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Abstract 20 

The mere presence of information in the brain does not always mean that this information is 21 

available to consciousness (de-Wit, Alexander, Ekroll, & Wagemans, 2016). Experiments 22 

using paradigms such as binocular rivalry, visual masking, and the attentional blink have 23 

shown that visual information can be processed and represented by the visual system without 24 

reaching consciousness. Using multivariate pattern analysis (MVPA) and magneto-25 

encephalography (MEG), we investigated the temporal dynamics of information processing 26 

for unconscious and conscious stimuli. We decoded stimulus information from the brain 27 

recordings while manipulating visual consciousness by presenting stimuli at threshold 28 

contrast in a backward masking paradigm. Participants’ consciousness was measured using 29 

both a forced-choice categorisation task and self-report. We show that brain activity during 30 

both conscious and non-conscious trials contained stimulus information, and that this 31 

information was enhanced in conscious trials. Overall, our results indicate that visual 32 

consciousness is characterised by enhanced neural activity representing the visual stimulus, 33 

and that this effect arises as early as 180 ms post-stimulus onset. 34 

  35 
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1. Introduction 36 

The human visual system processes a steady stream of inputs, but only a subset of this 37 

information enters consciousness. This dissociation between perceptual processing and visual 38 

consciousness has been studied extensively using paradigms such as masking (Breitmeyer & 39 

Öğmen, 2006), and binocular rivalry (Blake, 1998). In these studies, consciousness denotes visual 40 

awareness of a stimulus in the environment, which differs from the physiological state of 41 

wakefulness also referred to as ‘consciousness’ in medical settings. 42 

The nature of visual consciousness is yet to be fully elucidated and the current theories 43 

differ on the neural processes that underlie visual consciousness. According to the global neuronal 44 

workspace theory, the broadcasting and amplification of stimulus-specific information, 45 

specifically in prefronto-parietal areas, is what allows a visual stimulus to enter consciousness 46 

(Dehaene & Changeux, 2011; Salti, Monto, Charles, King, Parkkonen, & Dehaene, 2015). In 47 

contrast, the higher-order theory of consciousness asserts that visual consciousness does not 48 

involve the amplification or broadcasting of stimulus-specific information (Lau & Rosenthal, 49 

2011; also see Salti et al, 2015 for discussion). Rather, non-stimulus-specific information is 50 

added, marking the stimulus as ready to enter consciousness. While the global neuronal 51 

workspace and higher-order theories differ on the nature of visual consciousness, they agree that 52 

consciousness emerges at a late stage of processing. 53 

Visual consciousness has been studied by examining correlates of consciousness in brain 54 

activity (e.g., Pitts, Metzler, & Hillyard, 2014; Lamy, Salti, & Bar-Haim, 2009). In humans, this 55 

research most often has taken a univariate approach, examining regional brain activity measured 56 

with fMRI (cf. Haynes, 2009). Using this approach, for example, activation in the lateral occipital 57 

complex (LOC) measured using fMRI has been linked to visual consciousness (Grill-Spector, 58 

Hendler, Kushnir, & Malach, 2000). In EEG, a positive component called the P3b, has been found 59 

to occur when visual consciousness is present (Dehaene & Changeux, 2011; Lamy et al, 2009). 60 

The P3b component emerges at 300-500 ms post-stimulus onset, indicating that visual 61 
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consciousness is likely to arise during this late time window. Yet, an earlier component has also 62 

been linked to visual consciousness (Pitts et al, 2014). This component, coined the visual 63 

awareness negativity, emerges at 200-240 ms post-stimulus onset, and has been found to correlate 64 

with consciousness regardless of the task relevance of the stimuli. 65 

Perceptual and cognitive phenomena, such as visual consciousness, may not be 66 

characterised by any one single activation, but by the pattern of multiple activations across the 67 

brain (Haynes, 2009). This idea lends itself to multivariate pattern analysis (MVPA) or 68 

“decoding” approaches, which study distributed patterns of activity in the brain. In fMRI studies, 69 

decoding studies have shown that it is possible to predict various types of stimulus-specific 70 

information such as stimulus category and stimulus location from brain activity (e.g., Carlson, 71 

Schrater, & He, 2003; Cox & Savoy, 2003; Haxby, Gobbini, Furey, Ishai, Schouten, & Pietrini, 72 

2001; Haynes, 2015; Kamitani & Tong, 2005; Kriegeskorte, Goebel, & Bandettini, 2006; 73 

Shinkareva, Malave, Just, & Mitchell, 2012). Moreover, the decoding performance has been 74 

shown to change as a function of consciousness (e.g., Williams, Dang, & Kanwisher, 2007; Bode, 75 

Bogler, Soon, & Haynes, 2012). Williams et al., for example, found that patterns of activity in 76 

the Lateral Occipital Complex (LOC) could reliably predict object category only when the 77 

participants were consciously aware of the stimuli. Activity in V1, in contrast, could be used to 78 

predict object category regardless of whether the stimulus was consciously perceived. Similarly, 79 

Bode et al., (2012) found that LOC activity could predict stimulus category only when visual 80 

consciousness was present. Studies using decoding methods thus corroborate what has been 81 

previously reported by univariate studies, in particular that the LOC is implicated in the conscious 82 

perception of objects. 83 

To date, there has been relatively little research using decoding methods to investigate the 84 

temporal dynamics of visual consciousness. Decoding methods provide a means to study the 85 

dynamics of visual consciousness processing by revealing what information is being represented 86 

by the brain, and also when. For example, one study showed that stimulus information can be 87 
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decoded more than 1000 ms after stimulus onset, both when stimuli are consciously perceived 88 

and when they are not (King, Pescetelli, & Dehaene, 2016). Further, the time that decoding 89 

performance between consciously perceived and non-consciously perceived stimuli diverges can 90 

be used as an indicator of the time visual consciousness emerges. Using this approach, Salti et 91 

al., (2015) found that visual consciousness for object location emerges at 270 ms post-stimulus 92 

onset. Their findings thus suggest that visual consciousness for object location, typified as greater 93 

decoding performance for consciously perceived stimuli, emerges around 270 ms post-stimulus 94 

onset. 95 

The present study aimed to investigate the time that visual awareness of stimulus category 96 

emerges. We recorded magneto-encephalography (MEG) data while participants completed a 97 

visual categorisation task. We manipulated participants’ consciousness of the stimuli using a 98 

standard backward masking paradigm (Breitmeyer & Ögmen, 2006). Consciousness was 99 

measured using three different methods; by an objective measure (behavioural categorisation 100 

accuracy), by a subjective measure (self-report of visibility), and by a combination of both the 101 

objective and subjective measures. These three different methods were used to address concerns 102 

that forced-choice categorisation alone is not an adequate measure of visual consciousness 103 

(Dehaene & Changeux, 2011). Using decoding to analyse the MEG data, we identified the time 104 

at which the neural signal started to differ between trials where visual consciousness was present, 105 

and trials where visual consciousness was not evident. We found that visual consciousness is 106 

characterised by an increased decodability of stimulus information, emerging around 180 – 230 107 

ms post-stimulus onset.  108 

  109 
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2. Methods  110 

The aim of the current study was to disentangle conscious from unconscious processing in 111 

visual object categorisation using backward masking paradigm. Participants performed a three-112 

way categorisation task for three artificial categories of objects (Spikies, Smoothies, Cubies (Op 113 

de Beeck, Baker, DiCarlo, & Kanwisher, 2006)). The experimental session consisted of two 114 

phases. In the first phase, participants were familiarised with the task while we adaptively 115 

estimated their individual contrast threshold so that their accuracy was maintained at 50%. Then, 116 

in the second phase, participants performed the categorisation task while we recorded their brain 117 

activity in response to the stimuli with magnetoencephalography (MEG). 118 

2.1 Participants  119 

Eight healthy adults (5 female) participated in the study. All were between the age of 18 120 

and 24 (mean age = 20.38 years, SD = 1.77 years). Participants were fluent in English and had 121 

normal or corrected-to-normal vision. One participant was left-handed. The participants gave 122 

informed consent in writing prior to their participation and were financially reimbursed for their 123 

time. The study was conducted with the approval of the Human Research Ethics Committee at 124 

the University of Sydney and Macquarie University. 125 

2.2 Stimuli  126 

The stimuli were novel objects belonging to one of three categories: cubies, smoothies, and 127 

spikies (Figure 1A), artificially generated using Matlab (Op de Beeck et al., 2006). There were 128 

210 visually different exemplars in each object category (Figure 1A). Stimuli were presented in 129 

greyscale on a black background (Figure 1B), at the centre of the screen (visual angle: 3.23°x 130 

2.87°). The stimuli were masked using greyscale random dot masks, constructed by assigning 131 

random values to the pixels of a 100x100 image, displayed at the same size and location as the 132 

stimuli. The same stimuli and masks were used in the familiarisation and test phase of the study. 133 
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During the familiarisation phase, the contrast in which the stimuli were presented was calibrated 134 

for each participant, so that they would correctly categorise the object 50% of the time (chance 135 

level = 33%). During the test phase, the contrast also varied from trial to trial, to ensure that the 136 

participants would correctly categorise the object approximately 60% of the time using QUEST 137 

(Watson & Pelli, 1983). We used 50% in the familiarisation phase to make the training engaging 138 

and challenging, and then increased the threshold 60% to get a good distribution of correct and 139 

incorrect trials for the main experiment. The experiment was run in Matlab R2011b, using the 140 

Psychophysics Toolbox version 3.0.10 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The 141 

stimuli were projected onto a screen inside the magnetically shielded room using an EPSON EB-142 

G7400U projector. The participants reported their responses using a 4-button cylinder box. 143 

2.3 Procedure  144 

At the start of the experiment, the participants were fitted with a cap containing 5 marker 145 

coils to monitor head movement. Their head shape was also digitised using the Locator 146 

programme with Fastrak Polhemus (version 5.5.2) to check the location and alignment of the head 147 

in the scanner. The participants laid in a supine position in the MEG scanner, in a dimly lit 148 

magnetically shielded room (Fujihara Co. Ltd., Tokyo, Japan). The participants were instructed 149 

to minimise their head movements whilst inside the scanner. The recordings were made using a 150 

whole-head MEG system containing 160 axial gradiometers (Model PQ1160R-N2, KIT, 151 

Kanazawa, Japan). MEG signal was continuously sampled at 1000 Hz, band-pass-filtered online 152 

between 0.03Hz and 200 Hz. 153 

The experiment employed a backward masking paradigm. The target stimulus was 154 

presented for a brief duration followed by a mask at the same location where the stimulus was 155 

previously displayed (Figure 1B). 156 

The first part of the experimental session was a familiarisation phase. During this phase, 157 

there was a 1000 ms interval at the start of each trial, followed by a fixation cross presented at 158 
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the centre of the screen for 500 ms. This was followed by another 200 ms interval with a blank 159 

screen. Subsequently, the target stimulus was presented for 33 ms. After target stimulus offset, 160 

there was a delay of 17 ms before a random-dot mask appeared. The mask was presented for 500 161 

ms, at the same location where the target stimulus previously appeared. Following mask offset, 162 

participants were prompted to categorise the object shown in the trial. Participants were allowed 163 

as much time as needed to categorise the object. Once the participants had entered a response, the 164 

next trial started.  165 

The familiarisation phase consisted of 100 trials, 25 of which were control trials, which did 166 

not contain a stimulus. In these trials, presentation of the target stimulus was replaced with a blank 167 

screen, which lasted for 33 ms (the same duration as stimulus presentation in target trials). The 168 

remaining 75 trials were target trials, where the target stimuli were presented. In these trials, the 169 

stimulus was either a spiky, smoothie or cubie. All three categories were presented equally often, 170 

to eliminate bias for any particular category. Stimuli for each category were randomly drawn from 171 

the stimuli pool described in Section 2.2. All four types of trials (spiky, smoothie, cubie, and 172 

control trials) were presented in a random order during the familiarisation phase. The 173 

familiarisation phase lasted approximately half an hour. There was no MEG acquisition during 174 

this phase. 175 

Upon completion of the familiarisation phase, the participants commenced the test phase. 176 

The test phase followed a similar procedure as the familiarisation phase, except that after the 177 

categorisation question, the participants were also asked: “Did you see the object?”. The 178 

participants selected either the “Yes” or “No” response. They were instructed to respond “Yes” 179 

only when they had seen the stimulus and were also able to identify what category it was. As with 180 

the categorisation question, participants were allowed as much time as necessary to respond to 181 

this question.  182 

The test phase consisted of seven blocks. Each block lasted for approximately 8 minutes 183 
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and was comprised of 168 trials (42 spiky trials, 42 cubie trials, 42 smoothie trials and 42 control 184 

trials). At the start of each block, the response mapping for the categorisation question was 185 

changed to ensure that motor response could not act as a confound. The response mapping was 186 

changed after every block in a random order. The test phase lasted an hour including the breaks 187 

between blocks.  188 

 189 

Figure 1. A. The three object categories: cubie, smoothie, and spiky. For each category, there 190 

were 210 visually different exemplars. Here we show three examples of each category. B. The 191 

experiment paradigm in the test phase. On each trial, participants were shown an object, followed 192 

by a mask. Participants were instructed to report the category of the object (response mapping 193 

was randomised between blocks), and finally they reported whether they perceived the stimulus 194 

or not. 195 

  196 

A 

B 
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2.4 Analysis  197 

2.4.1 Pre-processing  198 

At the time of the experiment, 9 MEG channels were undergoing maintenance and the 199 

analysis was performed on the remaining 151 channels. The data were down-sampled to 100Hz 200 

(10ms resolution). Stimulus onset times were determined using a photodiode located in the corner 201 

of the display in the magnetically shielded room. MEG recordings were sliced into epochs starting 202 

from 100 ms prior to stimulus onset and ending at 800 ms post-stimulus onset. Pre-processing 203 

was performed in Matlab R2017, using the FieldTrip Toolbox (version 20170502) (Oostenveld, 204 

Fries, Maris, & Schoffelen, 2011). No further preprocessing steps were applied to the data. 205 

2.4.2 Decoding  206 

We performed a time-series decoding analysis on the preprocessed data (Grootswagers, 207 

Wardle, & Carlson, 2017), implemented in CoSMoMVPA (Oosterhof, Connolly, & Haxby, 208 

2016). After discarding control trials, we decoded the category of the stimulus for each participant 209 

over the time course of the trial. We used linear discriminant analysis (LDA) classifiers as 210 

implemented in CoSMoMVPA. The classifier was trained at every time point in the epoch, using 211 

the activation values from all MEG channels. The decoding performance was examined using a 212 

leave-one-block-out cross-validation method, training the classifier on all-but-one blocks, testing 213 

it on the remaining block, and repeating this leaving every block out for testing once. We applied 214 

this analysis on all pairwise combinations of category pairs (i.e., spiky versus smoothie, spiky 215 

versus cubie, and smoothie versus cubie) and report the mean cross-validated decoding 216 

performance across pairwise combinations. 217 

Stimuli were presented at a varying contrast throughout the experiment (using the QUEST 218 

adaptive procedure). We therefore took the following steps to control for contrast: firstly, we 219 

excluded the first block of each participant, where the QUEST procedure had not yet converged, 220 
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and contrast was more variable. Secondly, we exactly matched the contrast of correct and 221 

incorrect trials for the analysis; for each trial with an incorrect response, we selected a correct 222 

response trial that was presented at the exact same contrast value. If no matching trial was found, 223 

the trial was excluded. On average, this procedure retained 74.82% of trials (mean±SD: 224 

377.08±78.84 trials). This approach ensured that the decoding procedure was performed not only 225 

on equal numbers of correct and incorrect trials (thus avoiding classifier bias), but also that the 226 

correct and incorrect trials had the exact same contrast values and distributions. Within the cross-227 

validation procedure, the classifier was trained on all remaining trials. To examine the difference 228 

between conscious and unconscious processing, we grouped the trials in the test set and assessed 229 

their decoding performance separately according to the following three comparisons:  230 

1. ‘correct’ versus ‘incorrect’ trials (objective measure) 231 

2.  ‘seen’ versus ‘unseen’ trials (subjective measure) 232 

3. ‘correct-seen’ versus ‘incorrect-unseen’ trials (combined measure) 233 

2.4.3 Statistical testing  234 

At each time point in the response, we tested whether decoding accuracy was at chance-235 

level (H0), or above chance (H1). We also tested whether the decoding performance between 236 

groupings (e.g., correct versus incorrect) was the same (H0) or different (H1). To compare 237 

hypotheses, we used Bayes Factors (BF), which quantify the evidence for one hypothesis over 238 

the other (Jeffreys, 1998; Morey, & Rouder, 2011; Rouder, Speckman, Sun, Morey, & Iverson, 239 

2009; Wagenmakers, 2007; Wetzels et al., 2011). In the Bayesian framework, a BF of 3 indicates 240 

H1 is three times more likely than H0, and a BF of 1/3 indicates the opposite. A BF>3 or BF<1/3 241 

is generally considered as substantial evidence (roughly comparable to a p-value < 0.01), and 242 

BF>10 or BF<1/10 as strong evidence (roughly comparable to a p-value < 0.001) for H1 or H0, 243 

respectively (Dienes, 2016; Jeffreys, 1998; Wagenmakers, 2007; Wetzels et al., 2011). Note that 244 

the Bayes factors are continuous degrees of evidence, and the two levels of thresholding are 245 
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mainly used for visualisation purposes. We did not treat these thresholds as hypothesis testing at 246 

the singe time point level, and instead consider the evidence across multiple time points. This 247 

means that isolated time points that reach the threshold are not treated as evidence for a hypothesis 248 

if the evidence in the surrounding time points goes in the opposite direction. 249 

We constructed a uniform prior for H1 with an upper bound set at 100% in the case of 250 

decoding accuracy, and at 50% for the difference between accuracies (Dienes, 2008; 2014). 251 

Instead of using chance as lower bound for H1, we constructed a conservative estimate of the 252 

lower bound using a permutation test (Maris & Ooostenveld, 2007; Stelzer, Chen, & Turner, 253 

2013) as follows: for each participant, we created 100 null-results by performing the classification 254 

analysis on shuffled class labels. We then sampled at random 5,000 times from the individual 255 

participant null-distributions and computed the mean decoding performance, resulting in a group 256 

level null-distribution (Maris & Oostenveld, 2007). We used the group-level decoding accuracy 257 

at the 95th percentile of this null-distribution as the lower bound of the prior for H1. When 258 

comparing the difference in decoding performance between groupings (e.g., correct versus 259 

incorrect), we created in a similar way a group-level null-distribution of differences and used the 260 

95th percentile of this distribution as lower bound for the difference between accuracies. 261 

2.4.4 Exploratory analysis 262 

To explore the source of the decodable signal, we performed a channel-space searchlight analysis 263 

for the the combination of both the objective and subjective measures (i.e., correct seen versus 264 

incorrect not seen). For a given channel, we took the 4 closest neighbouring channels and 265 

performed the same decoding procedure on this local cluster of channels. The decoding accuracy 266 

was then stored at the centre channel. This process was repeated for all channels, yielding a scalp 267 

map of decoding accuracies for every time point. 268 

 269 
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3. Results 270 

The aim of the study was to investigate the temporal dynamics of visual consciousness. We 271 

operationalised visual consciousness using three different methods: (1) objective measure alone 272 

(i.e. categorisation accuracy), (2) subjective measure alone (i.e. self-report of visibility); (3) the 273 

combination of both the objective and subjective measures. We decoded the stimulus category 274 

(spikey, smoothie, cubie) and then compared the decoding performance in three sets of 275 

comparisons corresponding to the three operationalised definitions of consciousness: (1) between 276 

trials where participants responded correctly in the categorisation task and those where they 277 

responded incorrectly (‘correct’ vs ‘incorrect’ trials; Figure 2A); (2) between trials where 278 

participants reported having seen the stimulus and those where they reported not having seen it 279 

(‘seen’ vs ‘unseen’; Figure 2B); (3) between trials where participants responded correctly in the 280 

categorisation task and also said they saw the stimulus and trials where participants neither 281 

responded correctly in the categorisation task nor reported seeing the stimulus (‘correct-seen’ vs 282 

‘incorrect-unseen’; Figure 2C). 283 

Figure 2. The time course of decoding performance for: A. ‘correct’ vs ‘incorrect’ trials; B. ‘seen’ 284 

vs ‘unseen’ trials; C. ‘correct-seen’ vs ‘incorrect-unseen’ trials. Shaded regions show ± 1 SEM 285 

across participants. The broken horizontal line indicates chance level. The y-axis indicates 286 

decoding performance, with 1 being 100% accuracy, and 0.5 indicating 50% accuracy. The x-287 

axis indicates the time course of the trials in seconds relative to stimulus onset. Bayes Factors 288 

(BF) are indicated by the dots above the x-axis of each graph. BF were thresholded at 1/10, 1/3, 289 

1, 3, and 10 (see inset). A BF of 1/3 or below indicates evidence for the null hypothesis (filled 290 

dots in the bottom two rows), and a BF of 3 or above indicates evidence for the alternative 291 
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hypothesis (filled dots in the top two rows), and BF between those values reflects insufficient 292 

evidence for either hypothesis (open dots in the two middle rows). Purple and orange dots in each 293 

graph indicate the BF for above-chance decoding for the purple and orange lines in that graph, 294 

respectively. Black dots indicate the BF for the difference in decoding performance between the 295 

purple and orange conditions in that graph. The shaded vertical grey areas show the three time 296 

points shown in Figure 3 for the exploratory channel-searchlights. 297 

 298 

Objective measure 299 

In the first comparison (Figure 2A), visual consciousness was operationalised by the 300 

objective measure: the participants’ accuracy in the categorisation task. Trials where participants 301 

responded correctly (‘correct’ trials) showed decoding performance that was above chance 302 

starting from 110 ms post-stimulus onset (BF= 10.52). Trials where participants responded 303 

incorrectly (‘incorrect’ trials) also showed above chance decoding performance starting from 110 304 

ms post stimulus onset (BF= 12.16). The ‘correct’ trials were first observed to have higher 305 

decoding performance than the ‘incorrect’ trials at 230 ms post-stimulus onset (BF = 47.00). 306 

Between 230 ms and 410 ms post-stimulus onset, this difference was inconsistent, but from 410 307 

ms onwards, the ‘correct’ trials consistently had better decoding performance compared to the 308 

‘incorrect’ trials. Prior to 190 ms, there was evidence for the null hypothesis or no difference 309 

between the ‘correct’ and ‘incorrect’ trials (BF < 1/3). 310 

 311 

Subjective measure 312 

In the second comparison (Figure 2B), visual consciousness was operationalised by the 313 

subjective measure: participants’ subjective report of visibility. In trials where participants 314 

reported that they saw the stimulus (‘seen’ trials), the decoding performance rose above chance 315 

from 130 ms post-stimulus onset (BF = 5.94). In ‘unseen’ trials, the decoding performance was 316 

above chance from 110 ms post-stimulus onset (BF = 17.77). Decoding performance for ‘seen’ 317 

trials was better than that for ‘unseen’ trials, with this difference emerging at 200 ms post-stimulus 318 

onset (BF = 14.65). However, this difference was not as consistent throughout the rest time series 319 

as it was for the first comparison. 320 
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Combined measure 321 

In the third comparison (Figure 2C), visual consciousness was operationalised by a 322 

combination of both the objective and subjective measures: categorisation accuracy and self-323 

report of visibility. In the ‘correct-seen’ trials, the decoding performance was above chance from 324 

130 ms post-stimulus onset (BF = 3.54). The ‘incorrect-unseen’ trials showed decoding 325 

performance above chance starting from 110 ms post-stimulus onset (BF = 5.60). From 180 ms, 326 

there was a difference in decoding performance with the ‘correct-seen’ trials showing better 327 

decoding performance than ‘incorrect-unseen’ trials from this time onwards (BF = 9.45). There 328 

was also evidence for no difference between ‘correct-seen’ and ‘incorrect-unseen’ trials prior to 329 

170 ms.  330 

 331 

The Neural Source of Decodable information: An exploratory analysis. 332 

An exploratory analysis using channel-searchlights (Figure 3) indicated that during the 333 

middle time period (200-220 ms), decodable stimulus information was found around occipital 334 

channels in the ‘incorrect-unseen’ trials, and from frontal and occipital channels in the ‘correct-335 

seen’ trials. Compared to the ‘incorrect-unseen’ trials, there seemed to be more decodable 336 

stimulus information coming from frontal channels. During the late time period (300-320 ms), 337 

decodable stimulus information was found in the occipital and frontal channels in both the 338 

‘correct-seen’ and ‘incorrect-unseen’ trials, and there was a greater amount of decodable 339 

information from the occipital channels in the ‘correct-seen’ trials. 340 
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 341 

Figure 3: Result for the exploratory searchlight analysis for ‘correct-seen’ versus ‘incorrect-342 

unseen’ comparison. These maps show channel decoding accuracies for the three timepoints 343 

annotated in Figure 2. The first row shows decoding accuracy for ‘correct-seen’ trials, the second 344 

row for ‘incorrect-unseen’ trials, and the bottom row shows the difference. 345 

 346 

4. Discussion 347 

This study investigated the information represented by the brain during conscious and unconscious 348 

processing of visual objects. In a MEG recording session, we showed participants stimuli at 349 

threshold, such that only on a subset of trials the stimuli reached conscious awareness, and had 350 

participants give objective (i.e., categorisation accuracy) and subjective (i.e., self-report of 351 

visibility) reports on the stimulus they were viewing. In our analysis, we then operationalised 352 

consciousness using objective, subjective, and a combined objective-subjective measure to study 353 

how stimulus information was represented in the brain during consciousness and unconscious 354 

processing.  355 
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4.1. Visual consciousness characterised by increased decodability for stimulus information 356 

Across all the definitions of consciousness, we found consistent patterns of results regarding 357 

the information represented during conscious and unconscious processing. Irrespective of 358 

definition, we could decode object category information from both conscious and unconscious 359 

trials. Notably, showing that we can decode stimulus information during unconscious trials 360 

demonstrates that the brain represents object information even if the stimulus does not reach 361 

conscious awareness. When consciousness was operationalised by the objective measure 362 

(categorisation accuracy), we found that decoding performance for correct trials was higher than 363 

‘incorrect’ trials starting from 230 ms post-stimulus onset. A similar pattern of results emerged 364 

for the subjective and combined objective-subjective definitions of consciousness. In both cases, 365 

we observed higher decoding performance for “conscious” than “unconscious” trials. 366 

Collectively, these findings indicate that the difference between conscious and unconscious 367 

processing is better characterised as a difference in the strength of the stimulus representation, 368 

which is that information is enhanced (i.e., more decodable) during conscious processing.  369 

 370 

4.2 Stimulus-related information is processed by the brain with conscious awareness of the 371 

stimulus.   372 

Stimulus information was present when visual consciousness was considered absent using all 373 

three operationalised definitions, indicating that some processing is completed by the brain 374 

independent of visual consciousness. These results corroborate fMRI decoding studies showing 375 

stimulus information is represented in the brain even when the stimulus is not consciously 376 

accessible. Williams et al., (2007), for example used an objective measure of consciousness (i.e., 377 

behavioural performance) to show that object category information could be decoded from primary 378 

visual cortex even when subjects incorrectly reported the stimulus category. Our study further 379 

showed that when consciousness was operationalised using subjective report (i.e., seen/unseen 380 

trials), stimulus information was decodable during unconscious processing. These results echo the 381 
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findings of King et al., (2016), who showed that stimulus information is encoded and maintained 382 

in the brain up to 1150 ms post-stimulus onset, irrespective of the subjective reports. Finally, we 383 

also found that stimulus information was decodable for unconscious trials using the combined 384 

objective-subjective measure (i.e., ‘incorrect-unseen’ trials). Collectively, our findings show that 385 

irrespective of the method used to operationalise visual consciousness, stimulus information is 386 

represented by the brain even when the stimulus is not consciously accessible to the observer. 387 

 388 

4.3. Visual consciousness emerges between 180 – 230 ms post-stimulus onset 389 

Conscious trials showed higher decoding performance regardless of the operationalised 390 

definition of consciousness, a difference that emerged between 180 – 230 ms post-stimulus onset. 391 

This time is notably earlier than the 270ms estimate reported in a decoding study by Salti et al., 392 

(2015). There are several possible explanations for this discrepancy. Firstly, Salti et al. displayed 393 

their stimuli in the periphery, whereas in the present study stimuli were displayed at the fovea. 394 

Visual acuity is lower in the periphery (Anstis, 1974; 1998), thus one explanation is the peripheral 395 

stimuli used by Salti et al. were weakly represented and/or took longer to be processed. Due to 396 

the reduced fidelity in processing stimuli in the periphery, visual consciousness thus might have 397 

been found to emerge at a later time.  398 

Secondly, Salti et al. (2015) divided the time course into (four) discrete time windows, 399 

while the present study investigated time series by measuring decoding accuracy at each time 400 

point. Notably, the time for visual consciousness in our results was 180 – 230 ms, which falls at 401 

the mid-point of the third time window defined by Salti et al. (i.e., 162-271 ms post-stimulus 402 

onset). The second time window used by Salti et al. potentially could have had added noise, which 403 

rendered the difference between conscious and unconscious processing insignificant. Thus, a 404 

second explanation is that our fine-grained temporal resolution led to finding differences at an 405 

earlier time.  406 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2019. ; https://doi.org/10.1101/603043doi: bioRxiv preprint 

https://doi.org/10.1101/603043


 

 19 

Finally, the two studies examined different stimulus properties. In Salti et al., the stimulus 407 

property of interest was stimulus location, whereas we investigated stimulus category. The 408 

discrepancy in the findings might be explained by the fact that consciousness for category 409 

emerges at an earlier time than that for stimulus location. This possibility contradicts earlier 410 

findings showing that the decoding onset for stimulus category emerges after that for stimulus 411 

location (Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011). Moreover, it is generally accepted 412 

that stimulus location is represented early (i.e., primary visual cortex), while object category 413 

information is represented at a later stage in the visual hierarchy (lateral occipital cortex and 414 

inferior temporal cortex). The explanation that the conscious representation of location precedes 415 

the representation of category thus contradicts both previous decoding studies and accepted 416 

knowledge of the visual hierarchy. We, therefore, view this latter explanation as possible, but not 417 

plausible. Nevertheless, future work could investigate these three possible explanations for the 418 

difference between Salti et al. and our study’s findings.   419 

Other studies have taken a univariate analysis approach with EEG to study the brain 420 

dynamics of consciousness. Dehaene and Changeux (2011) and Lamy et al. (2009), for example, 421 

reported the P3b correlated visual consciousness. The P3b is an event-related potential (ERP) 422 

with onset between 300-500 ms. This timing is notably later than the time window reported in 423 

this study (between 180-230 ms). In contrast, Pitts, Metzler, et al. (2014) and Pitts, Padwal, 424 

Fennelly, Martínez, and Hillyard (2014) showed that the visual awareness negativity (VAN) 425 

correlated to visual consciousness. The onset of the VAN is approximately 200ms, which 426 

coincides more closely with our estimate of the time of the emergence for visual consciousness. 427 

  428 
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4.4. Stimulus information associated with visual consciousness does not preclude the 429 

existence of a non-stimulus specific ‘tag’ for consciousness. 430 

The difference between the presence and absence of visual consciousness manifested in the 431 

strength of decoding performance. Visual consciousness thus correlates with increased decoding 432 

performance. This observation, to some extent, supports the global neuronal workspace theory, 433 

which proposes that visual consciousness emerges due to the amplification of stimulus-specific 434 

information (Dehaene & Changeaux, 2011). Our exploratory channel-searchlight results 435 

indicated that during the middle time period, this amplification of neural information found had 436 

its source in the frontal lobe. However, as the searchlight analysis were exploratory in nature, it 437 

was not known whether the neural information found was strongly related to the prefrontal cortex, 438 

which is implicated in the global neuronal workspace theory. Moreover, the finding that visual 439 

consciousness relates to the strength of the representation does not preclude the possibility that 440 

additional non-stimulus-specific signals are also involved, as proposed by the higher order theory 441 

(Lau & Rosenthal, 2011; see Salti et al., 2015 for discussion). Such non-stimulus-specific signals, 442 

could play a dual role by ‘tagging’ certain stimuli as ready for conscious perception, and 443 

simultaneously contributing to the amplification of stimulus-specific information.  444 

 445 

4.5. The contribution of attention, memory and decision-making 446 

A limitation in the present study is that it did not isolate the contribution of attention, memory 447 

and decision-making to the results. All these factors often co-occur with visual consciousness, 448 

yet are not visual consciousness per se (Aru, Bachmann, Singer, & Melloni, 2012; de Graf, Hsieh, 449 

& Sack, 2012; Lamme, 2006; Tallon-Baudry, 2012). Attention, in particular, has been shown to 450 

enhance neural activity in response to stimulus categories (Desimone & Duncan, 1995; Kastner 451 

& Ungerleider, 2000; O’Craven, Downing & Kanwisher, 1999). Moreover, memory is often 452 

required to maintain the conscious percept for subsequent reporting, and quite often the reporting 453 

process involves an explicit decision made by the participants. As a result, these additional factors 454 
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also could mediate the observed relationship between visual consciousness and neural activity. It 455 

is therefore difficult to disentangle whether the difference in neural activity between ‘conscious’ 456 

and ‘non-conscious’ conditions is due to visual consciousness alone, or other concomitant factors 457 

such as attention, memory, and decision-making. 458 

 459 

4.6. Conclusion 460 

The present study aimed to examine the dynamics of visual consciousness by studying the brain’s 461 

representation of conscious and unconscious stimuli. Across three different methods of 462 

operationalising visual consciousness, we found that conscious awareness is characterised by 463 

increased decodability of neural signals encoding stimulus information. We found that this 464 

difference between conscious and unconscious processing emerges between 180 – 230 ms post-465 

stimulus onset. Given that factors such as attention, memory and decision-making may have 466 

contributed to the findings, care must be taken when attributing the observed findings to visual 467 

consciousness alone. Nonetheless, our results corroborate existing literature on the neural 468 

characteristics of visual consciousness, and provide new evidence that visual consciousness may 469 

emerge earlier than previously established. 470 

 471 
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