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Abstract Maintaining consistency in genome annotations

is important for supporting many computational tasks,

particularly metabolic modeling. The SEED project has

implemented a process that improves annotation consis-

tencies across microbial genomes for proteins with con-

served sequences and genomic context. In this research

report, we describe this process and show how this effort

has resulted in improvements to microbial genome anno-

tations in the SEED. We also compare SEED annotation

consistencies with other commonly used resources such as

IMG (the Joint Genome Institute’s Integrated Microbial

Genomes system), RefSeq (the National Center for Bio-

technology Information’s Reference Sequence Database),

Swiss-Prot (the annotated protein sequence database of the

Swiss Institute of Bioinformatics, European Molecular

Biology Laboratory and the European Bioinformatics

Institute) and TrEMBL (Translated European Molecular

Biology Laboratory nucleotide sequence data Library). Our

analysis indicates that manual and computational efforts

are paying off for the databases where consistency is a

major goal.
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Introduction

The primary goal of the SEED Project is to produce

accurate annotations for microbial genomes (Overbeek

et al. 2005). Maintaining annotation consistency is a sec-

ond major objective since it facilitates numerous compu-

tational tasks, notably the construction of metabolic

models. In many contexts, it becomes important to deter-

mine, given two assigned functions, whether or not they

refer to the same abstract function. To trivially illustrate

what we mean by consistency (or lack of it), consider the

following list of functions:

1. 50s ribosomal protein l34

2. LSU ribosomal protein L34p

3. Ribosomal protein L34

4. Ribosomal protein L34

5. Ribosomal protein L34 RpmH

6. RpmH

7. rpmH gene product

These are all alternative names of the same function, and

they all occur within the public repositories. While heu-

ristic tools can be developed to allow recognition of vari-

ants, it is less cumbersome to seek accurate and identical

representations of each function. Thus, rather than

attempting to computationally determine that these are all

equivalent, we have attempted to unify these variants

within the SEED Project. For instance, in this case we use

only the second annotation from the list above.
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To be clear, we wish to approach consistency in anno-

tations to support automated construction of metabolic (and

more general) models based upon the annotated functions

of the genes. We are not concerned with a global standard

in nomenclature since sets of terms that accurately and

consistently reflect the functions of proteins can be auto-

matically mapped to one another through the associated

protein sequences. Secondly, we are not intending to reflect

chromosomal location or expression in the function of the

protein, but rather the function that it would perform if it

was expressed in a cell, again, with a goal toward modeling

and metabolic engineering.

Given the goal of representing the activity (or other

function) of gene products, the most obvious first step in

building and maintaining annotation consistency between

genomes is to apply a standard (within the given genome

database) nomenclature among proteins with identical

primary sequences. In addition, there are many instances

where conserved sequence similarity and genomic con-

text offer abundant evidence for annotating a given gene.

This report describes simple tools that we have con-

structed for estimating conserved gene clusters within an

operational taxonomic unit (OTU), guiding highly reli-

able projections of function within the OTU, constructing

sets of proteins believed to implement identical functions,

and using these sets to estimate the consistency of a set

of annotations.

Description of the algorithm

There are many instances where protein-encoding genes

with highly conserved amino acid sequence and genomic

context can be safely annotated based on the annotation of

genomes that have already been sequenced. The following

steps describe how we chose our sets of gene clusters with

conserved genomic context.

Step 1. The microbial genomes in the SEED database

are separated into Operational Taxonomic Units (OTUs).

We define an OTU as a set of genomes that are C97 %

identical in their 16S rDNA genes (e.g. Schloss and Han-

delsman 2005). At the time of this study (February, 2013),

there were 1,386 OTUs represented in the SEED. OTUs

containing less than five genomes were omitted from

subsequent steps, and this resulted in a total of 100 OTUs,

containing 4,117 microbial genomes analyzed in this study.

Step 2. A focus organism representing an OTU is

chosen.

Step 3. A set of organisms, moderately related to the

focus organism, is chosen. It is necessary to find a set of

organisms that are related to the focus organism to deter-

mine if the context of each gene is conserved. In this case,

closely related strains are avoided because their genomic

context is too strongly conserved, but more distantly rela-

ted organisms are less conserved and are thus more useful

for determining if a given gene has a conserved context.

Our set of related organisms is defined as those that are

between 50 and 90 % amino acid identity from the focus

organism and [90 % identical to one another. Percent

identity is determined from a concatenated alignment of

aminoacyl-tRNA synthetase proteins (AARS). This align-

ment includes all of the bacterial and archaeal genomes in

the SEED database, and contains all of the AARS proteins

except for the asparaginyl-, glutaminyl-, glycyl- and lysyl-

tRNA synthetases, which were excluded because they are

absent or nonhomologous in many taxa (Woese et al.

2000). From this set of related organisms, a representative

set that has less than 90 % protein identity from each other

is chosen. It must be noted that there has been extensive

horizontal gene transfer among the AARS proteins and that

their concatenated alignment does not necessarily provide

an accurate phylogeny outside of a given OTU (Woese

et al. 2000). We use them in this context because they are

among the best-annotated genes in the SEED and their

concatenated alignment provides a suitable frame of ref-

erence, although almost any highly conserved protein or

rRNA alignment with adequate taxonomic representation

would suffice.

Step 4. Gene clusters in the genome of the focus

organism are chosen for analysis. In order to determine the

regions of conserved contiguity, we search for gene sets in

which contiguity is maintained in the focus genome and

throughout the set of moderately related organisms. This

search is performed by taking two genes occurring close to

one another in the genome of the focus organism, and

determining whether the same pair of genes also occurs in

close proximity throughout the genomes of the moderately

related set. If there is substantial preservation of contiguity,

we treat the two genes in the reference genome as part of a

single cluster and these binary connections are used to form

larger clusters (using single-linkage clustering). We define

substantial preservation of contiguity as follows: for each

pair of genes in the reference genome that is separated by

less than five intervening genes, we look for bidirectional

best hits (BBH) in each of the moderately related genomes.

We restrict the usual notion of BBHs (e.g. Overbeek et al.

1999) to genes that have protein products that are reci-

procal best hits, similar over 80 % of each protein, and at

least 50 % identical over the region of similarity using

BLASTP (Altschul et al. 1997). Then in each moderately

related genome with a pair of BBH proteins, we look for

conserved location of the corresponding gene pair using the

same parameters as above (they must have no more than

five intervening genes). For a given pair of genes in the

focus organism to be considered as a cluster, or as members

of a larger cluster, the pair must have a conserved location
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in 40 % of the genomes of the moderately related set of

organisms.

Step 5. Gene clusters are populated. Once we have

generated estimates of the gene clusters in the genome of

the focus organism, we project these potential clusters

(again, very conservatively) to all of the genomes within

the same OTU. Here the same parameters from step 4 are

used, and we also require that conserved contiguity be

detected in at least five genomes or in 20 % of the genomes

of the OTU, whichever is larger. We call the set of clus-

tered genes passing all of the above criteria and projecting

throughout the OTU a ‘‘Solid Cluster’’. We tabulate these

solid clusters in the form of tables in which each row

represents a single genome from the OTU, and each col-

umn contains one gene in the reference genome and the

corresponding BBHs in the other genomes from the OTU.

Each column in each of these tables constitutes a ‘‘Solid

Set’’ which is believed to be composed of isofunctional

homologs.

There are a number of parameters in this approach

relating to the definition of ‘‘the generation of OTUs’’,

‘‘closeness of gene pairs’’, ‘‘BBHs’’, and ‘‘conserved con-

tiguity’’. In this report, we do not explore the optimization

of each individual parameter. In all cases, we chose rela-

tively conservative values because they are ultimately

linked to the automated propagation of gene annotations in

the SEED (see below). We certainly acknowledge that

loosening these parameters can lead to larger clusters

covering more of the genes within the reference genome,

but that this may also increase projection errors.

Step 6. The Solid Clusters are retained, and steps 1–4

are repeated for other focal genomes from different OTUs.

Using clusters to evaluate the consistency of annotations

We propose that a manual annotation assigned to an indi-

vidual protein-encoding gene occurring in a solid set

should propagate to all of the protein sequences occurring

in the solid set. We have implemented this within the

SEED Project in an attempt to project the relatively

expensive manual annotations. Thus, a single manual

assignment done in a genus in which hundreds of genomes

exist (a situation that is rapidly beginning to happen) may

induce hundreds of annotation updates.

The existence of a collection of solid sets makes it

possible to easily define a number of metrics to measure the

consistency of annotations. For a number of annotation

efforts, we have chosen to measure two values:

1. Given two genes encoding identical proteins, what is

the frequency of identical assigned functions?

2. Given two genes encoding two proteins from the same

solid set, what is the frequency of identical assigned

functions?

We have computed Solid Clusters for 100 distinct OTUs

that were present in the PubSEED. This led to the forma-

tion of 73,093 distinct solid sets, with each set believed to

contain proteins implementing a common function. Table 1

shows these values for several collections of annotated

proteins, which were downloaded in February of 2013

(Lima et al. 2009; Markowitz et al. 2012; O’Donovan et al.

2002; Overbeek et al. 2005; Pruitt et al. 2007). The col-

lections analyzed are IMG (ftp://downloads1.jgi-psf.org/

pub/IMG/img_core_v400.tar), RefSeq (ftp://.ncbi.nih.gov/

blast/db/FASTA/nr.gz), the SEED (ftp://.theseed.org/misc/

annotation/seed.fa), Swiss-Prot (ftp://.uniprot.org/pub/unip

rot_sprot.fasta.gz) and TrEMBL (ftp://.uniprot.org/pub/

databases/uniprot/current_release/knowledgebase/complete/

uniprot_trembl.fasta.gz). In each case, we have tabulated the

number of sequences from the publicly distributed collection

that have identical protein sequences occurring within solid

sets, as well as the two metrics. The data in the table clearly

indicate that the efforts expended in Swiss-Prot and the

SEED Projects have led to significant advances in annota-

tion consistency.

Overall, the fraction of proteins in each database that are

currently represented by solid sets is low, ranging from

0.048 in IMG to 0.206 in Swiss-Prot. This range differs

because of the presence of eukaryotic proteins (which are

not currently analyzed), the density of genome sequences

for a given OTU, and the parameters of the algorithm. The

percentage of individual genomes encoding proteins cov-

ered by solid sets ranges from 0 to 56 %, with the genome

of Buchnera aphidicola strain APS having the highest

coverage. In general, for OTUs that are rich in genomic

data, we observe more proteins encoded by the genome

occurring in solid sets. For instance, in Escherichia coli

K-12 45 % of the proteins encoded by the genome are

covered by solid sets. As sequence data continue to accu-

mulate, solid sets will cover a larger fraction of the gen-

omes in more diverse OTUs.

It is important to note that consistency is not the sole

goal of most annotation projects. Accuracy of the annota-

tion is clearly more important (Chen et al. 2013). For

instance, the eight ribosomal proteins mentioned in the

introduction, while inconsistent, could all be viewed as

being accurate. Furthermore, they could all be viewed as

being consistent in the eyes of an expert annotator. In this

report, we have not attempted to assess the absolute

accuracy in the databases. Instead we have focused on

consistency, primarily to support the automated steps

necessary in model building (i.e., that the same string of
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characters in the annotation is assigned to proteins imple-

menting the same abstract function).

The topic of consistency is closely related to the use of a

controlled vocabulary. We have chosen to use the SEED

functional roles. They have been adopted by the Model

SEED metabolic modeling framework which has con-

structed thousands of metabolic models using the SEED’s

controlled vocabulary (Henry et al. 2010), and more

recently by the US Department of Energy’s Kbase project

(www.kbase.us). These resources make it possible to

automatically reconstruct the metabolic network (or a good

approximation of it) from just the list of functional roles

associated with the genes in a genome, if (and only if) there

exists a consistently used controlled vocabulary and one

has a table associating reactions with the functional roles

corresponding to the enzymes that catalyze the reactions.

The Model SEED and Kbase projects include a precise

correspondence between a subset of the SEED functional

roles and the reactions these functional roles enable.

Summary

In this report, we have described a simple technology for

generating sets of proteins from a single OTU that are

believed to implement identical functions. What distin-

guishes this effort from other well-known projects to

construct protein families is that the Solid Clusters are

populated very conservatively, leading to sets that only

cover proteins encoded by genomes from a single OTU and

are of high reliability. Furthermore, since the generation of

solid clusters is fully automated, it provides a comple-

mentary approach to traditional methods of genome

annotation that use hierarchical annotation structures such

as SEED Subsystems, GO terms and COGs (Ashburner

et al. 2000; Overbeek et al. 2005; Tatusov et al. 2003).

We have made the Solid Clusters, along with the gen-

erated sets of proteins available on the PubSEED web site

(ftp://ftp.theseed.org/misc/annotation/). We used these sets

to evaluate the consistency of existing sets of annotations

from a number of sources. We will periodically update the

relevant datasets, allowing any group to evaluate their

annotations using this metric, and the evaluation of com-

monly used sources of annotations.
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