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Sequences (Ln | n > k), called streams, of regular languages Ln are considered, where
k is some small positive integer, n is the state complexity of Ln, and the languages in
a stream differ only in the parameter n, but otherwise, have the same properties. The
following measures of complexity are proposed for any stream: 1) the state complexity
n of Ln, that is, the number of left quotients of Ln (used as a reference); 2) the state
complexities of the left quotients of Ln; 3) the number of atoms of Ln; 4) the state
complexities of the atoms of Ln; 5) the size of the syntactic semigroup of Ln; and
the state complexities of the following operations: 6) the reverse of Ln; 7) the star of
Ln; 8) union, intersection, difference and symmetric difference of Lm and Ln; and 9)
the concatenation of Lm and Ln. A stream that has the highest possible complexity
with respect to these measures is then viewed as a most complex stream. The language
stream (Un(a, b, c) | n > 3) is defined by the deterministic finite automaton with state
set {0, 1, . . . , n−1}, initial state 0, set {n−1} of final states, and input alphabet {a, b, c},
where a performs a cyclic permutation of the n states, b transposes states 0 and 1, and
c maps state n − 1 to state 0. This stream achieves the highest possible complexities
with the exception of boolean operations where m = n. In the latter case, one can use
Un(a, b, c) and Un(b, a, c), where the roles of a and b are interchanged in the second
language. In this sense, Un(a, b, c) is a universal witness. This witness and its extensions
also apply to a large number of combined regular operations.
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I dedicate this work to the memory of Sheng Yu whose extensive research on state

complexity led to many questions studied in this paper.

1. Introduction

State complexity is currently an active area of research in the theory of formal

languages; for references, see the surveys in [1, 26] and the bibliography at the end

of this paper. The state complexity of a regular language [26] L over a finite alphabet

Σ is the number of states in the minimal complete deterministic finite automaton

recognizing the language. An equivalent notion is that of quotient complexity [1]
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of L, which is the number of distinct left quotients of L. This paper uses complexity

for both of these equivalent notions, and not for any other property.

The (state/quotient) complexity of an operation on regular languages is the max-

imal complexity of the language resulting from the operation as a function of the

complexities of the arguments. For example, if the complexities of K and L are m

and n, respectively, then the complexity of K ∪ L is at most mn and, for every m

and n, there exist languages with complexities m and n meeting this bound. Thus

the complexity of union is mn.

There are two parts to the process of establishing the complexity of an operation.

First, one must find an upper bound on the complexity of the result of the operation

by using quotient computations or automaton constructions. Second, one must find

witnesseses that meet this upper bound. For the witnesses, one usually defines

a sequence (Ln | n > k) of languages, where k is some small positive integer.

This sequence will be called a stream. The languages in a stream differ only in the

parameter n. For example, one might study unary languages ({an}∗ | n > 1) that

have zero a’s modulo n.

A unary operation takes its argument from a stream (Ln | n > k). For a binary

operation, one adds as the second argument a stream (Km | m > k), normally

different from the first. In the past, the witness streams used for different operations

have usually been different. The following question is posed in this paper: Is it

possible to use the same stream of languages for all the operations? In other words,

is there a universal witness over some small fixed alphabet? The answer is “yes”

for all of the basic operations and many combined operations.

Section 2 introduces the terminology and notation used in this paper. Section 3

describes common conditions that make a language complex. Section 4 introduces

the main witness stream (Un(a, b, c) | n > 3) (U for “universal”), and states the

main theorem. Properties of a single language and unary operations are treated in

Section 5, whereas binary operations are discussed in Section 6. It is pointed out in

Section 7 how the bounds for several combined operations are also met by Un(a, b, c)

or by other streams closely related to Un(a, b, c). Section 8 concludes the paper.

2. Terminology and Notation

For background material on regular languages and finite automata see [20, 21, 25].

Let Σ be a finite non-empty set called an alphabet. The free semigroup generated

by Σ is denoted by Σ+; this is the set of all non-empty words over Σ. The free monoid

generated by Σ is Σ∗; this is the set of all words over Σ, including the empty word ε.

Any subset of Σ∗ is a language. The left quotient, or simply quotient of L ⊆ Σ∗

by a word w ∈ Σ∗ is the language w−1L = {x ∈ Σ∗ | wx ∈ L}. A language is

regular if and only if it has a finite number of distinct quotients.

The following set operations are defined on languages K and L: complement (L)

of L with respect to Σ∗, union (K ∪ L), intersection (K ∩ L), symmetric difference

(K ⊕ L), and difference (K \ L).
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The reverse wR of a word w is defined inductively: εR = ε and (wa)R = awR

for a ∈ Σ, w ∈ Σ∗. The reverse of a language L is LR = {wR | w ∈ L}.

The product (also called concatenation or catenation) of languages K and L is

KL = {uv | u ∈ K, v ∈ L}. Let L0 = {ε} and let Ln = Ln−1L for n > 1. The

positive closure of a language L is L+ =
⋃∞

n=1 Ln, and the Kleene closure or star

of L is L∗ =
⋃∞

n=0 Ln = L+ ∪ {ε}.

An atoma [6, 7] of a regular language L with quotients K0, . . . , Kn−1 is a non-

empty intersection of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki. Thus

the number of atoms is bounded from above by 2n, and it was proved in [7] that this

bound is tight. Since every quotient of L (including L itself) is a union of atoms,

the atoms of L are its basic building blocks.

The Myhill congruence [19] ≈L of L ⊆ Σ∗ is defined as follows: For x, y ∈ Σ∗,

x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.

The syntactic semigroup [21] of L is the quotient semigroup Σ+/ ≈L.

A deterministic finite automaton (DFA) D = (Q, Σ, δ, q0, F ) consists of a set Q

of states, a finite non-empty alphabet Σ, a transition function δ : Q×Σ → Q, initial

state q0, and set F of final states. The transition function is extended to functions

δ′ : Q × Σ∗ → Q and δ′′ : 2Q × Σ∗ → 2Q as usual, but these extensions are also

denoted by δ. A state q of a DFA is reachable if there is a word w ∈ Σ∗ such that

δ(q0, w) = q. The language accepted by D is L(D) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. Two

DFAs are equivalent if their languages are the same. The language of a state q is

the language accepted by the DFA Dq = (Q, Σ, δ, q, F ). Two states are equivalent

if their languages are equal; otherwise, they are distinguishable by some word that

is in the language of one of the states, but not of the other. A DFA is minimal if

all of its states are reachable and no two states are equivalent. A state is empty if

its language is empty.

A nondeterministic finite automaton (NFA) is a quintuple D = (Q, Σ, η, Q0, F ),

where Q, Σ, and F are as in a DFA, Q0 ⊆ Q is the set of initial states, and

η : Q×Σ → 2Q is the transition function. An ε-NFA has all the features of an NFA

but its transition function η : Q× (Σ∪ {ε}) → 2Q allows also transitions under the

empty word. The language accepted by an NFA or an ε-NFA is the set of words w

for which there exists a sequence of transitions such that the concatenation of the

symbols causing the transitions is w, and this sequence leads from a state in Q0 to

a state in F . Two NFAs are equivalent if they accept the same language.

A transformation of a set Q = {0, . . . , n− 1} is a mapping of Q into itself. If t is

a transformation of Q and i ∈ Q, then it is the image of i under t. A permutation

of Q is a mapping of Q onto itself. For 2 6 k 6 n, a permutation t is a cycle

of length k, if there exist pairwise different elements i1, . . . , ik such that i1t =

i2, i2t = i3, . . . , ik−1t = ik, and ikt = i1, and t maps every other element to itself.

aAtoms of regular languages were introduced in 2011 by Brzozowski and Tamm [6], and the theory
was slightly modified in 2012 [7]. The newer model, which admits up to 2n atoms, is used here.
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A cycle is denoted by (i1, i2, . . . , ik). A transposition (i, j) is the cycle of length 2

that interchanges i and j. A singular transformation t, mapping i to it = j 6= i is

denoted by (i → j) and has ht = h for all h 6= i. The identity transformation of Q

is denoted by 1Q.

The set of all n! permutations of a finite set Q = {0, . . . , n− 1} of n elements is

isomorphic to the symmetric group of degree n. The set of all nn transformations

of Q is a semigroup under composition, in fact, a monoid TQ. The following results

are well-known:

Proposition 1 (Permutations) For n > 3, the set of all n! permutations of the

set Q = {0, . . . , n − 1} is generated by a cycle (0, . . . , n − 1) of length n and a

transposition (i, j), where i, j ∈ Q. One generator is not enough.

Proposition 2 (Transformations) For n > 3, the set of all nn transformations

of the set Q = {0, . . . , n − 1} is generated by a cycle of length n, a transposition

(i, j), and a singular transformation (k → l), where i, j, k, l ∈ Q. Fewer than three

generators do not suffice.

Every word w in Σ+ performs a transformation of the set of states of a DFA

defined by q → δ(q, w). The set of all such transformations is the transition semi-

group of the DFA [21]. The syntactic semigroup of a language L is isomorphic to the

transition semigroup of the minimal DFA of L [21], and this transition semigroup

is normally used to represent the syntactic semigroup.

3. Conditions for the Complexity of Languages

Consider now a stream (Ln | n > k) of languages. If a language Ln is most complex,

what properties should it have? Below are some suggested answers to this question.

3.1. Properties of a Single Language

A0: The (state/quotient) complexity of Ln ⊆ Σ∗ should be n. It is assumed

that the complexity of the language is fixed at some integer n > 1, and all the other

properties are expressed in terms of n.

A1: The syntactic semigroup of Ln should have cardinality nn. Since there

are nn possible transformations of a set of n elements, nn is an upper bound on the

size of the syntactic semigroup of Ln. It was first noted without proof by Maslov [16]

in 1970 that nn is a tight bound; the proof follows from Proposition 2.

The following result was shown recently by Brzozowski and Davies [3]:

Proposition 3 (Syntactic Semigroup and Complexity of Atoms) Let D be

a minimal DFA with n states accepting a language L. If the transition semigroup

of D has nn elements, then L has 2n atoms and the quotient complexities of these

atoms meet the bounds given in A4 below.
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A2: The complexity of each quotient of Ln should be n. The complexity of

each quotient is bounded from above by n, because the DFA D = (Q, Σ, δ, q0, F )

that defines Ln also defines the quotient w−1Ln for any word w ∈ Σ∗, if its initial

state is changed to δ(q0, w). This requirement is met by every language accepted

by a strongly connected DFA.

Condition A2 is implied by A1: If A1 holds, the transition semigroup of D

contains all possible transformations and so D is strongly connected.

A3: The number of atoms of Ln should be 2n. It is reasonable that Ln should

have the maximal number of building blocks. In view of Proposition 3, this condition

need not be checked if A1 holds.

A4: The complexity of each atom of Ln should be maximal. It was proved

in [7] that the complexity of the atoms with 0 or n complemented quotients is

bounded from above by 2n−1, and the complexity of any atom with r complemented

quotients, where 1 6 r 6 n − 1, by

f(n, r) = 1 +

r∑

k=1

n−r+k∑

h=k+1

(
n

h

)(
h

k

)
. (2)

It was also shown in [7] that these bounds are tight. Again, it seems reasonable to

expect that the building blocks of a language should be as complex as possible. By

Proposition 3, it is not necessary to verify A4 if A1 holds.

3.2. Unary Operations

B1: The complexity of the reverse of Ln should be 2n. It follows from the

1959 subset construction of Rabin and Scott [22] that the upper bound on this

complexity is 2n. It was first shown by Mirkin [17] in 1966 that this bound can be

met. Salomaa, Wood, and Yu [24] showed the following result:

Proposition 4 (Transformations and Reversal) Let D be a minimal DFA

with n states accepting a language L. If the transition semigroup of D has nn ele-

ments, then the quotient complexity of LR is 2n.

In view of Proposition 4, B1 needs not be checked if A1 holds.

B2: The complexity of the star of Ln should be 2n−1 + 2n−2. It was first

noted without proof by Maslov [16] in 1970 that this is a tight upper bound. A proof

was provided by Yu, Zhuang and Salomaa [27] in 1994.

3.3. Binary Operations

Two types of binary operations are examined next: boolean operations and prod-

uct (concatenation or catenation). By boolean operation we mean any one of the

following operations: union (∪), symmetric difference (⊕), intersection (∩) and dif-

ference (\); these operations are chosen because the complexity of every other binary

5
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c

0 1 2
a a aa, b

n − 2· · ·
a

b

a, c

n − 1

b, c
b

b, cc

Fig. 1. DFA Un(a, b, c) of witness language Un(a, b, c).

boolean operation can be obtained from the complexities of these four. Denote by

Km ◦ Ln any one of these four operations.

C1: The complexity of Km◦Ln should be mn. The upper bound for the boolean

operations is mn, since w−1(Km ◦ Ln) = (w−1Km) ◦ (w−1Ln). That the bound is

tight for union was noted without proof by Maslov [16] in 1970, and proved for

both union and intersection by Yu, Zhuang and Salomaa [27] in 1994. Symmetric

difference and difference were treated in 2010 in [1].

C2: The complexity of the product KmLn should be (m − 1)2n + 2n−1.

Maslov [16] stated without proof in 1970 that this bound is tight, and Yu, Zhuang

and Salomaa [27] provided a proof in 1994.

4. The Main Theorem

The following convention is used: If X is a DFA, then X is the language accepted

by X and, if X is a regular language, then X is the minimal DFA accepting X .

The language stream and its minimal DFA that turns out to be the universal

witness for all the properties and operations listed above is defined next. DFAs of

this type have already appeared in the work of Lupanov [15] in 1963, Mirkin [17]

in 1966, and Moore [18] in 1971.

Definition 5. For n > 3, let Un(a, b, c) = (Q, Σ, δ, q0, F ), where Q = {0, . . . , n−1}

is the set of statesb, Σ = {a, b, c} is the alphabet, δ(q, a) = q+1 (mod n), δ(0, b) = 1,

δ(1, b) = 0, δ(q, b) = q for q ∈ {2, 3, . . . , n − 1}, δ(n − 1, c) = 0, δ(q, c) = q for

q ∈ {0, 1, . . . , n − 2}, q0 = 0 is the initial state, and F = {n − 1} is the set of final

states. See Figure 1. Let Un(a, b, c) be the language accepted by Un(a, b, c).

Note that in Un a performs the cyclic permutation (0, . . . , n − 1), b, the trans-

position (0, 1) and c, the singular transformation (n − 1 → 0).

A language K ⊆ Σ∗ is permutationally equivalent to a language L ⊆ Σ∗ if K

can be obtained from L by permuting the letters of Σ. For example, let π be the

permutation π(a) = b, π(b) = c and π(c) = a; then π(a(b∗ ∪ cc)) = b(c∗ ∪ aa).

Similarly, let K = L(π(a), π(b), π(c)) be the DFA obtained from L(a, b, c) by chang-

ing the roles of the inputs according to permutation π. Then K is permutationally

bAlthough Q, δ, and F depend on n, this dependence is not shown to keep the notation simple.
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equivalent to L. In such cases, K (K) is essentially the same language (DFA) as L

(L), except that its inputs have been renamed. If two languages are permutationally

equivalent, then they have the same single-language complexity properties, and the

same complexities of unary operations.

Specifically, let Un(b, a, c) be the DFA obtained from Un(a, b, c) by interchanging

the roles of the inputs a and b. For some operations input c is not needed; then let

Un(a, b) be the DFA of Definition 5 restricted to inputs a and b, and let Un(a, b) be

the language recognized by this binary DFA. Also, Un(a) and Un(a) are Un(a, b, c)

and Un(a, b, c) restricted to a.

Theorem 6 (Universal Witness) The stream (Un(a, b, c) | n > 3) meets condi-

tions A0–A4, B1, B2, C1 if m 6= n, and C2, whereas C1 with no restrictions

on m and n is met by two permutationally equivalent streams (Um(a, b, c) | m > 3)

and (Un(b, a, c) | n > 3). Moreover,

• A0 and A2 are met by (Un(a) | n > 3).

• B2 is met by (Un(a, b) | n > 3).

• C1 in general is met by (Um(a, b) | m > 3) and (Un(b, a) | n > 3).

• C1 with m 6= n is met by (Um(a, b) | m > 3) and (Un(a, b) | n > 3).

These claims are discussed in Sections 5 and 6. It is pointed out where some of

the claims have been proved, and the remaining claims are demonstrated below.

5. Properties of a Single Language and Unary Operations

Conditions A0 and A1 are now briefly discussed for the language Un(a, b, c).

A0 Complexity of the Language: Un(a) has n quotients because DFA Un(a)

is minimal. This holds since state i accepts an−1−i and no other state accepts this

word, for 0 6 i 6 n − 1; hence no two states are equivalent.

A1 Cardinality of the Syntactic Semigroup: By Proposition 2, the syntactic

semigroup of Un(a, b, c) has cardinality nn, since inputs a, b and c generate all

possible transformations of Q.

It now follows from Propositions 3 and 4 that our witness also satisfies A2, A3,

A4 and B1. Next, a proof is given for B2.

B2 Star: The following uses the well-known construction of an ε-NFA to accept the

Kleene star of a regular language accepted by a DFA. The language (Un(a, b))∗ is

accepted by the ε-NFA Nn = (QN , {a, b}, δN , {s}, {s, n−1}), where QN = Q∪{s},

s 6∈ Q, δN (s, a) = δN (s, b) = {1}, δN (q, x) = {δ(q, x)} for all q ∈ Q, x ∈ Σ, and

δN (n − 1, ε) = {0}. The ε-NFA N6 is shown in Figure 2.

Throughout the paper, the notation p
w
−→ q means that state q is reachable by

word w from state p. Similarly, P
w
−→ R means that state set R is reachable from

state set P by word w.

7
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5

a

b

a, b a

0 21

b ba, b

3

s

4

b b

a a

a, ε

Fig. 2. NFA N6 for (U6(a, b))∗.

Theorem 7 (Star) For n > 3, the complexity of (Un(a, b))∗ is 2n−1 + 2n−2.

Proof. To get the complexity of (Un(a, b))∗ one applies the subset construction

to the ε-NFA Nn. It will be proved that {s}, all 2n−1 subsets of Q containing 0,

and all 2n−2 − 1 non-empty subsets of {1, . . . , n − 2} are reachable and pairwise

distinguishable, giving the DFA of (Un(a, b))∗ a total of 2n−1 + 2n−2 states.

Since s is the initial state, {s} is reachable by ε, and {0} by ab. It will be shown

how to reach the remaining sets from {0}. Note that any subset containing n − 1

must also contain 0.

First it is proved that all 2n−1 subsets of Q containing 0 are reachable. Since

{0}
an−1

−−−→ {0, n − 1}
a
−→ {0, 1}

(ab)i−1

−−−−−→ {0, i}

for 2 6 i 6 n − 2, all two-element subsets of Q containing 0 are reachable.

For k > 2, if any k-element set with 0 can be reached, then so can be any

(k + 1)-element set with 0 and n − 1, for if 0 < i1 < i2 < · · · < ik−1 6 n − 1, then

{0, i2 − i1, . . . , ik−1 − i1, n − 1 − i1}
ai1

−−→ {0, i1, i2, . . . , ik−1, n − 1}.

For k > 3, if any k-element set containing 0 and n − 1 can be reached, then so

can be any k-element set containing 0. This holds because

{0, i2 − i1, . . . , ik−1 − i1, n − 1}
a(ab)i1−1

−−−−−−→ {0, i1, . . . , ik−1}.

It follows now that all 2n−1 subsets of Q containing 0 are reachable. Since also

{0, i2 − i1, . . . , ik − i1}
ai1

−−→ {i1, i2, . . . , ik}

for ik 6 n − 2, all the 2n−2 − 1 non-empty subsets of {1, . . . , n − 2} are reachable.

It remains to prove that all subsets are pairwise distinguishable. Set {s} and

any subset of Q containing n − 1 differ from any subset of Q not containing n − 1,

because the former accept the empty word. Also, {s} differs from any subset of

Q containing n − 1, because the latter accepts b. Finally, if set P contains i with

0 6 i < n − 1 but set R does not, then P accepts an−1−i, and R does not.

8
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Since the required number of subsets can be reached by words in {a, b}∗, and

these subsets are pairwise distinguishable by words in {a, b}∗, it follows that the

complexity of (Un(a, b, c))∗ with the added input c is also 2n−1 + 2n−2.

For n = 1, there are only two languages, ∅ and Σ∗. The complexity of ∅∗ = ε is

2, and that of (Σ∗)∗ = Σ∗ is 1; the bound does not apply here.

For n = 2, the language of Definition 5 is well defined, but inputs a and b

coincide. The star of U2(a, c) has complexity 2 only; hence U2(a, b, c) is not most

complex here. However, the bound 21 + 20 = 3 is met by the language over {a, b}

of all the words with an odd number of a’s [27].

6. Binary Operations

Next we examine the binary operations from the set {∪,⊕,∩, \}. The case where

the complexities m and n of the two arguments are arbitrary is considered first.

6.1. C1 Boolean Operations in General

Since Kn ∪ Kn = Kn ∩ Kn = Kn, and Kn \ Kn = Kn ⊕ Kn = ∅, two different

languages have to be used to reach the bound mn if m = n. It turns out that the

streams (Un(a, b) | n > 3) and the permutationally equivalent stream (Un(b, a), n >

3) are witnesses. Figure 3 shows the DFAs U4(a, b) and U5(b, a). The direct product

of U4(a, b) and U5(b, a) is in Figure 4.

Theorem 8 (Boolean Operations) The complexity of Um(a, b) ◦Un(b, a) is mn

for m, n > 3.

Proof. Consider the direct product DFA of Um(a, b) with Un(b, a). In that DFA,

(0, 0) is the initial state. Since (0, 0)
(ab)jai

−−−−→ (i, j + 1), for i > 0, j > 1, all the states

in columns 2 to n−1 are reachable. Since (0, 0)
(ba)ibj

−−−−→ (i+1, j), for i > 1, j > 0, all

the states in rows 2 to m−1 are reachable. Also (0, 0)
a
−→ (1, 1), (m−1, 0)

a
−→ (0, 1),

and (0, n − 1)
b
−→ (1, 0). Hence all states are reachable.

It remains to prove that all the states are pairwise distinguishable. Let H (for

horizontal) be the set H = {(m−1, 0), (m−1, 1), . . . , (m−1, n−2)}, and let V (for

U4(a, b)

a

b 0 1 2 3 4

a, b

a

b b b

a

bb

a

a

a

b

1 2 30

a

a, b

U5(b, a)

Fig. 3. DFAs of U4(a, b) and U5(b, a).
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V

0, 1 0, 2 0, 3 0, 4

1, 2 1, 3 1, 41, 1

2, 1 2, 2 2, 3 2, 4

3, 1 3, 2 3, 3 3, 4

0, 0

2, 0

3, 0

1, 0

ba b b

a

a

b

b

b

bbbb

b bb

a

a

a a

a

a aa

a

a

a

a

b

b

a a a

b

b

a

a

bbb

H

Fig. 4. Direct product of U4(a, b) with U5(b, a).

vertical) be V = {(0, n− 1), (1, n− 1), . . . , (m− 2, n− 1)}. The boolean operations

are now considered one by one.

Union: The final states are H ∪ V ∪ {(m − 1, n − 1)}. Two non-final states in

different rows (columns) can be distinguished by a word in a∗ (b∗). Two distinct

final states in H (V ) go to two distinct non-final states by a (b). Any state from H

is distinguished from any state in V by a. Finally, (m − 1, n − 1) is the only final

state that accepts both a and b. Hence all states are distinguishable.

Symmetric Difference: The final states are those in H ∪ V . The final states are

all distinguishable by the argument used for union. The non-final states other than

(m−1, n−1) are distinguishable by the same words as for union. State (m−1, n−1)

accepts both abn and bam, and no state other than (m − 2, n − 2) accepts both of

these words. But (m− 1, n− 1) and (m − 2, n− 2) can be distinguished as follows:

If m = 3 and n > 3, then (m− 1, n− 1) rejects ba, while (m− 2, n− 2) accepts it. If

m > 3 and n = 3, then (m− 1, n− 1) rejects ab, while (m− 2, n− 2) accepts it. For

m, n > 3, (m− 1, n− 1) rejects aba, while (m− 2, n− 2) accepts it. So all non-final

states are also distinguishable.

Intersection: For intersection, there is only one final state (m−1, n−1). Non-final

states q and words wq accepted only by those states are listed below:

(1) q = (0, j) with n − 1 − j even, wq = bn−1−jam−1,

(2) q = (0, j) with n − 1 − j odd, wq = bn−1−jam−2,

(3) q = (1, j) with n − 1 − j even, wq = bn−1−jam−2,

(4) q = (1, j) with n − 1 − j odd, wq = bn−1−jam−1,

(5) for i > 2, q = (i, j), wq = bn−1−jam−1−i.

10
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Difference: For difference, the final states are those in H .

State (m−1, j) rejects bn−1−j , but other final states accept it. So all final states

are distinguishable.

Now consider non-final states p = (i, j) and q = (h, l).

(1) If i > h and j 6= n − 1, then am−1−i distinguishes p and q. The case h > i and

l 6= n − 1 is symmetric.

(2) If i > h and j = n− 1, then am−1−ib distinguishes p and q. The case h > i and

l = n − 1 is symmetric.

(3) If i = h and j > l, then bn−1−jam−1−i distinguishes p and q. The case i = h

and l > j is symmetric.

6.2. C1 Boolean Operations with m 6= n

Although it is impossible for the stream (Un(a, b), n > 3) to meet the bound for

boolean operations when m = n, this stream is as complex as it could possibly be

as is shown below. DFAs D1 = U4(a, b) and D2 = U6(a, b) are shown in Figure 5.

Their direct product P , shown in Figure 6, serves as a basis for all four operations.

The following result was conjectured in [2]; the proof is due to Brzozowski and Liu:

Theorem 9 (Km ◦ Ln, m 6= n) For m, n > 3 and m 6= n, the complexity of

Um(a, b) ◦ Un(a, b) is mn.

Proof. Consider the direct product of Um(a, b) with Un(a, b). It will be shown that

all mn states of the direct product are reachable from the initial state (0, 0). Without

loss of generality, assume that m < n. We have (0, 0)
am

−−→ (0, m)
(ab)n−1−ma
−−−−−−−−→ (1, 0).

For 1 6 i 6 m − 2, ab takes (i, 0) to (i + 1, 0); hence all states in column 0 can be

reached. State (i, j) can be reached from state (i − j (mod m), 0) by aj . Therefore

all the states are reachable.

It remains to prove that all the states are pairwise distinguishable. Given a state

(i, j), we define di,j to be the minimal integer such that adi,j takes (i, j) to a final

state, or infinity, if no final state is reachable by a’s from (i, j); note that di,j = 0 if

and only if (i, j) is final. The boolean operations are now considered one by one.

a

a

b 0 1 2 3 4

a, b

b

a a a

b

bb

a

b

1 2 30

b

a, b

5

a

b

U4(a, b) U6(a, b)

a

Fig. 5. DFAs U4(a, b) and U6(a, b).
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a

0, 1 0, 2 0, 3 0, 4

1, 2 1, 3 1, 41, 1

2, 1 2, 2 2, 3

3, 1 3, 2 3, 3 3, 4

0, 0

2, 0

3, 0

2, 4

0, 5

1, 5

2, 5

3, 5

1, 0

a aa

b

b

b b b b

V

H

a

b b bb

a

a

aaaa a
a

a a a

a
a

b

b

b b b b

a
a a

aa

Fig. 6. Direct product P of D1 = U4(a, b) with D2 = U6(a, b).

Union: The final states are those in H ∪ V ∪ {(m − 1, n − 1)}. We have here

di,j = min {m − 1 − i, n − 1 − j} 6 m − 1.

Let (i, j) and (k, l) be two distinct states, with di,j 6 dk,l. If di,j < dk,l, then

the two states are distinguished by adi,j . If di,j = dk,l = d, apply ad+1 to both

states. The resulting states must be distinct and each must have at least one zero

component.

If the two states are of the form (0, n−1−g) and (0, n−1−h), h < g, then (ab)h

distinguishes them. A symmetric argument works for (m−1−g, 0) and (m−1−h, 0).

Suppose now the states are (0, n − 1 − g) and (m − 1 − h, 0). If g 6= h, then the

states are distinguished by (ab)min {g,h}. If g = h, then applying (ab)g+1 results in

the two states (1, 0) and (0, 1). Since d1,0 < d0,1 (because m < n), these two states

are distinguished by d1,0.

Symmetric Difference: The final states are those in H ∪ V .

The removal of (m − 1, n − 1) from the set of final states causes all of the di,j

to increase by m when m − i = n − j, and leaves the rest unchanged. Since all

of the other di,j are at most m − 1, and the change maps distinct di,j to distinct

d′i,j , the same argument for unequal di,j applies to all pairs involving at least one

of the states affected by the change. Since state (m − 1, n − 1) was never used to

distinguish equal di,j cases in union, all remaining equality cases can be dealt with

in the same way as in union.

Difference: The final states are those in H .

In this case only, we do not assume m < n. The di,j here are as follows: di,j =

m−1−i if m−i 6= n−j, and otherwise di,j = 2m−1−i. The same distinguishability

argument applies when di,j 6= dk,l. Suppose di,j = dk,l. Then i = k, and hence

12
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j 6= l. Apply am−i to get two distinct states (0, g) and (0, h), g 6= 0. As repeated

applications of ab cycle through states (0, 1), (0, 2), . . . , (0, n − 1), there exists a d

such that (ab)d sends (0, g) to (0, n − m), and (0, h) to a different state. Therefore

applying (ab)dam−1 maps (0, g) to a non-final state, and (0, h) to a final state.

Intersection: The only final state is (m − 1, n − 1).

We assume that m < n. If gcd(m, n) = 1, then by the Chinese Remainder

Theorem there is a bijection between the integers {0, 1, . . . , mn− 1} and the states

of the direct product given by k ↔ (k (mod m), k (mod n)). Applying a to the

state corresponding to k results in the state corresponding to k + 1. Thus, for state

(i, j) corresponding to k, di,j = mn− 1 − k; hence all states are distinguishable by

multiple applications of a.

Now suppose gcd(m, n) > 1. The states which can reach (m− 1, n− 1) through

multiple applications of a are exactly those which can be written in the form (k

(mod m), k (mod n)) for some integer k. Let S denote the set of these states. Any

two states in S have different finite values of di,j , and hence are distinguishable.

Let (i, j), (k, l) /∈ S; that is, di,j = dk,l = ∞. These states can be distinguished

from states in S using only a’s. Suppose i 6= k. Apply am−i to get two distinct

states (0, j′) and (k′, l′), k′ 6= 0. Since (0, j′) /∈ S, j′ 6= 0. As m < n and (0, m) ∈ S,

there exists a d such that applying (ab)d to (0, j′) results in (0, m). Then let d

be the minimal integer such that applying (ab)d to the two states results in at

least one state in S. Because the two resulting states are distinct, they must be

distinguishable.

6.3. C2 Product

It is shown next that the complexity of the product of Um(a, b, c) with Un(a, b, c)

reaches the maximal possible bound.

To avoid confusion of states, let Um = Um(a, b, c) = (Qm, Σ, δm, q0, {qm−1}),

where Qm = {q0, . . . , qm−1}, and let Un = Un(a, b, c), as in Definition 5. Define the

ε-NFA N = (Qm∪Qn, Σ, δN , {q0}, {n−1}), where δN (q, a) = {δm(q, a)} if q ∈ Qm,

a ∈ Σ, δN (q, a) = {δn(q, a)} if q ∈ Qn, a ∈ Σ, and δN (qm−1, ε) = {0}. This ε-NFA

accepts Um(a, b, c) · Un(a, b, c), and is illustrated in Figure 7 for m = 4 and n = 5.

U5(a, b, c)

q0 q1 q2

c

a, c

a

b

bc b, c

q3

a, b a

a, c

ε
0 1 2 3 4

c

a, b

c b, c b, c b

a a a

b

U4(a, b, c)

Fig. 7. ε-NFA N of U4(a, b, c) · U5(a, b, c).
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Theorem 10 (Product) For m > 3, n > 2, the complexity of the product

Um(a, b, c) · Un(a, b, c) is (m − 1)2n + 2n−1.

Proof. It will be shown that all (m − 1)2n subsets of states of N of the form

{qi} ∪ S, where i < m − 1 and S is any subset of Qn, are reachable, as well as all

2n−1 subsets of the form {qm−1, 0}∪S, where S is any subset of {1, . . . , n− 1}. All

the arithmetic below is modulo n.

First, study how states of the form {q0} ∪ S can be reached. Since {q0} is the

initial set of states, it is reached by ε. Sets {qi} are reached from {q0} by ai, for

i = 1, . . . , m− 2, and {qm−1, 0}, by am−1. From {qm−1, 0}, {q0, 0} is reached by c,

and {q0, 1} by a. From {q0, 1}, {q0, i} is reached by (ab)i−1, for i = 2, . . . , n − 1.

Hence all the sets of the form {q0} ∪ S, where |S| 6 1 are reachable.

Second, it will be shown that, if {qm−1, 0} ∪ S can be reached for all sets

S ⊆ {1, . . . , n − 1} with |S| = k > 0, then {q0} ∪ T can be reached for all

T = {t0, t1, . . . , tk} ⊆ {0, . . . , n − 1} with 0 6 t0 < t1 < · · · < tk 6 n − 1.

There are two cases to consider:

(1) t0 = 0: Use {qm−1, 0, t2 − t1, . . . , tk − t1, n − 1}
a(ab)t1−1

−−−−−−→ {q0, t1, t2, . . . , tk, 0}.

(2) t0 > 0: Use {qm−1, 0, t1− (t0−1), . . . , tk − (t0−1)}
a(ab)t0−1

−−−−−−→ {q0, t0, t1, . . . , tk}.

Third, consider sets {qm−1, 0} ∪ S, S ⊆ {1, . . . , n − 1}. It has already been

shown that {qm−1, 0} is reachable. Suppose that all the sets of the form {q0}∪S with

|S| = k > 1, 0 6∈ S can be reached. Then to reach {qm−1, 0, t1, . . . , tk} with 1 6 t1 <

· · · < tk 6 n− 1, use {q0, t1 − (m− 1), . . . , tk − (m− 1)}
am−1

−−−→ {qm−1, 0, t1, . . . , tk}.

Fourth, for 0 < i < m − 1, 0 6 t1 < · · · < tk 6 n − 1, {qi, t1, . . . , tk} is reached

by ai from {q0, t1 − i, . . . , tk − i}. Hence all the required states can be reached.

It will now be proved that all these subsets are pairwise distinguishable. Consider

s = {qi} ∪ S and t = {qj} ∪ T , where 0 6 i, j 6 m − 1 and S 6= T , S, T ⊆ Qn. If k

is in S ⊕ T , then an−1−k distinguishes s and t.

Next suppose s = {qi} ∪ S and t = {qj} ∪ S with i < j < m − 1. Applying

(ca)m−1−j sends t = {qj} ∪ S to t′ = {qm−1, 0} ∪ S′ for some S′ ⊆ {1, . . . , n − 1},

but sends s = {qi} ∪ S to s′ = {qi+m−1−j} ∪ S′, and this pair can be distinguished

since the subsets of Qn are different. If i > 0 and j = m − 1, apply (ca)m−1−i.

Then s = {qi} ∪ S is sent to s′ = {qm−1, 0} ∪ S′, and t = {qm−1} ∪ S is sent to

t′ = {qk} ∪ S′ for some S′ ⊆ {1, . . . , n − 1} and k < m − 1.

This leaves the case where i = 0 and j = m−1. Then use ba to send t = {qj}∪S

to t′ = {q0} ∪ S′ and s = {qi} ∪ S to s′ = {q2} ∪ S′. Now (ca)m−3 can be applied

to make the subsets of Qn different.

Since all reachable sets are pairwise distinguishable, the bound is met.

The restrictions of Un to two letters do not meet the bound for product, although

there do exist binary witnesses [16].
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7. Combined Operations

A combined operation is one that involves at least two basic operations; K ∪ L∗

is an example. Although the witness Un(a, b, c) works for quite a few combined

operations, it does not apply in all cases, and other approaches may be needed.

The extension of Un(a, b, c) to Un(a, b, c, d), where d performs the identity trans-

formation 1Q, has considerable merit as will be seen below. There is also some

evidence that Un(a, b, c, d, e), where e performs the cycle (1, . . . , n−1), may be use-

ful. However, extending the alphabet still does not cover all the cases; hence, the

following was proposed in [2]:

Definition 11. A dialect of Un(a, b, c) is any ternary language U ′
n(a, b, c) of com-

plexity n, in which a performs a cyclic permutation of the n states in the minimal

DFA of U ′
n, b performs a transposition, and c is a singular transformation. By con-

vention, the initial state of the minimal DFA of a dialect is 0, but the set of final

states is arbitrary, as long as the DFA remains minimal. A dialect of Un(a, b, c, d)

with d performing 1Q is U ′
n(a, b, c, d), where U ′

n(a, b, c) is a dialect of Un(a, b, c).

In [2], numerous conjectures were made about the complexity of combined op-

erations. Since then, Brzozowski and Liu [4, 5] proved many of these conjectures.

7.1. Single Operations Combined with Reversal

The first group of combined operations studied by Brzozowski and Liu [4] involves

boolean operations and product with one or two reversed arguments, and also (LR)∗.

Eight of these operations were previously studied in five papers:

• Km ∪ LR
n and Km ∩ LR

n by Gao and Yu [12];

• KR
m ∪ LR

n , KR
m ∩ LR

n , and (KmLn)R (upper bound only) by Liu, Martin-Vide,

A. Salomaa, and Yu [14];

• KmLR
n by Cui, Gao, Kari and Yu [9];

• KR
mLn and (KmLn)R (lower bound) by Cui, Gao, Kari and Yu [8];

• (L∗)R by Gao, K. Salomaa, and Yu [11].

Brzozowski and Liu added the difference and symmetric difference with one or

two reversed arguments, for a total of 13 operations. For these 13 operations the

following universal witnesses and their dialects were found [4] for m, n > 3:

(1) Um(a, b, c) and Un(a, b, c) for Km∪LR
n , Km∩LR

n , Km \LR
n , Km⊕LR

n , LR
n \Km,

and KmLR
n . Here the same stream is used for both arguments.

(2) U{0},n(a, b, c) for (LR)∗ = (L∗)R. The set of final states is changed to {0}.

(3) Um(a, b, c) and Un(b, a, c) for KR
m ∪ LR

n , KR
m ∩ LR

n , KR
m \ LR

n , and KR
m ⊕ LR

n ,

except when m = n = 4. Here a and b are permuted in the second argument.

The case m = n = 4 is included if the sets of final states are changed as follows:

Use U{0,2},m(a, b, c) for m > 3, U{1},3(b, a, c), and U{1,3},n(b, a, c) for n > 4.
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(4) Um(a, b, c, d) and Un(d, c, b, a) for (KmLn)R = LR
n KR

m. Here the identity trans-

fromation 1Q performed by d is added, and the inputs are permuted.

(5) Vm(a, b, c, d) and Vn(d, c, b, a) for KR
mLn. This is the only case where the transi-

tion functions of the witnesses needed to be changed. In V , a does (0, . . . , n−1)

and d does 1Q as above, but b does (n− 2, n− 1), and c does (n− 1 → n− 2).

These results show that it is efficient to deal with reversed arguments for several

operations together, and to consider all four boolean operations at the same time.

7.2. Single Operations Combined with Star

The second group of combined operations studied by Brzozowski and Liu [5] involves

boolean operations and product with one or two starred arguments. Seven of these

operations were previously studied in five papers:

• Km ∪ L∗
n and Km ∩ L∗

n by Gao and Yu [12];

• K∗
m ∪ L∗

n, K∗
m ∩ L∗

n by Gao, Kari, and Yu [10];

• K∗
mLn by Cui, Gao, Kari and Yu [8];

• KmL∗
n by Cui, Gao, Kari and Yu [9];

• (KmLn)∗ by Gao, K. Salomaa and Yu [11].

Brzozowski and Liu added the difference and symmetric difference operations

with one or two starred arguments, and the product K∗
mL∗

n, for a total of 13 oper-

ations. For these 13 operations the following universal witnesses and their dialects

were found [5] for m, n > 3:

(1) Um(a, b, c) and Un(b, a, c) for Km ∪ L∗
n, Km ⊕ L∗

n, L∗
n \ Km.

(2) U{0},m(a, b, c) and Un(b, a, c) for Km ∩ L∗
n and Km \ L∗

n.

(3) Tm(a, b, c) and Tn(b, a, c) for KmL∗
n. In Tn, a does (0, . . . , n − 1) and b does

(0, 1) as before, but c does (1 → 0).

(4) Um(a, b, c, d) and U{0},n(d, c, b, a) for K∗
mLn and K∗

mL∗
n.

(5) Wm(a, b, c, d) and Wn(d, c, b, a) for K∗
m ∪L∗

n, K∗
m ∩L∗

n and (KmLn)∗. In Wn, a

does (0, . . . , n − 1) and d is 1Q, but b does (n − 2, n − 1), and c does (1 → 0).

(6) W{0,n−1},m(a, b, c, d) and Wn(d, c, b, a) for K∗
m \L∗

n and K∗
m ⊕L∗

n. Here the set

of final states is changed in the first argument.

As was the case with reversal, these results show that it is efficient to deal with

starred arguments for several operations together, and to consider all four boolean

operations at the same time.

In connection with the star, there are four more operations; they are of the form

(Km ◦ Ln)∗. A. Salomaa, K. Salomaa, and Yu [23] showed that the complexity of

(Km ∪ Ln)∗ is 2m+n−1 − (2m−1 + 2n−1 − 1) with ternary witnesses. Jirásková and

Okhotin [13] proved that binary witnesses suffice. In [2] it was shown that dialects

S{0},m(a, c) and S{0},n(c, a) can also be used, where a does (0, . . . , n− 1) as before,

but b is absent, and c does (0 → 1).
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It was also proved in [13] with witnesses over a 6-letter alphabet that the com-

plexity of (Km ∩Ln)∗ is 2mn−1 + 2mn−2. It is possible that Um(a, b, c, d, e) (defined

at the beginning of Section 7) and Un(e, c, b, a, d) also work, as calculations with

small values of m and n indicate.

The following is clear:

Proposition 12 ((Km \ Ln)∗) The complexity of (Km \Ln)∗ is 2mn−1 + 2mn−2

for m, n > 3, and it is met by the witnesses Km and Ln, where Km and Ln are the

witnesses for intersection.

The complexity of (Km ⊕ Ln)∗ remains open.

7.3. Other Combined Operations

Several other combined operations have been studied in the literature. Conjectures

were made in [2] about universal witnesses for the following boolean operations

combined with product: (KmLn)◦Mp, Mp \ (KmLn), (Km∪Ln)Mp, (Km∩Ln)Mp,

Km(Ln ∪Mp), Km(Ln ∩Mp) and Km(Ln \Mp). This topic requires further study.

8. Conclusions

It has been shown that the witnesses Un(a, b, c) and Un(a, b, c, d) and a handful of

their dialects are sufficient for all the basic operations and many combined opera-

tions. These witnesses ought to be considered when one is looking at new operations.

Although a search is still required to find the appropriate dialects, this search is

much simpler than that among all regular languages. It is hoped that these results

are a step towards a theory of complexity of regular languages.
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