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Abstract. The objective of this work is to find objects in paintings
by learning object-category classifiers from available sources of natural
images. Finding such objects is of much benefit to the art history com-
munity as well as being a challenging problem in large-scale retrieval and
domain adaptation.

We make the following contributions: (i) we show that object classi-
fiers, learnt using Convolutional Neural Networks (CNNs) features
computed from various natural image sources, can retrieve paintings
containing these objects with great success; (ii) we develop a system
that can learn object classifiers on-the-fly from Google images and use
these to find a large variety of previously unfound objects in a dataset
of 210,000 paintings; (iii) we combine object classifiers and detectors to
align objects to allow for direct comparison; for example to illustrate how
they have varied over time.

Keywords: Domain Adaptation · Object Classification · Computer
Vision in Art

1 Introduction

“I do not search, I find.” – Pablo Picasso.

Natural images (i.e. everyday photos taken with a camera) annotated with
objects are everywhere – large numbers of annotated photos are readily available
in curated datasets [20,23]; and, simply typing the name of an object into Google
Image search will produce high quality images of that object. Unfortunately the
same cannot be said of paintings; these are largely lacking in annotation. Art
historians are often interested in determining when an object first appeared in a
painting or how the portrayal of an object has evolved over time, to achieve this
they have the unenviable task of finding paintings for study manually [11,29,46].
If they are instead provided with paintings annotated with objects they can con-
duct these studies far more easily.

In this paper, we provide this object annotation by using readily available
natural images to learn object category classifiers able to find objects across
hundreds of thousands of paintings. This is not a straightforward task; natural
images and paintings can differ substantially in their low level statistics, and
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paintings can exist in a number of depictive styles (e.g. impressionism, surreal-
ism) where the very objects themselves can be warped like the clocks in Dali’s
‘Persistence of memory’. In addition to this, the objects themselves may have
changed with time – photographs of planes will typically be of modern commer-
cial jetliners whereas those in paintings can be more akin to Wright Flyers or
Spitfires.

One of our contributions is to show that features generated using Convo-
lutional Neural Networks (CNN) [33,34] are able to overcome much of this
adversity. These networks have been shown to be effective for a variety of
tasks [21,28,37,42], and we show that classifiers learnt with CNN features on nat-
ural images are very successful at retrieving objects in paintings, overcoming the
problem of domain adaptation [19,32,43] and greatly outperforming classifiers
learnt using Fisher Vectors [40,41] (section 3). We also compare the performance
of curated datasets vs. images crawled from the internet to assess the suitability
of the net as a training source.

We develop an on-the-fly system [8,15,39] (section 4) that learns classifiers
for object categories in real-time by crawling Google images. These are then
applied to a dataset of 210,000 oil paintings to retrieve paintings containing
these object categories with high precision over many and disparate classes. The
entirety of this process for a given query takes a matter of seconds.

Finally, inspired by the work of Lee et al. [35] we conduct longitudinal studies
to examine how the portrayal of particular objects have varied over time by
combining classifiers with Deformable-Parts based models (DPMs) (section 5)
to produce mosaics of aligned objects; this benefits cultural historians as well as
sating curiosity.

2 Datasets

In this section, the datasets of natural images and paintings used for evalua-
tion (section 3) and large-scale object retrieval (section 4) are introduced.

2.1 Paintings

The publicly available ‘Your Paintings’ dataset [1] is utilized for this work. This
dataset consists of over 210,000 oil paintings of medium resolution (the width is
usually around 500 pixels). 10,000 of these have been annotated as part of the
‘Tagger’ project [7] whereby members of the public tag the paintings with the
objects that they contain.

To quantitatively assess classifier performance a dataset of paintings with com-
plete annotation in the PASCAL VOC [23] sense – that each painting has been
annotated for the categories under consideration – is required for use as a test set.
To satisfy this requirement we construct the Paintings Dataset as a subset of
‘Your Paintings’. This subset is obtained by searching ‘Your Paintings’ for anno-
tations and painting titles corresponding to the classes of VOC. With tags and
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Table 1. The statistics for the datasets used for evaluation: the number of images
containing an instance of a particular class are given, as well as the total number of
training and validation images (where applicable). The Paintings Dataset is only ever
used as a test set, whereas other datasets are used for training and validation.

Dataset Split Aero Bird Boat Chair Cow Din Dog Horse Sheep Train Total

Paintings Total 200 805 2143 1202 625 1201 1145 1493 751 329 8629

VOC12 Train 327 395 260 566 151 269 632 237 171 273 3050
Val 343 370 248 553 152 269 654 245 154 271 3028
Total 670 765 508 1119 303 538 1286 482 325 544 6078

VOC12+ Train 769 1007 613 1428 419 659 1471 798 364 793 7812
Val 343 370 248 553 152 269 654 245 154 271 3028
Total 1112 1377 861 1981 571 928 2125 1043 518 1064 10840

Net Train 252 264 254 267 254 278 269 272 258 260 2628
Noisy Val 84 88 85 89 85 93 90 91 87 87 879

Total 336 352 339 356 339 371 359 363 345 347 3507

Net Train 203 192 173 197 149 254 220 192 216 222 2018
Curated Val 68 64 58 66 50 85 74 64 72 74 675

Total 271 256 231 263 199 339 294 256 288 296 2693

titles complete annotation is assumed as long as ‘people’ are ignored, as this par-
ticular class has a tendency of appearing frequently without being acknowledged.
Thus, the ‘person’ class is not considered, and also we do not include classes that
lack a sufficient number of tags (cat, bicycle, bus, car motorbike, bottle, potted
plant, sofa, tv/monitor). Paintings are included for the remaining classes – aero-
plane, bird, boat, chair, cow, dining-table, dog, horse, sheep, train. The statistics
are given in table 1, and example class images are shown in figure 1. The URLs
for the paintings in this dataset are provided at [6].

2.2 Natural Images

When learning classifiers from natural images there are two important factors
to explore. The first of these is the number of images used for training; this
factor will be explored by comparing two datasets: the first is the training and
validation data of PASCAL VOC 2012 [24] for the 10 classes of the Paintings

Dataset (hereby referred to as VOC12), the second is a larger dataset consisting
of VOC12 plus all of the training, validation and test data of PASCAL VOC 2007
for the relevant classes (we refer to this as VOC12+).

The second factor to consider is the source of the training images, particularly
the suitability of images obtained from the internet that may have label noise
(as not all of the results from an online image search for an object will actually
contain that object). For each of the classes in the Paintings Dataset the top
200 Google Image Search [5] results and top 200 Bing Image Search [2] results
are collated for a search query of the class name to form the Net Noisy dataset
(split randomly into training and validation); note that there are less than 400
images per class, this is because some links did not return an image. Net Noisy
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Fig. 1. Example class images from the Paintings Dataset. From top to bottom row:
dog, horse, train. Notice that the dataset is challenging: objects have a variety of sizes,
poses and depictive styles, and can be partially occluded or truncated.

is then manually filtered to remove erroneous instances forming Net Curated.
The statistics for all datasets are given in table 1.

3 Domain Transfer Experiments

In this section we evaluate the performance of object classifiers that have been
learnt on natural images when they are applied to paintings. In all cases, the
classifiers are applied to the Paintings Dataset which is used as a test set. Clas-
sifiers are learnt from four datasets of natural images as described in section 2
– VOC12, VOC12+, Net Noisy and Net Curated – to compare two factors:
(i) the effect of increasing the number of training examples, (ii) the difference
between learning from curated and extemporary datasets. Two different fea-
tures are compared: (i) the Improved Fisher Vector (FV) [41], and (ii) features
extracted from Convolutional Neural Networks (CNNs) over a number of train-
ing and testing augmentation strategies. The evaluation of these classifiers using
Average Precision (AP) for each class and the mean of these (mAP) is given in
section 3.1, and implementation details are given in section 3.2.

3.1 Evaluation

Average Precision (AP) is calculated for each class as well as the mean of these
values (mAP), these measures are given in table 2.

In all instances mAP improves substantially when switching to CNNs from
Fisher Vectors. For CNNs, using augmentation schemes causes mAP to increase
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Table 2. Average Precision for Classification Performance on the Paintings Dataset

for different training methods and sources. In the case of the CNN features, the type
of training augmentation and testing pooling is indicated for each set.

Method Dim Train Aero Bird Boat Chair Cow Din Dog Horse Sheep Train mAP

FV 84K VOC12 32.3 18.7 74.2 35.5 21.7 34.1 23.9 42.8 19.6 64.0 36.7
(x,y) VOC12+ 32.3 20.9 73.1 33.6 19.8 33.5 25.0 46.7 26.8 69.1 38.1

Net Noisy 28.2 15.6 68.9 24.4 11.1 23.9 22.8 38.2 21.2 51.8 30.6
Net Cur 29.9 13.9 68.7 18.2 12.0 24.2 22.8 38.7 20.5 47.5 29.6

CNN 2K VOC12 58.5 33.9 84.1 45.7 44.9 40.1 40.2 60.5 40.4 72.5 52.1
no aug VOC12+ 57.9 33.4 84.3 45.0 44.5 39.1 39.1 58.5 41.4 72.4 51.6
no pool Net Noisy 49.4 35.8 82.1 34.5 23.2 38.2 32.3 59.3 31.4 71.2 45.7

Net Cur 52.8 36.6 82.6 38.5 29.0 37.0 35.5 61.1 36.3 71.2 48.1

CNN 2K VOC12 59.2 36.9 83.9 40.7 44.5 45.7 41.4 61.0 46.0 75.2 53.5
aug VOC12+ 59.9 37.1 85.6 41.6 44.7 43.3 40.3 61.2 47.3 76.4 53.7
max pool Net Noisy 50.3 36.2 81.8 35.6 25.4 35.5 30.6 57.4 34.7 74.3 46.2

Net Cur 52.0 37.5 82.3 38.2 31.5 33.8 36.0 61.8 35.2 71.1 47.9

CNN 2K VOC12 59.4 37.2 84.6 42.0 44.9 46.1 41.5 61.2 48.0 75.9 54.1
aug VOC12+ 60.1 36.5 85.9 43.4 44.6 43.7 39.9 62.2 49.2 77.7 54.3
sum pool Net Noisy 51.0 35.7 82.9 37.1 27.2 35.4 31.3 58.9 36.2 74.8 47.1

Net Cur 52.6 37.9 83.0 40.0 33.3 34.0 36.7 62.8 36.2 72.0 48.8

CNN 2K VOC12 59.5 35.0 84.7 45.6 46.9 40.2 42.5 61.6 42.7 74.5 53.3
no aug VOC12+ 59.9 35.0 86.0 45.7 45.9 40.5 41.3 59.4 43.8 75.1 53.3
sum pool Net Noisy 52.7 37.8 84.0 37.2 23.7 39.0 32.7 61.2 34.2 74.4 47.7

Net Cur 53.6 39.2 83.3 41.1 27.1 39.9 36.9 63.0 35.6 67.8 48.8

CNN 128 VOC12 57.8 33.2 85.4 48.8 41.9 44.5 39.3 60.2 45.3 75.6 53.2
aug VOC12+ 56.4 33.8 86.1 49.3 40.8 41.4 38.6 57.4 44.7 75.3 52.4
sum pool Net Noisy 52.1 33.2 79.5 29.8 24.0 32.3 33.2 55.7 34.9 76.8 45.1

Net Cur 53.2 37.7 81.9 35.9 32.2 31.4 34.6 58.4 34.1 73.9 47.3

CNN 1K VOC12 60.2 38.9 85.5 40.4 45.5 46.6 41.4 61.5 48.3 75.7 54.4
aug VOC12+ 60.5 38.2 87.1 43.3 45.6 47.3 40.4 59.8 49.2 76.9 54.8
sum pool Net Noisy 50.7 35.2 83.1 36.5 32.0 37.5 30.5 60.7 37.6 75.4 47.9

Net Cur 53.0 37.2 83.4 36.3 37.3 39.2 35.6 64.3 36.8 72.1 49.5

CNN 4K VOC12 54.5 35.4 84.2 40.7 42.4 50.2 39.4 56.2 43.3 73.8 52.0
aug VOC12+ 52.0 35.2 84.0 41.5 43.3 49.9 37.1 60.4 41.0 76.5 52.1
sum pool Net Noisy 45.8 32.7 79.2 31.8 32.6 39.7 29.6 55.9 36.1 73.5 45.7

Net Cur 47.5 33.7 77.5 42.0 31.9 38.6 35.1 55.2 35.6 68.1 46.5

by a small amount (typically ∼1–2%) relative to not using augmentation; the
highest performance is obtained using augmented training data with sum-pooling
of the augmented test data. Note that it takes around 0.3s to compute the
features for a single frame of an image compared to 2.4s for augmented features;
if time is of the essence the small improvement in performance is likely not
worth the additional computation. The mAP is highest for 1024-D CNN features,
although this performance is still very similar to that of other dimensions.

The benefits of augmentation differ by class; using 2K CNN features, the
AP for bird using VOC12 with no augmentation is 33.9 whereas with training
augmentation and sum pooling it rises to 37.2, sheep sees an even sharper rise
from 40.4 to 48.0. This is likely because such objects can appear quite small
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(a bird from the distance, or a lone sheep on a hill) and can be missed if only
a single central frame is extracted. Some objects (boat, cow) remain unaffected
by augmentation. Sum pooling generally outperforms max pooling; sum pooling
allows for a richer contextual description of each test painting; an exception to
this is for chair, paintings for which can contain a lot of distracting clutter.

There is very little difference between the performance of VOC12 and VOC12+
despite VOC12+ having almost twice as many train-val images. This indicates
that only a few hundred CNN training examples are required for a classifier to
learn the important features for these classes. There is also minimal difference
between the performance of Net Noisy and Net Curated; the classifier learning is
robust to outliers being present in the training data. The important implication
of this is that there is no real need to pre-filter images obtained from the internet.

Although there is a substantial mAP difference between training on
VOC12 (or VOC12+) and Net images, some of the individual class APs are
quite similar – notably bird and train.

In general, the most successful classifiers are those for boats, horses and
trains. This is very likely because these objects are typically depicted similarly
in both paintings and natural images. Conversely, furniture varies a lot between
natural images and paintings (chairs and tables are of very different shapes and
styles) leading to lower performance, though such classes are hard to classify
even in the case of natural images [24].

3.2 Implementation Details

Fisher Vector Representation. For generating Fisher Vector features the
pipeline of [13] is used with the implementation available from the website [4]:
RootSIFT [9] features are extracted at multiple scales from each image. These
are decorrelated and reduced using PCA to 80-D and augmented with the (x,y)
co-ordinates of the extraction location. These features are used to learn a 512
component Gaussian Mixture Model (GMM). For each image, the mean and
covariance of the distances between features and each GMM centre are recorded
and stacked resulting in a 82 × 2 × 512 = 83,968-D Fisher Vector.
CNN Representation. A deep CNN network similar to that of [47] is used [14]
using the implementation available from the website [3]. It consists of 5 convolu-
tional layers and 3 fully-connected layers. It is trained solely using ILSVRC-2012
using stochastic gradient descent as in [31].

To obtain a feature vector, a given image frame is passed through the network
and the output of the penultimate layer is recorded. It has been shown previously
that this output can be used as a powerful descriptor, readily applicable to other
datasets [22]. Multiple networks are trained for various sizes of this layer to
produce output vectors of different sizes (128-D, 1024-D, 2048-D and 4096-D).

For each training image, with no augmentation (no aug) each image is down-
sized so that its smallest dimension is 224 pixels and then a 224 × 224 frame
is extracted from the centre, this frame is passed into the CNN producing a
feature vector. When augmentation (aug) is used 10 frames are extracted from
an image: the images are resized so the smallest dimension is 256 and then a
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224× 224 frame is extracted from the centre and four corners of each image and
the left-right flip of these frames, these are passed in to the CNN resulting in
10 feature vectors. Each of these vectors is considered an independent training
sample and one-vs-the-rest classifiers are learnt.

At test time different pooling schemes are utilized: there can be no pooling
(no pool) where classifiers are applied to a single feature vector extracted from
each test image (as in no aug above). Alternatively each test image is augmented
and the classifiers are either applied to the mean of the 10 vectors extracted using
the above augmentation scheme (sum pool) or they are applied to the vectors
separately and the highest response is recorded (max pool).
Classification. Linear-SVM Classifiers are learnt using the training data per
class in a one-vs-the-rest manner for a range of regularization parameters (C).
The C that produces the highest mAP when the corresponding classifiers are
applied to the validation set is recorded. The training and validation data are
then combined to train classifiers using this C parameter, which are finally
applied to the test data. For the Fisher Vector representation, a single feature
vector is obtained for each image using the entirety of that image. For CNNs,
augmentation and pooling schemes are incorporated at training and testing.

4 Finding Objects in Paintings on-the-fly

It is clear from section 2 that classifiers learnt from CNN features extracted
from natural images are surprizingly successful at retrieving object categories
from paintings. A further advantage is the speed of this process: extracting a
frame from an image and producing a CNN feature takes ∼0.3s, training and
applying a classifier takes only a fraction of a second because the features are
sparse and of low dimensionality. In particular, the performance of Net Noisy

indicates that the images crawled from a Google search are a suitable training
source for a variety of classes without any pre-filtering, the natural extension
being to obtain classifiers that are able to retrieve paintings for classes other
than those in VOC.

With this is mind, we develop a live system similar to VISOR [15] thats crawls
Google images in real-time for a given object query, downloads the images and
learns a CNN-based classifier. This classifier is then applied to the entirety of
‘Your Paintings’ [1] (210K paintings) to produce a ranked list of paintings. We
test this system for 200 different object queries across many categories and record
the precision of the highest-ranked paintings (see section 4.1). A diagram of this
process is given in figure 2 and the steps of the implementation are described
below:
Features. 1024-D CNN features are used as these produced classifiers with the
highest performance on the Paintings Dataset. As discussed in section 3.1
augmenting either the training and/or testing data improves performance at the
cost of computation time. As such, for pre-processed features stored offline, sum-
pooled feature vectors are used, whereas online where time is very important,
features for positive training examples are computed without any augmentation.
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Fig. 2. A diagram of the on-the-fly system. The user types in a class query and pos-
itive training examples of that class are crawled from Google Images. These are then
encoded using CNN features and used in conjunction with a pre-computed pool of
negative features to learn a classifier in real time. This classifier then ranks hundreds
of thousands of paintings for which the features are stored in memory before displaying
the highest-ranked paintings. This entire process takes a matter of seconds.

Obtaining positive training images. To generate the positive training set
for a given class, Google Image Search is queried with the class as a search term
and the URLs for the top 200 images are recorded. These are then downloaded
in parallel with a timeout of 1s to prevent the process from being too slow. CNN
features are then computed in parallel over multiple cores from a single frame
extracted from each image as in the ‘no augmentation’ scheme of section 3.2. For
the Google Image search the photo filter is used; this may seem counter-intuitive
as one would expect that without this filter paintings would appear which would
benefit training, in actuality non-photo images tend to be clip-art that are even
further in likeness from paintings than natural images are.
Negative training images. A fixed pool of negative training images is used
to aid classification. This set consists of ∼1000 images from the Google searches
‘things’ and ‘photos’. The augmented CNN features of these images are pre-
computed and stored in memory for immediate access. This only amounts to
40MB of memory.
Classification. Classifiers are learnt on a single core using the positive and
negative features with a Linear-SVM. The classifier is then applied to all of
‘Your Paintings’ in a single matrix operation; the sum-pooled CNN features
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of ‘Your Paintings’ are pre-computed and stored in memory. This is the most
memory intensive part of the process as all of ‘Your Paintings’ stored as 1024-D
features with single precision amounts to 800MB.
Offline and Online Processing. In summary: the features for negative train-
ing images and all the paintings for retrieval are pre-computed offline. Online,
i.e. at run time, the positive training images are downloaded and have their fea-
tures computed; then the classifier is learnt, and finally the paintings are ranked
on their classifier score.
Performance. Obtaining the 200 URLs for a search query typically takes 0.5s.
The time taken to download the images at these URLs can vary by class but is
often ∼2s. Across the 200 queries described below, the average number of images
downloaded successfully is 177. Computing CNN features for the downloaded
images takes ∼4.5s using 16 cores. Learning a classifier using the Liblinear [25]
package and performing a matrix operation between the classifier and the dataset
features only takes a fraction of a second.

In total, the entire process from typing in a search query to receiving the
retrieved paintings takes roughly 7 seconds.

4.1 Evaluation

To evaluate how well the system works we test it for 200 different queries over
a broad range of object categories. These include structures (arch, bridge, col-
umn, house), animals (bird, dog, fish), colours (red, blue, violet), vehicles (boat,
car), items of clothing (cravat, gown, suit) as well as environments (forest, light,
storm). The resulting classifier for each search term returns a ranked list of
retrieved paintings, for each such list Precision-at-k (Prec@k) – the fraction of
the top-k ranked results that are classified correctly – is recorded for the first 50
retrieved paintings. The highest ranked paintings for selected queries as well as
the corresponding Prec@k curves are given in figure 3.

In general, the learnt classifiers are very successful and are able to retrieve
paintings for a large variety of objects with high precision. The vast majority
of the correctly retrieved paintings had not previously been tagged on ‘Your
Paintings’, so these are new discoveries for those object classes.

In more detail, the classifiers that produce the highest precision are those
for which objects in the training photos and paintings are portrayed in a similar
manner. For example, for ‘person’ the vast majority of photos and paintings
will be in portrait-style. The same can be said of animals such as ‘horse’ that
are predominately captured from the side in a rigid pose. Conversely for certain
smaller objects, particularly human body parts (arm, hand, eye) classifiers are
not very successful. This is because of the drastic differences in depiction between
the photos and paintings; in photos, the entire image will contain the object
whereas in paintings the object is much smaller (in the case of eye, rarely more
than a few pixels wide).

For objects with very simple shapes like circles (buttons, wheels) and rect-
angles (books, doors) results retrieved tend to be poor, simply consisting of
paintings containing the shape rather than the object itself. Classifiers trained
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Fig. 3. Highest ranked paintings when classifiers are applied to ‘Your Paintings’ where
the classifiers have been learnt from selected Google Image Search Queries as well as
the Prec@k curve for the top 50 results.

on environments with no real fixed boundaries (winter, woodland) perform with
great success, this is because paintings of these tend to be very realistic, mirror-
ing nature. Also there is the added advantage that for environments the entire
image is relevant rather than a smaller region; it is harder to inadvertently learn
something else.

Colours are retrieved with high precision, something that is clearly not possi-
ble when using a handcrafted descriptor based around gradients (e.g. HOG [18]
or SIFT [36]), CNNs are able to capture both gradient and colour informa-
tion. This has a disadvantage for certain classes that are based around colours
such as ‘fire’ and ‘steam’; the paintings retrieved for these classes share colours
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(red, orange, yellow for ‘fire’, grey and black for ‘steam’) but not the classes
themselves.

Vehicles are retrieved successfully despite the temporal depictive differences
between vehicles in photos and paintings; of particular interest is ‘car’ – as
addressed in section 2 very few paintings in ‘Your Paintings’ were known to
contain cars, making this retrieval particularly impressive.

Unsurprizingly, classifiers trained on words afflicted with polysemy (those
that can have multiple meanings – for example bow can be a weapon, a gesture,
or a part of a ship) rarely retrieve any correct paintings because the positive
training data is inherently noisy, this phenomenon has been noted previously by
Schroff et al. [44].

5 Longitudinal Studies

In section 4 we have shown that it is possible to retrieve many paintings con-
taining a given object in very little time with high precision. Inspired by the
work of Lee et al. [35] we use these retrieved paintings to observe how the depic-
tion of objects has varied over time. This is possible as many paintings in ‘Your
Paintings’ are accompanied with a date.

To make these observations it is ideal for instances of objects to be aligned.
For some classes objects are inherently aligned, such as for ‘moustache’; the
retrieved paintings are almost entirely portraits so the moustaches are side by
side and easy to compare. A mosaic of moustaches over time is presented in
figure 4. For most classes this is not the case: it is known from the classifier that
the object is present but not its location. If an art historian were to compare
objects between these paintings it would not be ideal to have to manually pick
out, scale and align each of several hundred objects.

To find, scale and align objects automatically we employ the Deformable
Part Model (DPM) [26,27] object category detector to find object locations in
high-ranked paintings. This has the added benefit of depicting left/right facing
objects in the same way (from the appropriate component response – see details
below). Consider figure 6: the top half of the figure contains paintings from
‘Your Paintings’ that have been ranked highly for ‘train’ by a classifier learnt as
in section 4; the trains are at different positions and scales, making comparison
difficult. By applying a DPM a mosaic can be formed as in the bottom half of
figure 6, allowing for much easier comparison.
Implementation Details. Classifiers are learnt using Google images as in
section 4 to produce a ranked list of paintings. A DPM is learnt either (i) using
PASCAL VOC 2012 bounding boxes or (ii) using the same positive and negative
training instances used to learn the classifier. Note that for (ii) no bounding-box
regions of interest (ROI) are provided so the entire image is taken to be an
ROI. DPMs have been trained previously using the entire image as the ROI for
scene classification [38]. The DPM has 3 mirrored components (for a total of 6)
each comprising 8 parts. These are applied to the highest classified paintings for
the class and the highest scoring detection windows are recorded. By left-right
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Fig. 4. Moustaches through the ages. The nature of the object means the moustaches
are aligned without the need for an object detector.

Fig. 5. Horses through the ages. These horses have been aligned using a DPM trained
from Google Images.
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Before

After

Fig. 6. Train Alignment. The top half of this figure shows paintings that have been
retrieved using a train classifier learnt using CNN features. Although all the images
contain trains these are at different scales, positions and viewpoints. By utilizing a
DPM, it is possible to obtain the location and orientation of each train as in the bottom
half of the figure; this mosaic of aligned trains allows for much easier comparison.
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flipping regions found by a mirrored component it is possible to display objects
facing the same way as in figure 6.
DPM Discussion. In figure 6 the DPM used has been learnt using (i) (above),
the results displayed are for the component corresponding to a train face. The
aligned horses in figure 5 have been learnt using (ii). It is clear that alignment
is better with correct ROIs but rough alignment is still achieved from a DPM
learnt from entire images, allowing the objects to appear facing the same way.
Observations. The mosaics give us some insight into the nature of the objects
throughout time. It is rather remarkable that the pencil moustache, typically
associated with 20th Century actors like Errol Flynn appears in a portrait from
1565 (figure 4: top row). One can notice styles of particular times; several men
around the late 19th Century have combined their moustaches with sideburns.

Consider the horses in figure 5, it can be seen that in later years there is a
more prominent portrayal of muscles. The context is rather interesting; horses
are accompanied largely by jockeys but there is an instance of a horse mounted
by a solider in 1902. Later paintings tend to have the horse against a plain
background rather than in the wild.

We can infer from the bottom half of figure 6 that trains first started to
appear in paintings in the early 1900s. Seemingly artists prefer painting steam
engines rather than their diesel or electric equivalents as these appear with the
greatest frequency. Most of the trains have round faces; rectangular faced trains
are most prevalent in 80s paintings.

6 Conclusions

In this paper we have demonstrated the benefit of using object classifiers learnt
using CNN features from natural images to retrieve paintings containing an
object for a large variety of objects. We have further shown that this process
can be carried out in just seconds using our on-the-fly system.

Although this system works for many objects some prove elusive, particularly
when there are large differences between the portrayal of the object in natural
images and paintings. Several of these elusive objects are human body parts
(eye, hand etc.); future work could use pose estimators to isolate areas in images
(both natural and not) containing these objects, an area that has been partially
investigated in the interesting study by Carneiro et al. [12].

Another difficulty is aligning objects in paintings using DPMs without image
ROIs. This could be approached by utilizing discriminative regions [10,30,45] to
isolate the object as in [17], allowing for better alignment. Query expansion [16]
could also be explored: using retrieved paintings in conjunction with the initial
training data to learn new classifiers that are able to find objects in paintings
that previous classifiers have missed.
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