 2) drag with and without shock effects (upwind
stencil), and 3) lift and pitching moment at constant angle of attacks
(far-field boundary condition).

The next subsection discusses the results of the FLO82 study.

A. FLO82-H-CUSP Grid-Convergence Study

In this subsection, the grid-convergence characteristics of the
FLO82 Euler method [7] are investigated. The upwinding used is the
H-CUSP dissipation scheme of Jameson [8]. In addition, FLO82
includes the influence of a point vortex on the far-field boundary
condition.

The standard mesh sequencing and multigrid solution process of
FLO82 is quite convenient for the purpose of this study. During this
process the converged forces and pitchingmoment at eachmesh level
are computed. These values, convergence histories, and plots like
those of Figs. 13–16 are output at each mesh level. An aggregate of
the FLO82 results are tabulated in Tables 2 and 3, for the subcritical
and transonic flow conditions, respectively. Note that the �� 0 deg
cases do not tabulateCl orCm, as these quantities are all evaluated as
machine-level zero. The data in these tables also include estimates for
the order of accuracy for each functional, as well as a Richardson
extrapolation of each functional to its limiting value at the continuum
where h� 0. For the subcritical cases, the alternative estimate of
order of accuracy �p based on Eq. (25) is also provided.

For the subcritical data of Table 2, all aerodynamic coefficients
exhibit approximately a second-order-accurate trend, with drag
showing slightly less than order 2, while lift and pitching moment
indicate slightly better than order 2. Note that �p is in fairly close
agreement withpwhere applicable. These subcritical results are very
promising.
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Table 1 Matrix of flow conditions studied

(M, �) Nonlifting Lifting

Subcritical (0:5M, 0 deg) (0:5M, 1.25 deg)
Transonic (0:8M, 0 deg) (0:8M, 1.25 deg)

Fig. 12 CFL3D convergence history on four meshes for M � 0:50,

�� 1:25deg.
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Fig. 13 FLO82 solutionM � 0:50, �� 0:0deg.

Fig. 14 FLO82 solutionM � 0:50, �� 1:25deg.

Fig. 15 FLO82 solutionM � 0:80, �� 0:0deg.
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The transonic data of Table 3 illustrate something else altogether.
Here, all aerodynamic coefficients for the lifting case exhibit a first-
order-accurate character. However, the drag of the nonlifting case
shows an unanticipated grid-convergence trend of order p� 2:631.
This hyper-convergence is not well understood.

The data of Tables 2 and 3 are plotted on a log-log scale in
Figs. 17–24. Because these data span the full family of grids, some of
the data are not in the asymptotic range. To help visually identify
which of these data are clearly outside the asymptotic range, the final
monotonic sequence for each case is depicted with solid symbols.
Therefore, the open symbols represent data that should not be used to
establish grid-convergence metrics. For FLO82, the final monotonic

sequence of functionals begin with the 256 � 256mesh, but entering
the asymptotic range appears to require at least the 512 � 512 mesh
consisting of 262,144 cells.

The next subsection discusses the results of the OVERFLOW
study.

B. OVERFLOW(v2.1t) Grid-Convergence Study

In this subsection, the grid-convergence characteristics of the
OVERFLOWgeneral-purposeCFDmethod [9] are investigated. The
version of OVERFLOW studied is (2.1t). An initial attempt was
made to conduct this study using Roe upwinding. However, the

Fig. 16 FLO82 solutionM � 0:80, �� 1:25deg.

Table 2 FLO82-H-CUSP subcritical data at M � 0:5

Mesh �� 0 deg �� 1:25 deg

NC NC2 Cd Cl Cd Cm

32 1,024 �0:001979418 �0:181639135 �0:002482085 �0:002926241
64 4,096 �0:002270216 �0:178822451 �0:001974608 �0:002487849
128 16,384 �0:000307646 �0:180014345 �0:000298397 �0:002294411
256 65,536 �0:000013299 �0:180458183 �0:000011045 �0:002301404
512 262,144 �0:000015191 �0:180446183 �0:000015534 �0:002290609
1,024 1,048,576 �0:000005076 �0:180382615 �0:000005301 �0:002276577
2,048 4,194,304 �0:000001404 �0:180354386 �0:000001481 �0:002270586
4,096 16,777,216 �0:000000365 �0:180347832 �0:000000388 �0:002269217

Continuum �0:000000045 �0:180345850 �0:000000050 �0:002268812
Order p

�p
1.821 2.107 1.805 2.130
1.944 —— 1.932 ——

Table 3 FLO82-HCUSP transonic data atM � 0:8

Mesh �� 0 deg �� 1:25 deg

NC NC2 Cd Cl Cd Cm

32 1,024 �0:011451356 �0:387842746 �0:027861593 �0:042947499
64 4,096 �0:010264792 �0:372921380 �0:025487792 �0:043584427
128 16,384 �0:008500758 �0:373469550 �0:023786371 �0:043873739
256 65,536 �0:008312402 �0:368980205 �0:023357651 �0:042552941
512 262,144 �0:008328328 �0:363747900 �0:023084749 �0:041002228
1,024 1,048,576 �0:008338967 �0:360812844 �0:022934404 �0:040136414
2,048 4,194,304 �0:008341760 �0:358281928 �0:022799839 �0:039388829
4,096 16,777,216 �0:008342211 �0:357142338 �0:022737860 �0:039051466

Continuum �0:008342298 �0:356208937 �0:022684938 �0:038774022
Order p 2.631 1.151 1.118 1.148
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convergence of residuals stalled at values far above machine-level
zero. As a consequence, we decided to use the central-differencing
scheme with all of the artificial-dissipation parameters set to their
recommended default values. The pressure boundary condition
imposed at the airfoil surface is based on the momentum equation
(IBTYP� 2) and aRiemann-invariant boundary conditionwas used

at the far field (IBTYP� 47). This far-field boundary condition does
not carry the direct influence of the point vortex.

Because the previous study indicates that the coarsest three mesh
levels are clearly outside the asymptotic range for FLO82, we focus
our efforts here on the top fivemeshes of the full family. Solutions for
eachmesh and flow condition are started from scratch and converged
to machine-level zero. To be consistent across the family of meshes,
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Fig. 17 FLO82 drag convergence M � 0:50, �� 0:0deg.
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Fig. 18 FLO82 drag convergence M � 0:50, �� 1:25deg.
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Fig. 19 FLO82 lift convergence M � 0:50, �� 1:25deg.
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Fig. 20 FLO82 Cm convergence M � 0:50, �� 1:25deg.
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Fig. 21 FLO82 drag convergence M � 0:80, �� 0:0deg.
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Fig. 22 FLO82 drag convergence M � 0:80, �� 1:25deg.
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all of the cases are run in parallel on 64 processors. The results of this
study are tabulated in Tables 4 and 5 for the subcritical and transonic
flow conditions, respectively. As before, the nonlifting cases all yield
machine-level-zero coefficients of lift and pitching moment.

For the subcritical data of Table 5, all aerodynamic coefficients
exhibit no better than a first-order-accurate trend. Most troubling is
the nonlifting case, which yields an order of accuracy of p� 0:691,
and an estimate of drag at the continuum of about 4% of a count.
Furthermore, �p and p do not agree well with each other where
applicable.

The transonic data of Table 7 provide some interesting results.
Here, the order of accuracy for drag on the nonlifting case has
increased to first order as compared with that of the subcritical
nonlifting condition. In contrast, the transonic lifting cases exhibit
lower order of accuracies than the corresponding subcritical results.

The data of Tables 4 and 5 are plotted on a log–log scale in
Figs. 25–32. All of these data monotonically vary with increasing
mesh dimension. In every case, the four finest meshes of the series
fall on the asymptotic slope, and even the coarsest mesh of 256 � 256
is close to doing the same for many of the cases.

The next subsection discusses the results of the CFL3D study.

C. CFL3D(v6) Grid-Convergence Study

In this subsection, the grid-convergence characteristics of the
CFL3D general-purpose CFD method [10,11] are investigated. The
version of CFL3D studied is (v6). Two far-field boundary conditions
(i2d��1) are considered for the lifting cases of this study. One far-
field boundary condition includes the effect of a point vortex and the
other does not. An initial attempt was made to conduct this study
using Roe upwinding. However, as with OVERFLOW, the
convergence of residuals stalled at values well above machine-level
zero. As a consequence, theflux-spitting scheme ofCFL3Dwas used
instead. Some of the pertinent input parameters are ifds�i; j; k� � 0,
rkap0�i; j; k� � 1

3
. All solutionswere run in parallel on 64 processors.

Unfortunately, this setup would not provide machine-level-zero
results for the 4096 � 4096 mesh without resorting to CFL��1,
which required too much elapsed time for the current work.
Therefore, the data provided for CFL3D exclude this finest mesh. As
it turns out, the four mesh levels of data obtained reasonably indicate
that the asymptotic range of CFL3Dhas been captured. The results of
this study are tabulated in Tables 6–9 for the subcritical and transonic
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Fig. 23 FLO82 lift convergence M � 0:80, �� 1:25deg.
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Fig. 24 FLO82 Cm convergence M � 0:80, �� 1:25deg.

Table 4 OVERFLOW-central subcritical data atM � 0:5

Mesh �� 0 deg �� 1:25 deg

NC NC2 Cd Cl Cd Cm

256 65,536 �0:000063743 �0:178960502 �0:000118671 �0:002124907
512 262,144 �0:000044712 �0:179435775 �0:000068207 �0:002191480
1,024 1,048,576 �0:000028691 �0:179627329 �0:000044071 �0:002226157
2,048 4,194,304 �0:000016232 �0:179710209 �0:000029311 �0:002243944
4,096 16,777,216 �0:000008512 �0:179747254 �0:000020951 �0:002253042

Continuum �0:000004058 �0:179777193 �0:000010030 �0:002262569
Order p

�p
0.691 1.162 0.820 0.967
0.931 —— 0.484 ——

Table 5 OVERFLOW-central transonic data atM � 0:8

Mesh �� 0 deg �� 1:25 deg

NC NC2 Cd Cl Cd Cm

256 65,536 �0:008734038 �0:353909135 �0:022964252 �0:038987812
512 262,144 �0:008493959 �0:353798330 �0:022706732 �0:038656831
1,024 1,048,576 �0:008412129 �0:353241712 �0:022593342 �0:038402691
2,048 4,194,304 �0:008376064 �0:352827907 �0:022534646 �0:038251571
4,096 16,777,216 �0:008358591 �0:352522552 �0:022500576 �0:038150471

Continuum �0:008342171 �0:351662793 �0:022453440 �0:037946129
Order p 1.046 0.438 0.785 0.580
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flow conditions, respectively. As before, the nonlifting cases all
yielded machine-level-zero coefficients of lift and pitching moment.

For the subcritical data of Tables 6 and 7, a curious trend emerges
for CFL3D’s order-of-accuracy assessments. Specifically, it is
second-order accurate for drag, but only first-order accurate for lift
and pitching moment. This is true for the nonlifting case, the lifting

case without point vortex, and the lifting case with the point-vortex
influence on the far-field boundary condition. However, �p and p
do not agree well with each other for the lifting case without the
influence of the point vortex.

The transonic data of Tables 8 and 9 show that the drag for the
nonlifting case retains a second-order-accurate trend, but drops to
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Fig. 25 Overflow drag convergence M � 0:50, �� 0:0deg.
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Fig. 26 Overflow drag convergence M � 0:50, �� 1:25deg.
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Fig. 27 Overflow lift convergence M � 0:50, �� 1:25deg.

-2.0

-3.0

-4.0

-5.0

-6.0

-7.0

-1.0-1.5-2.0-2.5-3.0-3.5-4.0

Cm* = -0.002262569

2
5

6

5
1

2

1
0
2
4

2
0
4
8

4
0
9
6

Log ( 1 / NC )

L
o
g
 (

 a
b

s(
 C

m
 -

 C
m

*
 )

 )

Cm > Cm*

O( 0.967 )

Fig. 28 Overflow Cm convergence M � 0:50, �� 1:25deg.
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Fig. 29 Overflow drag convergence M � 0:80, �� 0:0deg.
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Fig. 30 Overflow drag convergence M � 0:80, �� 1:25deg.
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first order for both sets of lifting data. The data for lift and pitching
moment yield very low estimates on order of accuracy in the 1

4
–1
3

range.
The data of Tables 6–9 are plotted on a log–log scale in Figs. 33–

40. All of these data monotonically vary with increasing mesh
dimension. In nearly every case, the 256 � 256 data fall on the trend
line established by the three finer meshes of the family studied here.
Even though results for the 4906 � 4096mesh could not be obtained
in time for this printing, it appears that the asymptotic range of
CFL3D has been captured with the meshes used.

The next subsection compares the estimates of the continuum
values as predicted by the three CFD methods under study.

D. Summary of Continuum Estimates

In this subsection, we compare the limiting values of the aero-
dynamic coefficients by extrapolating the data of the three CFD
methods to the continuum. These limiting values are provided in
Tables 10 and 11 for the subcritical and transonic flow conditions,
respectively. Also included are their minimum, maximum, and
spread values.

For the subcritical cases of Table 10, the limiting values of drag
from FLO82 results are very close to zero; this is true for both the
nonlifting and lifting cases. The drag from CFL3D also estimates
a limiting value close to zero for the nonlifting case, and for the lifting
case based on the point-vortex far-field boundary condition.
However, the drag from CFL3D without the point vortex is consid-
erably larger, by almost two orders of magnitude. OVERFLOW
predicts the largest drag for the nonlifting case of about 0.04 counts,
and this increases to about 0.1 counts when lifting. The total spread
between the three CFDmethods on lift is about 3% and about 2% on
pitching moment; these results are somewhat discouraging for a
subcritical flow.

In Table 11, the case of nonlifting transonic flow has all three
methods agreeing quite closely on the limiting value of drag, coming
in aroundCd � 0:0083419. For the lifting case, the spread on drag is
about 1%, on lift about 2%, and about 3% for pitching moment.
Interestingly, these differences are no worse than those of the
subcritical flows. Nevertheless, they are worse than we would like
to see.
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Fig. 31 Overflow lift convergence M � 0:80, �� 1:25�.
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Fig. 32 Overflow Cm convergence M � 0:80, �� 1:25�.

Table 6 CFL3D-flux-splitting subcritical data atM � 0:5

Mesh �� 0 deg �� 1:25 deg

NC NC2 Cd Cl Cd Cm

256 65,536 �0:000573147 �0:178366720 �0:000649962 �0:002078508
512 262,144 �0:000131328 �0:179125033 �0:000163415 �0:002152971
1,024 1,048,576 �0:000031615 �0:179487608 �0:000048451 �0:002206480
2,048 4,194,304 �0:000007502 �0:179650543 �0:000020903 �0:002235646

Continuum �0:000000192 �0:179783519 �0:000012221 �0:002270588
Order p 2.048 1.154 2.061 0.876

�p 2.075 —— 1.213 ——

Table 7 CFL3D-flux-splitting and vortex subcritical data atM � 0:5

Mesh �� 1:25 deg

NC NC2 Cl Cd Cm

256 65,536 �0:178919799 �0:000638328 �0:002084517
512 262,144 �0:179686024 �0:000151327 �0:002159318
1,024 1,048,576 �0:180052519 �0:000036185 �0:002213043
2,048 4,194,304 �0:180217309 �0:000008575 �0:002242320

Continuum �0:180351940 �0:000000134 �0:002277383
Order p 1.153 2.060 0.876

�p —— 2.077 ——

VASSBERG AND JAMESON 1163



Table 8 CFL3D-flux-splitting transonic data at M � 0:8

Mesh �� 0 deg �� 1:25 deg

NC NC2 Cd Cl Cd Cm

256 65,536 �0:008894250 �0:359073197 �0:023411409 �0:040316445
512 262,144 �0:008479528 �0:357580694 �0:022902709 �0:039700797
1,024 1,048,576 �0:008376058 �0:355943711 �0:022706750 �0:039170890
2,048 4,194,304 �0:008350161 �0:354593186 �0:022606485 �0:038760613

Continuum �0:008341516 �0:348226045 �0:022501430 �0:037353559
Order p 1.998 0.278 0.967 0.369

Table 9 CFL3D-flux-splitting and vortex transonic data atM � 0:8

Mesh �� 1:25 deg

NC NC2 Cl Cd Cm

256 65,536 �0:362292941 �0:023590480 �0:040813294
512 262,144 �0:360850141 �0:023082744 �0:040205152
1,024 1,048,576 �0:359172468 �0:022884500 �0:039664060
2,048 4,194,304 �0:357798948 �0:022782607 �0:039246655

Continuum �0:351596613 �0:022674853 �0:037838046
Order p 0.289 0.960 0.374

-2.0

-3.0

-4.0

-5.0

-6.0

-7.0

-1.0-1.5-2.0-2.5-3.0-3.5-4.0

Cd* = -0.000000192

2
5

6

5
1

2

1
0

2
4

2
0

4
8

Log ( 1 / NC )

L
o
g
 (

 a
b

s(
 C

d
 -

 C
d

*
 )

 )

Cd > Cd*

O( 2.048 )

Fig. 33 CFL3D drag convergence M � 0:50, �� 0:0deg.
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Fig. 34 CFL3D drag convergence M � 0:50, �� 1:25deg.

-2.0

-3.0

-4.0

-5.0

-6.0

-7.0
-1.0-1.5-2.0-2.5-3.0-3.5-4.0

Cl* = +0.179783519   ,   Vortex: Cl* = +0.180351940

2
5

6

5
1

2

1
0

2
4

2
0

4
8

Log ( 1 / NC )

L
o
g
 (

 a
b

s(
 C

l 
- 

C
l*

 )
 )

Cl < Cl*

O( 1.154 )

Vortex: Cl < Cl*

Vortex: O( 1.153 )

Fig. 35 CFL3D lift convergence M � 0:50, �� 1:25deg.
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Fig. 36 CFL3D Cm convergence M � 0:50, �� 1:25deg.
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Fig. 37 CFL3D drag convergence M � 0:80, �� 0:0deg.
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Fig. 38 CFL3D drag convergence M � 0:80, �� 1:25deg.
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Fig. 39 CFL3D lift convergence M � 0:80, �� 1:25deg.
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Fig. 40 CFL3D Cm Convergence M � 0:80, �� 1:25deg.

Table 10 Comparison of continuum estimates atM � 0:5

M � 0:5 �� 0 deg �� 1:25 deg

CFD Method Cd Cl Cd Cm

FLO82 �0:000000045 �0:180345850 �0:000000050 �0:002268812
OVERFLOW v2.1t �0:000004058 �0:179777193 �0:000010030 �0:002262569
CFL3Dv6 �0:000000192 �0:179783519 �0:000012221 �0:002270588
CFL3Dv6�Vortex - �0:180351940 �0:000000134 �0:002277383
Min �0:000004058 �0:179777193 �0:000000134 �0:002277383
Max �0:000000045 �0:180351940 �0:000012221 �0:002262569
Spread 0.000004103 0.000574747 0.000012355 0.000014814

Table 11 Comparison of continuum estimates atM � 0:8

M � 0:8 �� 0 deg �� 1:25 deg

CFD Method Cd Cl Cd Cm

FLO82 �0:008342298 �0:356208937 �0:022684938 �0:038774022
OVERFLOW v2.1t �0:008342171 �0:351662793 �0:022453440 �0:037946129
CFL3Dv6 �0:008341516 �0:348226045 �0:022501430 �0:037353559
CFL3Dv6�Vortex - �0:351596613 �0:022674853 �0:037838046
Min �0:008341516 �0:348226045 �0:022453440 �0:038774022
Max �0:008342298 �0:356208937 �0:022684938 �0:037353559
Spread 0.000000782 0.007983097 0.000231508 0.001420422
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VII. Conclusions

Grid-convergence trends of two-dimensional Euler solutions are
investigated. The airfoil geometry under study is based on the
NACA0012 equation; however, it is extended in chord to yield a
sharp trailing edge. The flow solutions use extremely high-quality
grids, which are developed with the aid of the Karman–Trefftz
conformal transformation. The topology of each grid is that of a
standard O-mesh. The grids extend to a far-field boundary approx-
imately 150 chord lengths away from the airfoil. Each quadrilateral
cell of the resulting mesh has an aspect ratio of one, and the
intersecting grid lines are essentially orthogonal at each vertexwithin
the mesh. A family of grids is derived from the finest mesh, whereas
each successively coarser grid in the sequence is constructed by
eliminating every other node, in both computational directions. In all,
a total of eight grids comprise the family, with the coarsest-to-finest
meshes having dimensions of 32 � 32–4096 � 4096 cells, respec-
tively. The finest grid in this family is composed of over 16 million
cells, and is suitable for 13 levels of multigrid. The geometry and
grids are all defined such that they are exactly symmetrical about the
horizontal axis to ensure that a nonlifting solution is possible at 0 deg
angle-of-attack attitude.

Issues related to estimating the order of accuracy of a CFDmethod
are discussed. These include the effect of errors introduced into the
discrete functionals, whichmay arise due to insufficiently converged
flow solutions. It is possible to determine the maximum allowable
error that provides an assessment to the order of accuracy to a desired
tolerance. Based on this error analysis, quadruple precision will
eventually be required if the grid family of the present study is
extended to include finer meshes.

Characteristics of three well-known flow solvers (FLO82,
OVERFLOW, and CFL3D) are studied using a matrix of four flow
conditions: (subcritical and transonic) by (nonlifting and lifting). The
matrix allows the ability to investigate grid-convergence trends of
1) drag with and without lifting effects, 2) drag with and without
shocks, and 3 lift and moment at constant angle of attacks. The
asymptotic range of FLO82 appears to begin with the 512 � 512
mesh, whereas the asymptotic ranges of OVERFLOW and CFL3D
seem to beginwith the 256 � 256mesh. Second-order-accurate trend
lines are demonstrated on the subcritical flow conditions for FLO82
and CFL3D. For the transonic nonlifting condition, FLO82 and
CFL3D continue to show second-order accuracy. However, for the
transonic lifting case, both CFD methods drop to first order. The

order of accuracy for OVERFLOW at all flow conditions is at best
first order.

Four sets of subcritical lifting data from the three CFDmethods are
provided: FLO82 with the influence of a point vortex on the far-field
boundary, OVERFLOW without it, and CFL3D with and without
this effect. It is interesting to note that the solution sets that include
the point vortex yield limiting values of drag that are much closer to
zero than do the solution sets that omit the point-vortex effect.

The asymptotic behavior of the flow solution near the singular
point of the trailing edge could impact the accuracy of the numerical
integrations of the forces and pitchingmoment. This and other issues
will be addressed in our ongoingwork in pursuit of grid convergence.
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