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1. Introduction

Many empirical studies in corporate finance use dynamic panel data models to investigate

the dynamic behavior of a financial policy of interest. In the corporate payout literature, several

studies have examined the degree of dividend smoothing by estimating Lintner’s (1956) partial

adjustment model (e.g., Brav et al., 2005; Skinner, 2008; Andres et al., 2009). In the capital

structure literature, researchers have used this dynamic model extensively to study how quickly

firms adjust toward their long-run target leverage ratios.1 The use of dynamic panels is also

common in other areas of corporate finance.2

Despite the growing popularity of dynamic panel data models, they are difficult to estimate

due to the likely presence of firm fixed effects and several complexities in empirical corporate

finance, such as unobserved heterogeneity and endogeneity, residual serial correlation, and the

fractional nature of the dependent variable. To begin with, due to the correlation between the

fixed effects and the lagged dependent variable, the pooled OLS (hereafter POLS) estimator is

biased and inconsistent. The fixed-effects (hereafter FE) method also estimates these models

with a finite-sample bias (Nickell, 1981). Previous simulation results (e.g., Judson and Owen,

1999) suggest that this bias is likely to be substantial for corporate finance studies, which typ-

ically analyze annual company data over a relatively short period. The econometrics literature

has advanced two main approaches to deal with this bias. The first involves using instruments

for the lagged dependent variable, and comprises five methods: the just-identified instrumental

variable estimator (hereafter AH-IV) (Anderson and Hsiao, 1981), the first-difference general-

ized methods of moments estimator (hereafter FD-GMM) (Arellano and Bond, 1991), the sys-

tem GMM estimator (hereafter SYS-GMM) (Blundell and Bond, 1998), and the long-difference

GMM estimator (hereafter LD-GMM or LDP-GMM, depending on long-difference parameters

used) (Hahn et al., 2007; Huang and Ritter, 2009). The second approach, consisting of three es-

timators, corrects for the estimation bias either analytically, or by simulation. Specifically, these

1See Jalilvand and Harris (1984), Ozkan (2001), de Miguel and Pindado (2001), Fama and French (2002),
Flannery and Rangan (2006), Kayhan and Titman (2007), Antoniou et al. (2008), Lemmon et al. (2008), Byoun
(2008), Huang and Ritter (2009), Öztekin and Flannery (2012), Faulkender et al. (2012), and Warr et al. (2012).

2See, for example, studies of cash holdings by Opler et al. (1999), Ozkan and Ozkan (2004), and Bates et al.
(2009), studies of corporate investment by Aivazian et al. (2005a,b), studies of debt maturity by Ozkan (2000) and
Antoniou et al. (2006), and studies of corporate governance by Wintoki et al. (2012).

2



estimators either develop bias correction formulas in the (fixed-effects) least-squares dummy

variable model (hereafter LSDVC) (Kiviet, 1995; Bruno, 2005), or approximate the bias func-

tion and search for unbiased estimates using an iterative bootstrap-based correction procedure

(hereafter BC) (Everaert and Pozzi, 2007), or a simulation-based indirect inference method

(hereafter II) (e.g., Gouriéroux et al., 2010). Although these advanced methods should, in the-

ory, reduce the POLS and FE bias, little is known about their performance in the presence of

the complex issues listed above. In what follows, we briefly discuss the possible sources of

those issues and their effects on the IV/GMM and bias-corrected estimators.

First, unobserved heterogeneity and endogeneity, caused by non-zero correlation between

the firm fixed effects and a regressor, is a common problem in corporate research (Roberts and

Whited, 2011; Wintoki et al., 2012). This problem may affect the performance of the estimators

that assume the strict exogeneity of the explanatory variables. The second issue is the likely

presence of residual autocorrelation, which violates one of the most important assumptions of

the IV/GMM estimators, and renders their instruments invalid (Arellano and Bond, 1991). In

empirical corporate research, serial correlation may be caused by the persistence of the financial

variable (Lemmon et al., 2008), the presence of measurement errors (Welch, 2011; Roberts

and Whited, 2011), or the use of an incorrect functional form (e.g., non-linear versus linear

models).3 The third problem concerns the measurement of the dependent financial variable.

The financial policy variable under consideration (e.g., leverage or debt maturity) can be a

ratio bounded by the unit interval [0,1]. Since the IV/GMM and bias-corrected approaches

listed above were originally developed for continuous, unbounded dependent variables, their

properties may be affected if the dependent variable is fractional (Loudermilk, 2007).

In this paper, we examine which of the existing estimators are most appropriate and ro-

bust for dynamic panels in empirical corporate finance, especially in the likely presence of

unobserved heterogeneity, autocorrelation, and fractional dependent variables. As mentioned

above, we consider five IV/GMM estimators, AH-IV, FD-, SYS-, LD-, and LDP-GMM, as

well as three bias-corrected estimators, LSDVC, BC, and II. We also examine an augmented

3There is evidence of residual autocorrelation in empirical research. The results of our studies on capital
structure and cash holdings confirm that the test for no serial correlation is frequently rejected.
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doubly-censored Tobit estimator (termed DPF by Elsas and Florysiak, 2014) that accounts for

the fractional nature of the dependent variable (Loudermilk, 2007). We conduct Monte Carlo

simulation studies and empirical applications in order to examine the performance of these

estimators.

Our simulation studies show that the bias-corrected estimators, LSDVC, BC, and II, are

generally the most appropriate and robust methods for dynamic panel data models in empirical

corporate finance. These estimators estimate the coefficient on the lagged dependent variable

(i.e., the autoregressive coefficient) and those on the explanatory variables with the most accu-

racy and efficiency. Among the three, BC performs well in regressions with residual autocorre-

lation and in specifications with high lag orders. In a special case where the dependent variable

is a ratio, censored at 0 and 1, LSDVC, BC, and II may still provide reasonable estimates with

a moderate amount of bias, although, at a high percentage of censoring (e.g., more than 20%),

DPF emerges as the most robust method.

Our results further suggest that the IV/GMM estimators are outperformed by the bias-

corrected methods. The IV/GMM estimates, especially those for the autoregressive coefficient,

tend to be unreliable in most of our simulation experiments. Crucially, these methods are very

sensitive to the presence of unobserved heterogeneity and serially correlated errors where their

instruments become invalid. There are only a few conditions under which these methods would

be useful. For example, SYS-GMM could be used for regressions without unobserved hetero-

geneity, endogeneity, and autocorrelation. In empirical research, however, these conditions are

rather restrictive and unlikely to be met. In short, our paper highlights the potential drawbacks

of using the IV/GMM estimators in empirical corporate finance.

We verify our simulation results using two empirical applications to dynamic capital struc-

ture and cash holdings. In the first application, the dependent variable, leverage, is a ratio

bounded by the unit interval, while, in the second, the dependent variable, cash holdings, is

measured by the natural logarithm of the cash-to-net-assets ratio, i.e., a continuous, unbounded

variable. In these applications, one of our main objectives is to estimate the speeds with which

firms adjust toward their target leverage and cash holdings, respectively. We find that LSDVC,

BC, and II produce the most plausible estimates of the speeds of dynamic leverage and cash
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adjustments, as well as the most reasonable coefficients on the explanatory variables, consis-

tent with prior theoretical predictions. In the leverage application, these bias-corrected methods

obtain similar speeds of leverage adjustment, ranging between 24% and 28%. DPF, the only

method that explicitly accounts for the fractional nature of leverage, yields a similar estimate

of 27%. The estimates obtained using FD-, SYS-, and LD-GMM vary between 15% and 18%,

putting them very close to the (biased) POLS estimate; these estimates are unreliable because

their fundamental assumptions of instrument validity and no autocorrelation are both violated

according to our diagnostic tests. In the cash application, we find similar results regarding

the performance of the estimators: LSDVC, BC, and II again produce similar estimates of the

speed of cash adjustment, at 48-49%.

Our study is related to previous simulation studies in the econometrics literature (Kiviet,

1995; Judson and Owen, 1999; Bun and Kiviet, 2003; Bruno, 2005; Bun and Carree, 2006; Ev-

eraert and Pozzi, 2007). Our simulations maintain the rigor of these studies in terms of properly

controlling for two key parameters in dynamic panel data models, namely the magnitude of the

fixed effects relative to that of the idiosyncratic error (i.e., the loading factor) and the explana-

tory power of the regressors relative to that of the disturbances (i.e., the signal-to-noise ratio).4

However, we extend these general simulation studies by considering issues relevant to empiri-

cal corporate finance. We use data-generating processes that mimic actual company panel data

and, moreover, explicitly allow for unobserved heterogeneity, endogeneity, and residual serial

correlation. We also conduct additional simulation experiments to examine the properties of the

alternative econometric methods when the dependent financial variable of interest is fractional

and bounded by the unit interval. Hence, our findings and conclusions are directly applicable

to empirical research in corporate finance.

Finally, our study is related to a recent simulation study by Flannery and Hankins (2013,

hereafter FH).5 However, our study differs from, and improves on, their analysis in many im-

4In empirical capital structure research, Lemmon et al. (2008) show that the variation in leverage is mainly
explained by the firm fixed effects (60%), as opposed to the independent variables (18%). Hence, it is important
to examine the impact of the relative magnitude of the fixed effects on the properties of the estimators.

5In a contemporaneous study, Zhou et al. (2014) examine a method of (linear) bias correction for the estimate
of the speed of adjustment (SOA) in dynamic capital structure models. They further propose a global minimum
variance (GMV) combined estimator to approximate a consensus SOA estimate, which is a GMV-weighted av-
erage of the (bias-corrected) estimates obtained using six popular baseline estimators, including OLS, FE, FD-,
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portant respects. First, our benchmark experiment explicitly controls for the loading factor and

the signal-to-noise ratio, two fundamental control parameters in dynamic panel data models

(Kiviet, 1995). Under a more rigorous simulation design, we show that the IV/GMM estima-

tors are sensitive to the control parameters and perform less well than in FH’s simulations.

Second, while FH only examine a bias-corrected estimator based on an analytical approach

(LSDVC), we further consider two recently developed bias correction methods based on itera-

tive sampling algorithms, namely BC and II. Compared to LSDVC, these methods rely on less

restrictive assumptions, and are computationally less demanding, especially in the case of BC.

We find that both perform well with BC being least affected by autocorrelation. Third, we com-

pare the IV/GMM and bias-corrected estimators with DPF in an important simulation exercise

allowing for the fractional nature of the dependent variable (Loudermilk, 2007; Elsas and Flo-

rysiak, 2014). Inconsistent with FH’s conjecture, we show the non-negligible effect of severe

censoring and the relevance of DPF in this case. Fourth, while FH conclude that LSDVC and

SYS-GMM are the most appropriate methods, we observe poor performance from SYS-GMM

and the related IV/GMM estimators (especially in the presence of autocorrelation). We, thus,

caution against the use of these methods and recommend the more robust bias-corrected esti-

mators. Finally, we are able to corroborate our simulation results using empirical applications

to two highly relevant areas of corporate finance, capital structure and cash holdings. In sum,

our study provides new simulation and empirical results with general and relevant implications

for future empirical corporate research.

The remainder of our paper is organized as follows. In Section 2, we discuss the motivation

for using dynamic panel data models in empirical corporate finance and review the existing

methods for estimating such models. In Section 3, we conduct Monte Carlo simulation studies

in order to examine the properties of these estimators. In Section 4, we conduct two empirical

applications, on dynamic capital structure and cash holdings. Section 5 concludes.

SYS-, LD-GMM, and LSDVC. This pooled estimation approach is, however, different from ours, which is to eval-
uate the relative performance of single estimation methods. Further, it mainly focuses on reducing the bias in the
autoregressive coefficient (i.e., the SOA) and does not consider three recently developed bias-corrected estimators,
namely BC, II, and DPF.
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2. Dynamic panel data models in empirical corporate finance

2.1. Model specifications

Empirical studies in corporate finance often examine the dynamics of financial policy vari-

ables through the estimation of dynamic panel data models. In such models, the lagged depen-

dent (financial) variables are included as regressors to capture firms’ adjustments toward their

optimal financial policies or the degree of persistence in the policies. In particular, in studies

on capital structure, cash holdings, and dividends, many researchers employ a dynamic partial

adjustment model to study firms’ target adjustment behavior (refer to the studies cited in the

Introduction for further details). Formally, this model is specified as:

∆yit = δ (y∗it − yi,t−1)+ηi + vit , (1)

where yit and y∗it denote the actual and optimal financial policies for firm i at time t, respectively.

ηi is the (unobserved) time-invariant fixed effect, and vit is the idiosyncratic error term.

In the dynamic model (1), a firm adjusts partially toward its optimal financial policy due to

the presence of positive adjustment costs. The speed of adjustment (hereafter SOA), δ , should

vary between 0 and 1, with a higher δ indicating a more rapid adjustment. Although the optimal

financial policy, y∗it , is not directly observed, it is typically modeled as a function of some firm-

specific characteristics, i.e., y∗it = θ ′xit , where xit denotes a k×1 vector of explanatory variables.

In estimating (1), most corporate finance studies adopt a one-stage procedure (e.g., Flannery

and Rangan, 2006; Antoniou et al., 2008), which involves substituting y∗it = θ ′xit into (1) to

yield the following model:

yit = γyi,t−1 +β ′
xit +ηi + vit , (2)

where γ = 1− δ and β = δθ . Researchers using the dynamic model (2) are able to simulta-

neously estimate the autoregressive coefficient, γ, and the long-run relationships between the

optimal financial policy and the determining factors in equilibrium, θ (i.e., the long-run coef-

ficients) (e.g., Antoniou et al., 2008). The majority of the empirical research estimating (2) is

interested in the autoregressive coefficient, γ , or alternatively the adjustment speed, δ (= 1−γ),

because these coefficients shed light on the important questions of (i) how quickly firms adjust

toward their optimal financial policies and (ii) how sticky the policies are.

7



2.2. Alternative estimators for dynamic panel data models

2.2.1. Least-squares and fixed-effects estimators

The pooled OLS (POLS) and fixed-effects (FE) estimators are not appropriate for estimat-

ing the dynamic model (2). Applying POLS to (2) produces biased and inconsistent estimates

because the lagged dependent variable, yi,t−1, is correlated with the firm fixed effect, ηi, i.e.,

E [yi,t−1ηi] 6= 0. It is well established that POLS tends to overestimate the autoregressive co-

efficient, γ , and underestimate the SOA (Baltagi, 2008). To deal with this bias, several studies

turn to the FE estimator, which eliminates the fixed effects through the within-group transfor-

mation. Nevertheless, for a fixed T , FE is biased because the error term is correlated with the

lagged dependent variable in the transformed equation. Specifically, FE underestimates the au-

toregressive coefficient, γ , and overestimates the SOA (Nickell, 1981). Most corporate studies

that estimate dynamic models with FE are subject to this bias because they typically examine

annual company data covering a short time period.

2.2.2. Instrumental variable (IV) and generalized method of moments (GMM) estimators

To deal with the finite-sample bias of the FE estimator, corporate finance researchers have

turned to advanced methods developed in the panel data literature. The earliest of such methods

is based on Anderson and Hsiao’s (1981, 1982) instrumental variable approach (AH-IV), which

removes the fixed effects via the first-difference transformation of (2):

∆yit = γ∆yi,t−1 +β ′
∆xit +∆vit , i = 1, . . . ,N; t = 3, . . . ,T. (3)

This method employs yi,t−2 (or ∆yi,t−2) as the only instrument for ∆yi,t−1 in (3). The main

limitation of this just-identified estimator is a lack of efficiency due to the ignoring of additional

valid instruments.

To address this lack of efficiency, researchers have considered using longer lagged depen-

dent variables as additional instruments. This approach involves employing the generalized

method of moments (GMM) to deal with the over-identification problem resulting from the

use of those additional instruments. Arellano and Bond (1991) propose the first-difference

GMM estimator (FD-GMM), which considers the moment conditions, E [yi,t−s∆vit ] = 0, with

t = 3, . . . ,T and s = 2, . . . , t − 1, and uses a vector (yi1, . . . ,yi,t−2) as the GMM instruments

for ∆yi,t−1 in the first-differenced equations (3). Blundell and Bond (1998) further develop the
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system GMM estimator (SYS-GMM), which improves the efficiency of FD-GMM by utilizing

additional moment conditions in the level equations (2). It considers (∆yi,2, . . . ,∆yi,t−1) as in-

struments for yi,t−1 under the following moment conditions: E [∆yi,t−svit ] = 0 for t = 3, . . . ,T ,

and s = 1, . . . , t −2 (Arellano and Bover, 1995; Blundell and Bond, 1998).

Hahn et al. (2007) propose the long-difference estimator (LD-GMM) to address the weak

instruments problem typically associated with the above GMM estimators. This method relies

on a smaller set of moment conditions and involves taking the difference between the first and

last observations in (2). The long-differenced equation is then estimated by a two-stage least

squares (2SLS) in which (yi,T−1−yi1) is instrumented by yi1. Next, the residuals from this step

are used as additional IVs in the next regression. A number of iterations (at least three) are

often required to ensure that the parameters can be estimated efficiently (Hahn et al., 2007).

Huang and Ritter (2009) propose a modified version of the LD-GMM estimator for unbalanced

panels (LDP-GMM) by specifying a shorter differencing parameter, k = 4.

Note that the IV/GMM approaches are based on the assumption of no residual autocorrela-

tion, i.e., E [vitvis] = 0 ∀ t 6= s. The GMM estimators further require valid, optimal instruments

to be chosen. In theory, both of these conditions can be evaluated by using the AR(2) and

Sargan tests (Arellano and Bond, 1991).6

2.2.3. Bias-corrected estimators

Recent research has followed another route to correct for the bias of FE. Kiviet (1995) de-

velops a bias-corrected least-squares dummy variable estimator (LSDVC), which performs an

analytical correction of the FE bias. Kiviet (1999), Bun and Kiviet (2003), Bruno (2005), and

Bun and Carree (2006) extend this estimator to cases with heteroskedasticity and unbalanced

panels.7 Although simulation studies show that LSDVC can outperform IV/GMM estimators

for balanced panels of all lengths (Judson and Owen, 1999), this method has two potential

drawbacks. First, it relies on a strong assumption that the true model is an AR(1) model.

Second, this approach faces a severe computational challenge due to non-trivial matrix manip-

6Note, however, that the Sargan test is severely under-sized and has extremely low power in long panels
(Bowsher, 2002).

7To approximate the finite-sample bias, an initial matrix of coefficient starting values must be specified (e.g.,
the FD-GMM’s or SYS-GMM’s initial estimates). See, for example, Bruno (2005).
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ulations being required in the bias-correction formulas. To date, only a few studies in empirical

corporate finance have used LSDVC (Öztekin and Flannery, 2012; Wintoki et al., 2012).

Everaert and Pozzi (2007) develop a bias-corrected FE estimator (BC) based on an itera-

tive bootstrap that simulates the distribution of the FE estimator using the original (biased) FE

estimates. This method then corrects the bias iteratively until unbiased estimates of the true pa-

rameters are found; see our Internet Appendix for details of the estimation algorithm. BC has a

number of advantages over the above approaches to bias reduction. First, unlike the IV/GMM

estimators, it does not require the specification of optimal, valid instruments, on which the prop-

erties of the IV/GMM estimators crucially depend. Second, compared to analytical approaches

(e.g., LSDVC), BC performs a bias correction by means of non-parametric bootstrapping and

as a result does not rely on restrictive parametric distributional assumptions. In practice, BC is

computationally less demanding than LSDVC. Everaert and Pozzi (2007) demonstrate that BC

outperforms GMM in terms of bias reduction and efficiency, while yielding better inferences

than LSDVC in short panels. However, to the best of our knowledge, this method has not yet

been applied in corporate finance research.

Recently, Gouriéroux et al. (2010) have proposed another approach to bias correction using

the technique of indirect inference (II) (see also Smith, 1993; Gouriéroux et al., 1993, 2000).8

Similar to the bootstrap procedure above, this method also involves simulating data iteratively,

estimating the model to approximate the bias function, and searching for unbiased estimates

using the inverse function of the bias. One immediate advantage of II is that it does not rely

on an explicit form for the bias function but calibrates it via simulation. Thus, similar to BC,

this method is computationally less involved and more feasible than LSDVC, which requires

explicit, and often complex, analytic derivations of the bias function or its expansion. Com-

pared to BC, however, II is, at least in theory, a more general and versatile approach applicable

to different model specifications and estimation methods, including both FE and IV/GMM es-

timators.9 Further, the II procedure can be implemented in conjunction with an appropriate

8We are extremely grateful to the Associate Editor and the reviewers for encouraging us to follow this line of
inquiry.

9In principle, this technique can also be applied to non-linear dynamic panel data models proposed by Dang et
al. (2012).
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baseline estimator to take advantage of some of its useful properties. Gouriéroux et al. (2010),

for example, propose to use an MLE method such as FE as the baseline estimator because it has

a small variance, meaning that only a small number of simulated paths is required to ensure an

accurate calibration of the bias function. The authors show via simulations that this II method

is highly effective in the univariate autoregressive panel data model. We adopt the same ap-

proach in our simulation and empirical studies below; see our Internet Appendix for details of

the estimation algorithm.10

3. Monte Carlo simulation studies

We now perform Monte Carlo simulation studies to investigate the finite-sample perfor-

mance of the estimators. Our simulation design draws on previous simulations in the panel

data literature (Kiviet, 1995; Judson and Owen, 1999; Bun and Kiviet, 2003; Bruno, 2005; Bun

and Carree, 2006; Everaert and Pozzi, 2007), with several important extensions catered to cor-

porate finance research. First, unlike those studies, we specify the key simulation parameters

based on actual company data. Thus, while our simulations maintain the rigor of those studies,

our findings and conclusions are directly applicable to empirical corporate finance.

Second, we explicitly account for unobservable heterogeneity in which an explanatory vari-

able and the unobserved fixed effects are correlated. In empirical corporate finance, this prob-

lem is common: an explanatory variable determining the financial policy variable may proxy

for both observed and unobserved factors, the latter being correlated with the fixed effects

(Roberts and Whited, 2011). In dynamic cash models (Opler et al., 1999; Bates et al., 2009),

for example, leverage, typically included as an explanatory variable, is potentially endogenous

thanks to its likely correlation with the fixed effects. In studies on the relation between board

structure and firm performance, the fixed effects affect firm performance but are also corre-

lated with board structure, an explanatory variable in the performance equation (Wintoki et al.,

2012).

10While theoretically II can be applied to the IV/GMM estimators, in practice, it is likely to be computationally
demanding, especially in models with a large number of regressors. In our simulation analysis (unreported), we
have implemented an II procedure using FD-GMM as the baseline estimator. We find that this approach does
not outperform the II procedure using FE as the baseline estimator described above, while facing a significant
computational burden.
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Third, we also investigate the impact of (unaccommodated) residual serial correlation on

the relative performance of the estimators. This analysis is important because both FH and our

empirical analysis in Section 4 reveal that second-order autocorrelation is a potential problem

in Compustat company data, one that can violate the validity of moment conditions underlying

the IV/GMM estimators.

3.1. Data generating processes and simulation design

We consider the following data-generating process (hereafter, DGP):

yit = γyi,t−1 +βxit +ηi + vit , i = 1, . . . ,N; t = 2, . . . ,T, (4)

where both xit and vit follow an AR(1) process:

xit = ρxi,t−1 +ξit , (5)

vit = φvi,t−1 + εit , (6)

where ξit ∼ N
(

0,σ2
ξ

)

, εit ∼ N
(

0,σ2
ε

)

, and they are distributed independently of each other.11

Throughout our simulation experiments, we specify γ = 0.8, β = 0.2, ρ = 0.5, and σv = 1.

Our choice of γ = 0.8 is guided by existing studies in both corporate finance and econometrics.

Empirically, the choice of the parameter value γ = 0.8 (and the corresponding SOA, δ = 0.2)

is in line with the SOA estimated in recent corporate finance studies, especially those in the

capital structure literature (Lemmon et al., 2008; Huang and Ritter, 2009). Previous Monte

Carlo simulations typically consider the important case where the dependent variable is highly

persistent, with γ = 0.8, i.e., where the finite-sample bias is more pronounced, thus greatly

affecting the performance of the estimators (Kiviet, 1995; Judson and Owen, 1999; Bruno,

2005).12 Next, we choose β = 1− γ so that a change in γ only affects the short-run dynamics

and not the long-run relationship, which is normalized to unity, i.e., θ ≡ β/(1− γ) = 1. Our

choice of ρ = 0.5 is reasonable given the range (0.085–0.844) of the AR(1) coefficient estimates

for Compustat explanatory variables reported in Table 2 of FH.

11Unlike FH’s simulations, we do not consider the case with several regressors because we are more interested
in the conditional distribution of the dependent variable than the unconditional joint distribution of the regressors.
A minor advantage of considering multiple regressors is that it helps to account for multicollinearity among the
regressors. However, provided that the underlying specification is correct, multicollinearity does not affect the
bias in the estimates, but simply leads to larger standard errors.

12In unreported simulations, we examine another case where γ = 0.2 and find that, as γ decreases, the estimators
(except POLS) generally perform better, which is in line with previous findings in the literature (e.g., Judson and
Owen, 1999). Importantly, our conclusions regarding the performance of these methods remain unchanged.

12



As mentioned, our experiments explicitly allow for a correlation between the fixed effect,

ηi, and the explanatory variable, xit , i.e., E [xitηi] 6= 0.13 To model this type of endogeneity,

we generate ηi using ηi = µ (1− γ)σvσ−1
zi

zi, where zi = x̄i− x̄, with x̄i = T−1 ∑
T
t=1 xit being the

within-group means, and x̄= (NT )−1
∑

N
i=1 ∑

T
t=1 xit being the overall mean.14 Since the variance

of the fixed effect is σ2
η = µ2 (1− γ)2 σ2

v , the correlation between ηi and xit is Cov(ηi,xit) =

µ (1− γ)σvσ−1
zi

Cov(xit ,zi) where the analytic forms of σ2
zi

and Cov(xit ,zi) are derived in our

internet appendix. In the special case where we assume away any correlation between ηi and

xit , i.e., E [xitηi] = 0, we simply draw ηi from N
(

0,σ2
η

)

.

Following existing simulation studies (Kiviet, 1995; Judson and Owen, 1999; Bruno, 2005;

Everaert and Pozzi, 2007), we examine the effects of two key control parameters, namely the

loading factor, denoted µ , and the signal-to-noise ratio, denoted ϑ , on the finite-sample perfor-

mance of the estimators. First, the loading factor measures the impact of the fixed effect, ηi,

relative to that of the idiosyncratic error, vit , on the dependent variable, yit , as follows:

µ =
(1− γ)−1 ση

σv
. (7)

When the impact on yit of the fixed effect, (1− γ)−1 ση , and that of the error term, σ2
ν , have

equal magnitudes, the loading factor is equal to unity, i.e., µ=1. However, when the impact of

the fixed effect is bigger than that of the disturbance, the loading factor increases, which could

lead to greater estimation bias. It is established that the loading factor significantly affects the

finite-sample performance of the estimators (e.g., Judson and Owen, 1999; Hayakawa, 2012).

The second key control parameter, the signal-to-noise ratio, measures the variance ratio of

the signal contained in yit−1 and xit (i.e., the explanatory power of these regressors), to the

noise, vit . The higher the signal-to-noise ratio, the more useful is the regressor in explaining

yit and the better will be the performance of the estimators (Judson and Owen, 1999; Bruno,

13Here we follow previous research and specify the fixed effect as a function of xit (e.g., Chamberlain, 1982).
14Using a minimum-variance benchmark, Baker and Ruback (1999) show via simulations that the harmonic

mean of a multiple (e.g., a financial performance ratio such as profitability) for an industry, or more generally, for
a group of firms is more appropriate than alternative estimators, including the arithmetic mean (i.e., the simple
mean used in our study). The latter estimator tends to put greater weights on firm-year observations with extreme
values. Empirically, however, this concern is often negated because multiples are usually winsorized in order to
reduce the potential effects of outliers.
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2005). Formally, we follow Kiviet (1995) and rewrite (4) as:

yit = βϕit +ψit +
ηi

1− γ
, (8)

where yit is decomposed into the weighted sum of two stationary AR(2) processes, ϕit =

(γ +ρ)ϕi,t−1 − γρϕi,t−2 + ξit and ψit = (γ +φ)ψi,t−1 − γφψi,t−2 + εit , and the (long-run) un-

observed fixed effect ηi/(1− γ), which are mutually independent of one another. Defining the

latent variable, wit = βϕit +ψit = yit −ηi/(1− γ), we are able to derive the signal-to-noise ratio

as ϑ = σ2
s /σ2

v , where σ2
s is the variance of the signal sit = wit − vit ; see our internet appendix

for detailed derivations and the exact form of σ2
s .15

In order to mimic actual company data, we set the values of the two main control parameters

to µ = 3 and ϑ = 6, based on the empirical findings from the full- and sub-sample analyses of

Compustat company data for the period from 1967 to 2006. Specifically, they are equal to the

median values of the estimates from our rolling regressions of corporate leverage on a set of

explanatory variables estimated using the IV/GMM and bias-corrected estimators.16

In sum, we consider five simulation experiments. Experiment 1 is our benchmark case with

parameter values γ = 0.8, β = 0.2, ρ = 0.5, µ = 3, ϑ = 6, with E [xitηi] 6= 0, and φ = 0. Next,

we examine the impact of varying the loading factor, to µ = 6 or µ = 1, in Experiment 2, and

the impact of increasing the signal-to-noise ratio, to ϑ = 12, in Experiment 3. Experiment 4

investigates a setting similar to Experiment 1, but assumes no correlation between the regressor

and the fixed effect, i.e., E [xitηi] = 0. Finally, Experiment 5 assesses the impact of serial cor-

relation in the error term, vit , with φ =−0.3 or φ = 0.3.17 In all experiments, we set N = 400

and use 1,000 replications. We consider the case with T = 10 as this length approximates the

median and mean lengths of the (unbalanced) Compustat company data often used in empirical

15In our simulations, it is straightforward to control both parameters, ϑ and µ , i.e., we can control ϑ by adjusting
σ2

ξ given σ2
v , and µ by adjusting ση given σv in (7).

16Following Flannery and Rangan (2006) and subsequent capital structure studies (Byoun, 2008; Faulkender et
al., 2012), in those regressions we regress leverage on its lagged value and eight explanatory variables, namely
profitability, market-to-book, depreciation, firm size, tangibility, research and development and its dummy vari-
able, and the industry median of leverage. We consider 11 subsamples with the longest panel length of 30 years.
See Section 4 for details. Based on the rolling regressions for those subsamples, we find that µ̂ varies between 2.5
and 3.7, while ϑ̂ varies between 3.6 and 8.

17Recently, Davidson and Monticini (2014) have proposed a (robust) dependent wild bootstrap procedure in the
presence of heteroskedasticity and autocorrelation of unknown form. Given that exisiting studies have generally
ignored the issue of time-varying heterogeneity, it would be useful to investigate this issue in future research.

14



corporate research and is in line with previous simulation studies (Judson and Owen, 1999).18

Finally, following Kiviet (1995), we generate the data carefully by deriving the initial condi-

tions for xi0 and yi0 to avoid any slow convergence problems and a waste of random numbers;

see our internet appendix for further details.19

3.2. Main simulation results

To evaluate the relative performance of each estimator, we use three conventional criteria,

namely the bias, the standard error (SE), and the RMSE of the estimates. We are interested

in the estimates of the autoregressive coefficient, γ , and the coefficient on the explanatory

variable, β . For the IV/GMM estimators, we also report the rejection frequencies of the AR(2)

and Sargan tests, enabling us to evaluate the validity of these estimators. We assess the accuracy

of the estimate of the long-run target financial policy, θ̂xit , via the mean absolute error (MAE).

3.2.1. Experiment 1: Benchmark simulation

Table 1 reports the benchmark simulation results. First, with respect to γ, the POLS and FE

estimators are most biased (by 0.097 and -0.126, respectively). In economic terms, this finding

suggests that using POLS (FE) in research on target adjustment behavior potentially underesti-

mates (overestimates) the adjustment speed, δ , by 10% (13%). Thus, POLS and FE are clearly

not suitable for estimating the SOA in empirical corporate finance. Among the IV/GMM esti-

mators, AH-IV and FD-GMM are both downwardly biased, by -0.074 and -0.064 respectively,

while SYS-GMM is upwardly biased by 0.080; this bias is sizable, both statistically and eco-

nomically. The LD- and LDP-GMM estimators perform better, with a moderate amount of bias

(-0.021 and -0.016, respectively). However, the bias-corrected estimators, LSDVC, BC, and II,

are the most favorable methods for estimating γ , with negligible bias (-0.007, 0.009, and 0.009,

respectively). In terms of efficiency, most of the IV/GMM estimators (except for SYS-GMM)

18To examine the asymptotic performance of the estimators, we have also considered a longer time period,
T = 30, which approximates the longest Compustat panel length. Unreported results suggest that, as T increases,
estimation bias decreases and efficiency improves, consistent with theory.

19We perform our Monte Carlo simulations in Stata. For POLS and FE, we use the Stata procedures reg and
xtreg, respectively. In terms of the IV/GMM estimators, we use Roodman’s (2009b) Stata procedure xtabond2.
Following Arellano and Bond (1991) and Blundell and Bond (1998), we include all lagged instruments in our
GMM regressions; however, see Roodman (2009a) and Wintoki et al. (2012) for an alternative approach using
fewer instruments. For the LD- and LDP-GMM methods, we implement a Stata code based on Huang and Ritter’s
(2009) approach. Regarding the bias-corrected estimators, we use Bruno’s (2005) Stata procedure xtlsdvc for
LSDVC and our own Stata codes for BC and II. To implement the DPF estimation, we follow Elsas and Florysiak
(2014) and use xttobit. All our Stata codes are available upon request.
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have large SEs.20 In contrast, LSDVC, BC, and II are highly efficient and, moreover, have

the smallest RMSEs. Taking these findings together, LSDVC, BC, and II outperform the other

estimators in estimating γ and δ .

Second, in terms of β , most of the estimators, except for POLS and SYS-GMM, estimate

this coefficient reasonably well. They all have a fairly small amount of bias, and low SEs and

RMSEs. Third, turning to the estimates of the target financial variable, POLS, FE, and the

IV/GMM estimators (except for LD- and LDP-GMM) are highly inaccurate: their MAEs vary

between 0.91 and 3.72. In contrast, LSDVC, BC, and II are considerably more reliable, with

the smallest MAEs (0.16, 0.28, and 0.26, respectively).21 Next, regarding the diagnostic tests,

the Sargan test strongly rejects the null of valid instruments in the GMM estimations (except

for LDP-GMM). In particular, it is frequently rejected (38.5%) in the SYS-GMM regressions,

implying that, in practice, this method is likely to suffer from the problem of invalid instru-

ments.

In sum, our benchmark simulation shows that POLS and FE are severely biased and in-

efficient and, thus, are inappropriate for estimating dynamic panel data models in corporate

research. The IV/GMM estimators are highly unreliable while the bias-corrected estimators,

LSDVC, BC, and II, are the most appropriate methods. In what follows, we examine whether

the performance of the alternative estimators is robust to changes in the key control parameters.

We focus our discussion on the IV/GMM estimators and bias-corrected estimators.

3.2.2. Experiment 2: Changes in the relative magnitude of the fixed effect

In Table 2, we examine how varying the magnitude of the fixed effect relative to that of the

idiosyncratic error, measured by the loading factor µ , affects the performance of the estimators.

First, we find that the IV/GMM estimators are highly sensitive to changes in µ , which is in line

with the panel data literature (e.g., Kiviet, 1995; Judson and Owen, 1999) but is inconsistent

with FH’s remark that their simulation results are marginally affected by varying the loading

factor. Specifically, in Panel A, when we increase µ from 3 to 6, the performance of both

20FH use the RMSE to evaluate the performance of the estimators. However, using the RMSE as the sole
criterion is likely to favor SYS-GMM among the IV/GMM estimators. For example, we find that SYS-GMM has
a smaller RMSE than both AH-IV and FD-GMM, but is more biased than the latter two methods.

21Our results (untabulated) also show that LSDVC, BC, and II estimate the long-run coefficient with smallest
amount of bias.
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AH-IV and SYS-GMM, especially with respect to γ , deteriorates seriously: the amount of

bias they exhibit, their SEs, and their RMSEs all increase considerably. Although FD-, LD-,

and LD-GMM yield relatively precise estimates of γ and β , they still produce large SEs and

RMSEs, especially with respect to γ . These estimators (except for FD-GMM) also produce

their estimates of the target financial policy with rather large MAEs. In Panel B, we decrease

µ from 3 to 1, assuming that the effects of the fixed effect and the error on yit have equal

magnitudes. Here, as expected, the IV/GMM estimators show some improvements. However,

AH-IV, FD-, and SYS-GMM still estimate γ with a relatively large amount of bias (ranging

between -0.045 and 0.031), although they perform reasonably well with respect to β . These

methods seem to be outperformed by LD- and LDP-GMM, which estimate γ and β reasonably

well. Notice however that FD-, SYS-, and LD-GMM are still likely to suffer from the problem

of invalid instruments, as indicated by the high rejection frequencies of the Sargan test reported

in both panels.

Second, the three bias-corrected estimators are robust to the above changes in the relative

magnitude of the fixed effect. While BC and II are insensitive to the loading factor, LSDVC’s

performance changes little when µ = 6 (Panel A), and is only slightly affected when µ = 1

(Panel B). Moreover, all the three bias-corrected methods outperform the IV/GMM estimators

with respect to γ and β , whether µ = 6 or 1. Overall, these findings suggest that the bias-

corrected estimators remain the most favorable methods, regardless of the relative magnitude

of the fixed effect.

3.2.3. Experiment 3: Changes in the relative explanatory power of the regressor

In Table 3, we investigate the impact of varying the explanatory power of the regressor

relative to that of the error term, as measured by the signal-to-noise ratio, ϑ , on the properties

of the estimators. Specifically, we increase ϑ from 6 to 12 to consider a favorable setting

where the regressor, xit , has greater explanatory power than in the benchmark simulation. As

expected, for most of the estimators, performance with respect to γ and β generally improves.

However, although the IV/GMM estimators (except for AH-IV) estimate β more accurately

and efficiently, they still show substantial bias in relation to γ and fairly large MAEs with

respect to their target estimates. Further, as ϑ increases, the rejection frequencies of the Sargan
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test in the GMM regressions become remarkably high, especially for SYS-GMM, even though

its performance has generally improved. Overall, the most appropriate GMM estimators in

this setting are LD- and LDP-GMM, although these methods are still outperformed by the

bias-corrected methods, LSDVC, BC, and II. Compared to the benchmark experiment, the

estimation accuracy and efficiency of LSDVC and BC improve slightly with higher signal-to-

noise ratios. II shows the most remarkable improvement in its performance as it estimates both

γ and β with negligible bias, and very small SE, RMSE, and MAE. In short, LSDVC, BC, and

II are generally robust to changes in the relative explanatory power of the explanatory variable.

3.2.4. Experiment 4: No correlation between the regressor and the fixed effect

Our experiments have so far explicitly controlled for correlation between the explanatory

variable and the unobserved fixed effect.22 In Table 4, we investigate a restrictive setting where

xit is independent of the fixed effect, E [xitηi] = 0. We first find that the IV/GMM estimators

improve markedly, producing more accurate and efficient estimates of γ and β . The AH-IV,

SYS-, and LDP-GMM estimators perform very well, with SYS-GMM emerging as the most

appropriate method. The latter estimator estimates both γ and β with negligible bias, and very

small SEs and RMSEs. It also produces an estimate of the target financial policy with a small

MAE. The finding that SYS-GMM is the most favorable method under this setting is consistent

with FH’s main simulation results.

Regarding the bias-corrected estimators, we find that the properties of BC and II stay almost

the same as in the benchmark simulation. Importantly, these two methods still perform very

well with respect to γ and β , and are comparable to SYS-GMM, the most favorable method

in the present experiment. However, the performance of LSDVC with respect to γ deteriorates

slightly, although LSDVC and II exhibit the smallest MAE.

22In further analysis (unreported), we also consider the case with two-way endogeneity, due to the correlation
of the explanatory variable, xit , with both the fixed effect, ηi, and the idiosyncratic error term, vit . This scenario,
in theory, favors the GMM estimators, which can alleviate the second source of endogeneity via the use of lagged
instruments. However, we find that the GMM estimators do not perform well, despite their advanced treatment of
the endogeneity due to E [xitvit ] 6= 0. The bias-corrected estimators, especially LSDVC, remain generally robust,
although their performance deteriorates compared with the benchmark experiment. For empirical applications, we
thus recommend using the lagged values of the explanatory variables (xi,t−1) to avoid this endogeneity problem.
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3.2.5. Experiment 5: Residual serial correlation

In Table 5, we consider the impact of residual serial correlation on the performance of the

estimators. We set the AR(1) coefficient in (6) to be φ = 0.3 (i.e., positive autocorrelation)

or φ = −0.3 (i.e., negative autocorrelation).23 As expected, the performance of the IV/GMM

estimators deteriorates considerably when their critical assumption of no serial correlation is

violated. These methods now estimate γ with a very large amount of bias, varying between

0.068 and 0.551 (0.062 and -0.582) in the presence of positive (negative) serial correlation.

The IV/GMM estimators, especially AH-IV and FD-GMM, also tend to become much less

efficient, as they produce relatively large SEs and RMSEs. Further, their target estimates con-

tain substantial estimation errors (MAEs). As expected, the rejection frequencies of the AR(2)

and of the Sargan tests reach almost 100% in the IV/GMM regressions, confirming that these

methods are invalid in the presence of residual serial correlation. Note, however, that most of

the IV/GMM estimators (except for AH-IV and FD-GMM) still estimate β reasonably well,

although this coefficient is estimated more accurately by the FE estimator.

Turning to the bias-corrected estimators, BC’s performance when φ =−0.3 is, surprisingly,

marginally better than in the benchmark case. This method becomes slightly worse when φ =

0.3 but still outperforms the remaining methods: its bias in relation to γ is slightly on the high

side (0.035) but still acceptable. However, as expected, LSDVC deteriorates in the presence of

autocorrelation, a violation of the assumption underlying this estimator. Its bias regarding γ is

non-negligible (0.070 and -0.068), while its MAE with respect to the target estimate is rather

large, especially when φ = 0.3. The performance of II is heavily influenced by autocorrelation

simply because the simulated sample paths in the II procedure do not reflect this feature of the

DGP. Notably, this method now estimates γ with a large amount of bias (0.099 and -0.062) and

produces a highly inflated MAE (2.93), especially when φ = 0.3.

In sum, our results show that among the bias-corrected estimators, BC is the only method

robust to the presence of residual serial correlation. On the other hand, the IV/GMM estimators

become less reliable for dynamic panel data models with autocorrelation.24

23These values are chosen according to our subsample analysis, which is discussed in Section 4; they are
significantly higher than the trivial AR(2) coefficients of 0.1 and 0.05 considered by FH.

24A solution to residual serial correlation involves extending the ARDL(1,0) model (2) to an ARDL(2,1) model.
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3.3. Further extensions: Fractional dependent variables

In empirical corporate research, the financial policy variable of interest (e.g., leverage) can

be a ratio bounded by 0 and 1. Loudermilk (2007) argues that the fractional property of the

dependent variable may lead to estimation bias in dynamic panels. The author develops an

augmented Tobit estimator, in which the latent dependent variable can take values outside the

unit interval but is doubly censored at the corner outcomes of 0 and 1. Moreover, based on

Wooldridge (2005), Loudermilk (2007) models the distribution of the unobserved fixed effects,

ηi, conditional on the initial value, yi1, and the exogenous explanatory variable, x̄i. This esti-

mation is effectively a combination of the Tobit estimation and the correlated random-effects

(maximum likelihood) estimation (hereafter CRE), with two additional regressors, yi1 and x̄i.

Elsas and Florysiak (2014, hereafter EF) further extend Loudermilk’s (2007) method to the

case of unbalanced panels and name this estimator DPF.

We now compare the performance of the IV/GMM and bias-corrected estimators with that

of the DPF estimator in an additional Monte Carlo simulation where the dependent variable is

generated as a ratio bounded by 0 and 1. We design our simulation as follows. First, based

on EF’s simulation, we account for the fractional nature of the dependent variable, yit , by

generating a latent variable, y#
it :

y#
it = γyi,t−1 +βxit +ηi + vit , i = 1, . . . ,N; t = 2, . . . ,T, (9)

ηi = α0 +α1yi1 +α2x̄i +αi, (10)

y#
i1 = βxi1 +α0 +α2x̄i +αi + vi1, (11)

where xit ∼U (xL,xU), x̄i = T−1 ∑
T
t=1 xit , αi ∼ N

(

0,σ2
α

)

, vit ∼ N
(

0,σ2
v

)

, and αi, xit , and vit are

independently generated. We then doubly censor y#
it at the corner outcomes, 0 and 1, to obtain

yit . That is, we set yit = 0 if y#
it ≤ 0, yit = y#

it if 0 < y#
it < 1, and yit = 1 if y#

it ≥ 1. Following

Loudermilk (2007) and EF, we also include within the fixed effect, ηi, two additional terms,

yi1 and x̄i. In this DGP, we set (N,T ) = (400,10), γ = 0.8, and β = 0.2, as in the main

simulation studies in Sections 3.1 and 3.2. Next, we select the parameter values as follows:

Our analysis (unreported) shows that BC is also appropriate for the ARDL(2,1) model.
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xL =−0.5, xU = 1, α0 = 0, α1 = 0.1, α2 =−0.25, σv = 0.05, and σα = (0.05,0.10). We vary

σα in order to investigate how changing the magnitude of the fixed effect relative to that of

the idiosyncratic error affects the performance of the estimators. By varying σα , we can also

control for the percentage of firm-year observations that lie outside the unit interval and are

hence to be doubly censored. We find that the percentage censored is 9% when σα = 0.05, and

21% when σα = 0.10.

The DGP in (9) assumes a dynamic structure whereby the (true, but unobserved) dependent

variable, y#
it , depends recursively on the past realizations of yi,t−1, rather than those of y#

i,t−1.

However, this process has two potential shortcomings. First, it may not be consistent with the

dynamics of the financial policy variable. Consider an example where the fractional dependent

variable is leverage. In this case, the latent dependent variable, y#
it , is often interpreted as the

firm’s target leverage ratio or debt capacity, which can take values outside the unit interval (see

EF). However, to the extent that y#
it proxies for target leverage, it should depend on its past

realizations, as modeled by the partial adjustment framework (2). Second, by assuming that

y#
it depends on yit−1, not y#

i,t−1, this DGP favors the Tobit method and guarantees that DPF, an

augmented Tobit estimator, will perform well. To address these two potential limitations of

the DGP in (9), we consider an alternative DGP whereby the latent dependent variable, y#
it , is

generated by the following partial adjustment model (see also Hu, 2002):

y#
it = γy#

i,t−1 +βxit +ηi + vit , i = 1, . . . ,N; t = 2, . . . ,T. (12)

The difference between (9) and (12) is that the latter includes y#
i,t−1 rather than yi,t−1 in the

updating equations. To generate the data, we first update y#
it using (12) and then collect

{

{

y#
it

}T

t=1

}N

i=1
, to which we apply double censoring to obtain

{

{yit}
T
t=1

}N

i=1
.

In Table 6, we report the simulation results for the two DGPs, (9) in Panels A and B, and

(12) in Panels C and D. First, we find from Panel A that DPF estimates both γ and β highly

accurately and efficiently, with the least amount of bias and the smallest SEs.25 Nevertheless,

several other estimators also perform reasonably well. AH-IV and LD-GMM produce their

25We provide more comprehensive simulation results than EF, who only consider the relative performance of
POLS, FE, SYS-GMM, LD-GMM, LSDVC, and DPF, and report the simulation results for γ (see their Table 2).
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estimates of γ and, to a lesser extent, β with negligible bias, while FD-GMM, LSDVC, BC,

and II yield a small to moderate amount of bias, and moderate SEs and RMSEs. However,

in Panel B, when we increase the percentage of censoring, the results become more favorable

toward DPF. This estimator now outperforms most of the other methods, except for LD-GMM,

which still estimates γ reasonably well.

Next, the results for the second DGP, (12), reported in Panel C, show that DPF is no longer

the most favorable method for estimating γ and β . It estimates γ with non-negligible bias,

in fact even more than that produced by AH-IV, LDP-GMM, and LSDVC. Moving to Panel

D, as expected, most of the estimators exhibit deteriorating performance as the percentage of

censoring increases (33% compared to 15% in Panel C). Surprisingly, although DPF performs

well in this setting, it does not dominate the other estimators. It estimates γ less accurately and

efficiently than LD-GMM and BC. However, DPF still produces the most accurate estimate

of β and the target long-run relationship with the smallest MAE. Our results are inconsistent

with EF’s finding that DPF outperforms the other estimators in a simulation based on a similar

censoring scheme (in which the authors first generate the complete set of panel data before

introducing censoring; see their footnote 19). Our simulations show that DPF is sensitive to the

DGP used and that it does not always dominate the other estimators.

In sum, we find that DPF is the most robust estimator in the presence of severe censoring

at the corner outcomes and a relatively high magnitude of the fixed effect.26 However, if cen-

soring is not a serious issue and the relative magnitude of the fixed effect is moderate, the other

estimators, such as LD-GMM, LDP-GMM, LSDVC and, in some cases, BC, can also produce

fairly accurate results, with respect to both γ and β . In capital structure research, for example,

recent studies show that about 9% of firms have zero leverage (Strebulaev and Yang, 2013).27

With this mild level of censoring, our simulations suggest that the average effects for fractional

dependent variables in linear models can still be estimated with a small amount of bias; see

also Papke and Wooldridge (2008).

26The strong and robust performance of DPF is not simply due to its unique double-censoring mechanism, but
is also due to the inclusion of the additional regressors, yi1 and x̄i, which provide a near-perfect solution to the
unobserved heterogeneity and endogeneity (Chamberlain, 1984; Wooldridge, 2005, 2010).

27In our sample covering the period between 1967 and 2006, we find that 9,387 out of a total of 103,556
firm-year observations (also about 9%) have zero leverage, while no observations have leverage above 1.
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4. Empirical applications

In this section, we evaluate the performance of the estimators in an empirical application

in corporate finance. We examine one of the most interesting, yet contentious, questions in

empirical capital structure research, i.e., how quickly firms adjust toward their target leverage

ratios. To this end, we estimate the following dynamic model:

yit = γyi,t−1 +β ′
xi,t−1 +ηi + τt + vit , (13)

which is similar to the baseline dynamic specification (2). The model further includes year

dummies, τt , except in the LD-GMM (cross-sectional) regression, and the LDP-GMM and LS-

DVC regressions, which do not allow for time effects.28 We measure the dependent variable,

yit , by book leverage.29 In terms of the explanatory variables, we follow Flannery and Ran-

gan (2006) and include the first lagged values of profitability (EBIT), market-to-book (MB),

depreciation (DEP), firm size (TA), tangibility (FA), research and development (RD) and its

dummy variable (RDD), and the industry median of leverage (IND). The use of lagged val-

ues addresses a potential endogeneity problem in which the contemporaneous values of the

explanatory variables may be correlated with the idiosyncratic error term, i.e., E [xitvit ] 6= 0.

We collect annual accounting data for US firms from the Compustat database, for the period

1967–2006. Our sample of panel data is unbalanced with the mean and median lengths of 15

and 14 years, respectively. Following standard practice, we exclude financial firms (SIC codes

6000-6999) and utility firms (SIC codes 4900-4999). We winsorize all independent variables

at the 1st and 99th percentiles as in previous studies (e.g., Flannery and Rangan, 2006). Table

7 provides variable definitions and summary statistics. To preserve space, we will not discuss

these statistics here because they are generally consistent with those reported in earlier studies

on capital structure (e.g., Flannery and Rangan, 2006).

28To sidestep the issue with year dummies, in a robustness check, we demean the variables and then apply the
LDP-GMM and LSDVC estimators. The results (untabulated) are qualitatively similar.

29Several studies use book leverage as the main measure of leverage (Fama and French, 2002; Chang and
Dasgupta, 2009). We also consider market leverage and obtain qualitatively similar results for the SOA.
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4.1. Speed of Adjustment

Table 8 reports the regression results for the dynamic partial adjustment model of leverage

(13). First, the results clearly show that the SOA varies considerably, depending on the estima-

tion method employed. The POLS and FE estimates are 15% and 40%, respectively, consistent

with previous evidence in the literature (e.g., Lemmon et al., 2008). There is a large difference

between these estimates because POLS has downward bias, while FE has upward bias, which

is in line with our simulation results. Turning to the IV/GMM methods, the LDP-GMM esti-

mate of the SOA is 7%, which seems inappropriate because it does not fall into the range of the

POLS and FE estimates (15%–40%).30 The LDP-GMM estimate is sensitive to the choice of

the long-difference parameter, k: when k = 8, the SOA is estimated at 15.5%. The estimates of

the SOA obtained using AH-IV, FD-, SYS-, and LD-GMM vary between 15% and 18%, close

to the (biased) POLS estimate. On closer inspection of the Sargan and AR(2) test results, these

estimates are unreliable because their fundamental assumptions of valid instruments and no

autocorrelation are violated in most cases. Specifically, there is evidence of negative autocorre-

lation in the AH-IV and FD-GMM regressions, which, as shown in our simulation experiments,

has a serious effect on the performance of these estimators. In short, the IV/GMM estimators

seem to produce unreliable estimates of the SOA in capital structure research.

The bias-corrected estimators, LSDVC and BC, obtain very similar adjustment speeds, of

26% and 28%, respectively. II produces a slightly lower estimate of 24%. DPF, the only

estimator that explicitly accounts for the fractional nature of leverage, yields an estimate of

27%. Our earlier simulation results suggest that, among the methods reviewed in this paper,

LSDVC, BC, and II are the most appropriate estimators in our overall simulation experiments,

while DPF is the most robust method in the special case with a fractional dependent variable.

However, if the percentage of censoring is small, as is indeed the case in this application (see

footnote 27 above), the performance of LSDVC, BC, and II is also acceptable.31 Our empirical

30We follow a general consensus in the literature (e.g., Flannery and Rangan, 2006; Huang and Ritter, 2009) and
conjecture that an unbiased estimate should lie between the POLS and FE estimates, which are biased downwardly
and upwardly, respectively. Note, however, that Zhou et al. (2014) argue that such conjecture may no longer hold
under certain conditions involving model misspecifications in which the direction of the POLS bias becomes
ambiguous, although the FE estimate continues to provide an upper bound on the SOA.

31EF further contend that DPF can distinguish mechanical mean reversion (hereafter MMR) from real target
leverage adjustment; see Chang and Dasgupta (2009) for a discussion of MMR. They argue that when the data
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results are thus in line with these simulation findings because all three methods yield similar

estimates of the SOA.

Given that the SOAs estimated by LSDVC, BC, II, and DPF vary in a tight range between

24% and 28%, we conjecture that these estimates are closest to the true SOA for our Compustat

sample. An adjustment speed in the range of 24%-28% implies half-lives of approximately 2.2

years, which, compared to the 14-year median life of firms in our sample, provides evidence

of moderate adjustment.32 In other words, firms seem to adjust toward their target leverage

ratios at moderate rates. Overall, our analysis demonstrates the importance of using appropriate

methods in empirical capital structure research. For example, the POLS, AH-IV, LD-, and FD-

GMM estimates of 15% (with half-lives of 4.3 years) would indicate sluggish adjustment, while

the FD estimate of 40% (with a half-life of 1.36 years) would suggest very rapid adjustment.

Researchers using these unreliable results would run the risk of reaching incorrect conclusions

about target adjustment behavior.

4.2. Coefficients on the explanatory variables

We next study whether the alternative estimators can reasonably estimate the coefficients

on the determinants of leverage. We examine whether the signs of the coefficients are consis-

tent with the theoretical predictions and empirical evidence in the literature. As suggested by

Frank and Goyal (2009), we focus on the five most important determinants of leverage, namely

profitability (EBIT), the market-to-book ratio (MB), firm size (TA), tangibility (FA), and the

industry median of leverage (IND). Following previous capital structure research (Titman and

Wessels, 1988; Rajan and Zingales, 1995; Flannery and Rangan, 2006; Byoun, 2008; Lemmon

et al., 2008), we expect leverage to be inversely related to profitability and the market-to-book

ratio, but positively associated with firm size, tangibility, and the industry median of leverage;

see also Parsons and Titman (2009) for a review. Specifically, profitable firms are likely to

have low leverage, as predicted by the pecking order theory (Myers and Majluf, 1984; Myers,

are simulated under random financing such that there is no target adjustment behavior, the SOA estimated by DPF
is equal to zero, while those estimated by the other methods are positive. In our internet appendix, we conduct
another simulation study on leverage processes generated under random financing. However, we do not find that
DPF outperforms the other estimators.

32The “half life” represents the number of years it takes a company to move halfway toward its target leverage
after a leverage shock. Formally, it is calculated as ln0.5/ ln(1−δ ).
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1984) and by dynamic trade-off models (e.g., Leary and Roberts, 2005; Strebulaev, 2007).33

Within a broad trade-off framework, agency theories predict a negative relation between the

market-to-book ratio and leverage because high- (low-) growth firms use less (more) leverage

to mitigate under- (over-) investment incentives (Myers, 1977; Jensen and Meckling, 1976).

Firm size and leverage are positively related because large firms have low bankruptcy, agency,

and transaction costs, hence strong incentives to utilize debt. Tangibility has a positive impact

on leverage because tangible assets can be used as collateral to mitigate the asset substitution

problem, thus reducing the agency costs of debt (Jensen and Meckling, 1976). The industry

median of leverage is often used as the benchmark leverage ratio, or as a control for common,

but otherwise omitted, factors affecting all firms within the industry (Hovakimian et al., 2001);

this variable is expected to have a positive impact on leverage (Flannery and Rangan, 2006).

The results in Table 8 show that the coefficients on the main explanatory variables are not

well estimated by the IV/GMM methods. In the AH-IV and FD-GMM regressions, EBIT is

significantly positive and MB is insignificant at the 5% level, while TA, FA, and IND are all

significantly negative. None of these results are consistent with either the theoretical predic-

tions or the existing evidence in the literature. In the SYS-GMM regression, although FA is

significantly positive, EBIT is significant with an unexpected sign, while MB and TA are both

insignificant. In the LD-GMM model, EBIT is significantly negative, as expected, but MB, TA,

FA, and IND are all insignificant. Finally, in the LDP-GMM regression, MB is insignificant,

while EBIT, FA, and IND are all significant with the unexpected signs. In sum, our analysis

suggests that studies using the IV/GMM methods may obtain unreasonable estimates of target

leverage and, consequently, support target adjustment behavior when there is no meaningful

target estimate.

The coefficient estimates obtained using LSDVC, BC, II, and DPF are in line with expec-

tations. Specifically, the two variables EBIT and MB are always significantly negative, while

TA, FA, and IND are significantly positive. The magnitudes of these coefficients are also com-

parable across the three models. Overall, LSDVC, BC, II, and DPF provide the most plausible

33The static trade-off framework suggests that profitable firms should lever up in order to take advantage of the
debt tax shield. However, most cross-sectional empirical evidence documents a negative effect of profitability on
leverage. See Xu (2012) for an exception.
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results in terms of the statistical significance and signs of the coefficients on the main explana-

tory variables. The results obtained with these methods suggest that firms adjust with moderate

speeds toward well-defined target leverage ratios.

4.3. Additional tests

As a first robustness check, we conduct a subsample analysis to evaluate the performance of

each estimator in a time-varying context. We examine the results obtained from 11 rolling lever-

age regressions, each for a 30-year (unbalanced) subsample, with the first subsample covering

the period 1967–1996, and the last one covering the period 1977–2006.34 Our (untabulated)

results show that the IV/GMM methods are not only inappropriate for the whole sample, but

are also unreliable for the time-varying subsamples. Their estimates of the SOA of leverage

continue to be biased, while their estimates of the other coefficients often have the wrong sign

and exhibit a large amount of variation. Meanwhile, LSDVC, BC, II, and DPF are again the

most robust estimators as they produce reasonable estimates of all the coefficients that are in

line with our prior expectations.

Since leverage is fractional, our findings may not be relevant to other areas in corporate

research where the dependent variable is not a ratio bounded by the unit interval. To address

this concern, we also conduct a second empirical study on dynamic cash holdings. Following

Foley et al. (2007) and Bates, Kahle, and Stulz (2009, hereafter BKS), we measure cash hold-

ings as the natural logarithm of the cash-to-net-assets ratio. We follow BKS and include as

the explanatory variables industry cash flow volatility (IND_CFASD), market-to-book (MB),

firm size (TA), cash flow (CFA), net working capital (NWC), capital expenditure (CAPEX),

R&D expenditure (RDS), book leverage (BDR), acquisition expenditure (MA), and the divi-

dend payout dummy (DIV). Our analysis, reported in Table 9, shows that LSDVC, BC, II, yield

reasonable, similar estimates of the SOA of cash, at 48-49%, which are close to the midpoint

between the POLS and FE estimates.35 The adjustment speeds obtained using AH-IV (54%),

FD-GMM (53%), and SYS-GMM (52%) are relatively closer to the biased FE estimate (63%).

34The mean and median lengths of these (unbalanced) panels are 8 and 6 years, respectively.
35An estimate of this size indicates a half-life of 1.1 years, suggesting that firms adjust quite rapidly toward

their optimal cash holdings. While this SOA is much greater than those typically estimated in capital structure
research, it is in line with recent evidence on dynamic cash adjustment (e.g., Dittmar and Duchin, 2011).
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The bias in the IV/GMM results may be due to the presence of invalid instruments and (pos-

itive) residual serial correlation, as indicated by the strong rejection of the Sargan and AR(2)

tests in most of these regressions. Finally, using the bias-corrected estimators, LSDVC, BC,

and II, we also obtain estimates of coefficients on the explanatory variables that are generally

in line with theoretical expectations.

5. Conclusions

Many studies in empirical corporate finance have employed dynamic panel data models to

examine the dynamic behavior of corporate financial policy variables. However, a major dif-

ficulty in using these models is determining how to obtain consistent and efficient estimates,

especially in short panels of company data, in the likely presence of (1) unobserved hetero-

geneity and endogeneity, (2) residual serial correlation, or (3) fractional dependent variables.

Which estimators should researchers use in these contexts?

To address this important research question, we investigate two classes of advanced econo-

metric techniques for dynamic panel data models, including (1) the instrumental variable ap-

proach, the first-difference, system, and long-difference GMM, and (2) the bias-corrected esti-

mators, based on an analytical approach, an iterative bootstrap procedure, or a simulation-based

indirect inference technique. Further, we consider an augmented Tobit estimator that accounts

for the fractional nature of the dependent variable. We conduct Monte Carlo simulation experi-

ments and present empirical applications, to capital structure and cash holdings, to examine the

relative performance of the estimators.

Overall, we find that the bias-corrected estimators, LSDVC, BC, and II, are generally most

appropriate and robust for estimating dynamic panel data models in empirical corporate re-

search. These methods can estimate the autoregressive coefficient and the coefficients on the

explanatory variables with the most accuracy and efficiency. In our simulations, they are also

robust to changes in the key control parameters, including the relative magnitude of the fixed

effects and the relative explanatory power of the regressors. Of these three methods, BC per-

forms relatively well even in regressions with autocorrelation, and in models with higher lag

orders, such as the ARDL(2,1) model; it is also computationally less demanding than both LS-

DVC and II. In the specific case where the dependent variable is a ratio, and censored at 0 and
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1, LSDVC, BC, and II may still provide reasonable estimates with a moderate amount of bias,

although at a high level of censoring researchers should consider using DPF. In our applications

using capital structure and cash holdings, we find that LSDVC, BC, and II produce empirically

the most plausible estimates of the speeds of dynamic leverage and cash adjustments, and rea-

sonable estimates of the coefficients on the explanatory variables, which are consistent with

prior theoretical predictions.

However, the IV/GMM estimators generally perform poorly in our simulation and empiri-

cal studies. Their estimates of the autoregressive coefficient tend to be biased and unreliable.

Moreover, these methods are sensitive to the presence of unobserved heterogeneity and, in par-

ticular, serially correlated errors. We identify a few conditions (e.g., optimal instruments and

no autocorrelation) under which these methods can be useful, although in our empirical appli-

cations these conditions prove to be restrictive and unrealistic. Consequently, the regression

results obtained using these methods are unreliable.

In sum, our study suggests that the IV/GMM estimators should be used with extreme care,

and that future empirical research in corporate finance should consider employing the highly

robust bias-corrected estimators, especially BC. We also find that while II is a useful general

and versatile approach to bias correction, it is computationally challenging, especially in the

multidimensional case where further research on the iterative algorithm for II is warranted.

We conclude with some limitations and avenues for future research. First, while our sim-

ulations have systematically examined the most important issues in the estimation of dynamic

panel data models, we cannot account for all of the specific settings and minor issues encoun-

tered in the vast empirical research literature. Further, while our simulation results should

generalize to many areas of corporate finance, our empirical applications are restricted to two

topics, namely capital structure and cash holdings. Hence, it would be useful for future research

to verify our simulation and empirical findings in other areas of corporate finance. Second, our

study does not account for a possibility that the (individual) firm fixed effects are time-varying

or, more generally, that the error components are cross-sectionally correlated. Recent research

shows that existing estimation procedures are significantly affected by cross-sectional depen-

dence (e.g., Pesaran, 2006; Ahn et al., 2007; Bai, 2009). Thus, it would be important for future
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studies to examine the properties of alternative methods for estimating dynamic panel data

models with cross-sectionally correlated errors. Third, in empirical research, firms with differ-

ent characteristics may have different response coefficients and adjust towards their long-term

optimal financial policies at different rates (e.g., Byoun, 2008; Dang et al., 2012; Faulkender et

al., 2012). Hence, it would be more realistic to allow for heterogeneous slope parameters (e.g.,

Pesaran, 1995, 1999). Finally, while our study adopts a “horse-race” approach to compare the

properties of alternative estimators, it would be useful for future studies to evaluate the perfor-

mance of a pooled estimation approach that combines different (bias-corrected) estimators, as

proposed by Zhou et al. (2014).
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Table 1. Performance of alternative estimators: Benchmark simulation experiment

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC II

Bias (γ) 0.097 -0.126 -0.074 -0.064 0.080 -0.021 -0.016 -0.007 0.009 0.009

SE (γ) 0.004 0.011 0.097 0.065 0.010 0.044 0.026 0.011 0.016 0.013

RMSE (γ) 0.097 0.127 0.122 0.091 0.080 0.049 0.031 0.013 0.019 0.016

Bias (β ) 0.022 0.001 -0.006 -0.006 0.015 0.001 0.000 0.002 0.000 0.003

SE (β ) 0.005 0.005 0.009 0.008 0.006 0.014 0.006 0.005 0.005 0.005

RMSE (β ) 0.023 0.005 0.011 0.010 0.016 0.014 0.006 0.005 0.005 0.005

AR(2) 3.8% 4.3% 4.4%

Sargan 10.4% 38.5% 12.1% 5.8%

MAE 3.72 1.24 1.92 0.91 2.57 0.60 0.33 0.16 0.28 0.26

Notes: POLS and FE refer to the pooled OLS and fixed-effects methods. AH-IV is the instrumental variable estimator. FD- and SYS-GMM are the first-difference
and system GMM estimators. LD- and LDP-GMM are long-difference estimators; the former uses the longest differencing parameter, while the latter sets the
differencing parameter at 4. LSDVC, BC, and II are three bias-corrected (fixed-effects) estimators, based on an analytical approach, an iterative bootstrap, and a
simulation-based procedure using MLE as the baseline estimator, respectively. See our Internet Appendix for detailed estimation algorithms for BC and II. The
DGP is given by (4)-(6) with the following simulation parameters: γ = 0.8, β = 0.2, ρ = 0.5, ϑ = 6, µ = 3, E [xitηi] 6= 0, φ = 0, and T = 10. The performance
of each estimator is evaluated by bias (Bias), standard error (SE), and root mean square error (RMSE). AR(2) denotes the rejection frequencies of the AR(2) test,
a test for the null of no residual serial correlation for AH-IV, FD-, and SYS-GMM. Sargan denotes the rejection frequencies of the Sargan test, a test for the joint
null of validity of the moment conditions (over-identifying restrictions), for FD-, SYS-, LD-, and LDP-GMM. Both tests are evaluated at the 5% significance
level. MAE is the mean absolute error, which measures the accuracy of the estimate of the (long-run) target financial policy.
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Table 2. The impact of changes in the magnitude of the fixed effect

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC II

Panel A: High loading factor (µ = 6)

Bias (γ) 0.141 -0.126 -0.503 -0.025 0.115 0.008 0.003 0.002 0.009 0.009

SE (γ) 0.002 0.011 10.482 0.071 0.008 0.098 0.089 0.011 0.016 0.013

RMSE (γ) 0.141 0.127 10.494 0.075 0.115 0.098 0.089 0.011 0.019 0.016

Bias (β ) 0.020 0.001 -0.041 -0.003 0.022 -0.003 -0.001 0.004 0.000 0.003

SE (β ) 0.005 0.005 0.890 0.008 0.007 0.019 0.006 0.005 0.005 0.005

RMSE (β ) 0.020 0.005 0.891 0.009 0.023 0.019 0.006 0.006 0.005 0.005

AR(2) 3.5% 4.6% 4.4%

Sargan 9.8% 45.3% 17.0% 11.2%

MAE 8.79 1.24 4.40 0.98 5.23 2.26 1.88 0.17 0.28 0.26

Panel B: Low loading factor (µ = 1)

Bias (γ) 0.033 -0.126 -0.040 -0.045 0.031 -0.028 -0.020 -0.016 0.009 0.009

SE (γ) 0.006 0.011 0.047 0.032 0.013 0.040 0.021 0.012 0.016 0.013

RMSE (γ) 0.033 0.127 0.062 0.055 0.034 0.049 0.029 0.020 0.019 0.016

Bias (β ) 0.015 0.001 -0.003 -0.004 0.007 0.002 0.000 0.001 0.000 0.003

SE (β ) 0.004 0.005 0.007 0.007 0.006 0.014 0.006 0.005 0.005 0.005

RMSE (β ) 0.016 0.005 0.008 0.008 0.009 0.014 0.006 0.005 0.005 0.005

AR(2) 4.0% 4.2% 4.0%

Sargan 9.7% 27.9% 12.2% 4.8%

MAE 0.93 1.24 0.70 0.63 0.74 0.94 0.34 0.24 0.28 0.26

Notes: The DGP is given by (4)-(6) with the following simulation parameters: γ = 0.8, β = 0.2, ρ = 0.5, ϑ = 6, E [xitηi] 6= 0, φ = 0, and T = 10. The loading
factor, µ , is set at µ = 6, and then µ = 1. See notes to Table 1 for abbreviations.
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Table 3. The impact of changes in the explanatory power of the regressor

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC II

Bias (γ) 0.077 -0.081 -0.095 -0.063 0.074 -0.037 -0.022 -0.008 -0.005 0.000

SE (γ) 0.003 0.009 0.066 0.045 0.008 0.022 0.014 0.009 0.010 0.010

RMSE (γ) 0.077 0.081 0.116 0.077 0.075 0.043 0.026 0.011 0.011 0.010

Bias (β ) 0.016 0.000 -0.008 -0.006 0.009 0.003 0.000 0.001 -0.001 0.001

SE (β ) 0.003 0.003 0.006 0.005 0.004 0.009 0.004 0.003 0.003 0.003

RMSE (β ) 0.017 0.003 0.010 0.008 0.010 0.009 0.004 0.003 0.003 0.003

AR(2) 5.9% 6.2% 5.5%

Sargan 16.1% 72% 24% 13.8%

MAE 3.77 1.43 1.75 1.27 3.33 0.72 0.50 0.21 0.23 0.21

Notes: The DGP is given by (4)-(6) with the following simulation parameters: γ = 0.8, β = 0.2, ρ = 0.5, µ = 3, E [xitηi] 6= 0, φ = 0, and T = 10. The
signal-to-noise ratio, ϑ , is set at ϑ = 12. See notes to Table 1 for abbreviations.
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Table 4. The impact of no correlation between the regressor and the fixed effect

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC II

Bias (γ) 0.113 -0.126 -0.026 -0.033 0.000 -0.040 -0.022 -0.017 0.009 0.010

SE (γ) 0.005 0.012 0.045 0.032 0.021 0.033 0.022 0.012 0.016 0.013

RMSE (γ) 0.113 0.126 0.052 0.046 0.021 0.052 0.031 0.021 0.019 0.016

Bias (β ) -0.021 0.001 -0.002 -0.003 -0.002 0.004 0.000 0.000 0.000 0.002

SE (β ) 0.005 0.005 0.007 0.007 0.006 0.013 0.006 0.005 0.005 0.005

RMSE (β ) 0.021 0.005 0.007 0.007 0.006 0.014 0.006 0.005 0.005 0.005

AR(2) 5.4% 5.6% 5.3%

Sargan 6.5% 9% 9.1% 6%

MAE 3.44 1.23 0.61 0.53 0.27 0.53 0.36 0.26 0.28 0.26

Notes: The DGP is given by (4)-(6), with the following simulation parameters: γ = 0.8, β = 0.2, ρ = 0.5, µ = 3, ϑ = 6, φ = 0, and T = 10. Contrary to the
benchmark simulation, it is assumed that there is no correlation between the fixed effect and the regressor, i.e., E [xitηi] = 0. See notes to Table 1 for abbreviations.
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Table 5. Performance of alternative estimators in the presence of residual serial correlation

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC II

Panel A: Positive Residual Serial Correlation (φ = 0.3)

Bias (γ) 0.115 -0.060 0.551 -0.099 0.127 0.068 0.075 0.070 0.035 0.099

SE (γ) 0.004 0.011 0.177 0.081 0.010 0.054 0.026 0.012 0.023 0.012

RMSE (γ) 0.115 0.061 0.579 0.127 0.127 0.087 0.080 0.071 0.042 0.099

Bias (β ) 0.018 0.000 0.045 0.002 0.014 -0.011 -0.002 0.004 0.000 0.009

SE (β ) 0.006 0.006 0.015 0.011 0.007 0.017 0.008 0.006 0.006 0.006

RMSE (β ) 0.019 0.006 0.047 0.011 0.016 0.020 0.008 0.007 0.006 0.011

AR(2) 95.8% 99.4% 99.4%

Sargan 100% 100% 99% 100%

MAE 4.22 0.62 5.57 0.84 5.35 2.66 2.27 1.56 0.65 2.93

Panel B: Negative Residual Serial Correlation (φ =−0.3)

Bias (γ) 0.087 -0.184 -0.582 -0.474 0.062 -0.096 -0.128 -0.068 0.004 -0.062

SE (γ) 0.003 0.012 0.117 0.164 0.013 0.031 0.017 0.012 0.013 0.013

RMSE (γ) 0.087 0.184 0.593 0.501 0.063 0.101 0.129 0.069 0.014 0.063

Bias (β ) 0.025 0.001 -0.047 -0.046 0.004 0.011 0.002 0.002 -0.001 0.000

SE (β ) 0.004 0.004 0.010 0.013 0.006 0.013 0.005 0.004 0.004 0.004

RMSE (β ) 0.025 0.004 0.048 0.048 0.007 0.017 0.005 0.004 0.004 0.004

AR(2) 92.5% 94.9% 100%

Sargan 100% 100% 98% 100%

MAE 3.39 1.63 2.75 2.59 1.66 0.98 1.31 0.84 0.20 0.80

Notes: The DGP is given by (4)-(6) with the following simulation parameters: γ = 0.8, β = 0.2, ρ = 0.5, µ = 3, ϑ = 6, E [xitηi] 6= 0, and T = 10. Two cases are
considered: positive (φ = 0.3) and negative (φ =−0.3) residual serial correlation. See notes to Table 1 for abbreviations.
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Table 6. The impact of fractional dependent variables

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC DPF II
Panel A: Scheme 1 with σα = 0.05 (censoring percentage of 9%)

Bias (γ) 0.099 -0.116 0.001 -0.024 0.062 0.007 -0.020 -0.021 0.039 0.003 0.046
SE (γ) 0.008 0.010 0.080 0.023 0.010 0.009 0.022 0.019 0.030 0.012 0.012
RMSE (γ) 0.099 0.116 0.080 0.033 0.063 0.012 0.029 0.028 0.049 0.012 0.048
Bias (β ) -0.031 -0.020 -0.011 -0.016 -0.018 -0.011 -0.021 -0.015 -0.011 0.001 -0.009
SE (β ) 0.004 0.004 0.009 0.005 0.005 0.004 0.011 0.005 0.005 0.004 0.004
RMSE (β ) 0.032 0.021 0.015 0.017 0.019 0.012 0.023 0.016 0.012 0.004 0.010
AR(2) 6.7% 7.0% 7.5%
Sargan 5.4% 58.4% 4.1% 5.3%
MAE 0.28 0.18 0.32 0.07 0.14 0.02 0.08 0.07 0.13 0.02 0.10

Panel B: Scheme 1 with σα = 0.1 (censoring percentage of 21%)
Bias (γ) 0.160 -0.133 -0.082 -0.083 0.131 -0.006 -0.059 -0.067 -0.045 0.003 0.038
SE (γ) 0.006 0.010 0.042 0.019 0.008 0.009 0.017 0.013 0.021 0.011 0.013
RMSE (γ) 0.160 0.133 0.092 0.085 0.131 0.011 0.061 0.068 0.050 0.011 0.040
Bias (β ) -0.049 -0.043 -0.040 -0.043 -0.033 -0.034 -0.043 -0.041 -0.039 0.001 -0.033
SE (β ) 0.005 0.004 0.006 0.005 0.005 0.004 0.011 0.006 0.005 0.004 0.004
RMSE (β ) 0.049 0.043 0.040 0.043 0.034 0.035 0.045 0.041 0.039 0.005 0.033
AR(2) 4.2% 4.4% 4.6%
Sargan 6.1% 100.0% 9.5% 15.3%
MAE 1.17 0.22 0.17 0.18 0.60 0.08 0.16 0.17 0.14 0.02 0.03

to be continued next page
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Table 6. The impact of fractional dependent variables (continued)

Estimators POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC DPF II
Panel C: Scheme 2 with σα = 0.05 (censoring percentage of 15%)

Bias (γ) 0.129 -0.100 -0.007 -0.022 0.095 0.030 -0.007 -0.008 0.084 0.022 0.072
SE (γ) 0.008 0.010 0.072 0.023 0.010 0.009 0.021 0.017 0.039 0.012 0.013
RMSE (γ) 0.130 0.100 0.072 0.032 0.096 0.032 0.022 0.019 0.092 0.026 0.073
Bias (β ) -0.041 -0.032 -0.027 -0.031 -0.030 -0.023 -0.031 -0.027 -0.020 -0.005 -0.021
SE (β ) 0.005 0.004 0.009 0.006 0.005 0.004 0.011 0.006 0.006 0.004 0.004
RMSE (β ) 0.042 0.033 0.028 0.032 0.031 0.023 0.033 0.027 0.021 0.007 0.021
AR(2) 4.0% 4.2% 4.9%
Sargan 6.3% 87.5% 6.4% 6.9%
MAE 0.53 0.18 0.25 0.10 0.27 0.03 0.08 0.07 0.40 0.05 0.17

Panel D: Scheme 2 withσα = 0.1 (censoring percentage of 33%)
Bias (γ) 0.182 -0.116 -0.077 -0.078 0.166 0.018 -0.045 -0.052 -0.017 0.031 0.074
SE (γ) 0.005 0.010 0.038 0.020 0.008 0.009 0.016 0.014 0.020 0.012 0.012
RMSE (γ) 0.182 0.116 0.086 0.080 0.166 0.020 0.047 0.054 0.026 0.033 0.075
Bias (β ) -0.066 -0.063 -0.063 -0.067 -0.057 -0.055 -0.061 -0.060 -0.059 -0.009 -0.052
SE (β ) 0.005 0.005 0.006 0.006 0.007 0.005 0.011 0.006 0.005 0.005 0.005
RMSE (β ) 0.067 0.063 0.063 0.067 0.057 0.055 0.062 0.060 0.059 0.010 0.053
AR(2) 5.8% 5.8% 7.2%
Sargan 6.0% 100.0% 13.1% 16.6%
MAE 3.06 0.24 0.21 0.22 1.44 0.08 0.18 0.18 0.14 0.06 0.08

Notes: In Scheme 1 the DGP is given by (9). In Scheme 2 the DGP is given by (12). In both, the simulation parameters are set as follows: γ = 0.8, β = 0.2,

xL = −0.5, xU = 1.0, α0 = 0.1, α1 = 0.1, α2 = −0.25, and σu = 0.1. We consider the short panel (T = 10) with 400 hypothetical companies (N = 400). We

control the percentage of (doubly) censored observations outside the unit interval by varying σα . In Scheme 1 the censoring percentages are 9% and 21%,

respectively, for σα = 0.05 and 0.1. In Scheme 2 the censoring percentages are 15% and 33%, respectively, for σα = 0.05 and 0.1. See notes to Table 1 for

abbreviations.
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Table 7. Variable definitions and summary statistics

Variable N Mean Median Stdev. Min. Max.
BDR 108,139 0.2549 0.2310 0.2043 0.0000 0.9387
DEP 108,139 0.0486 0.0403 0.0358 0.0023 0.2254
EBIT 108,139 0.0239 0.0851 0.2497 -1.3312 0.3574
FA 108,139 0.3252 0.2773 0.2260 0.0086 0.9074
IND 108,139 0.2277 0.2395 0.0945 0.0000 0.6557
MB 108,139 1.5395 1.0472 1.5145 0.3076 9.9618
RD 108,139 0.0363 0.0000 0.0826 0.0000 0.5090
RDD 108,139 0.5640 1.0000 0.4959 0.0000 1.0000
SIZE 108,139 13.7966 13.7312 2.0382 9.4890 18.7517

Notes: This table reports the number of observations (N), mean, median, standard deviation (Stdev.),
minimum (Min.), and maximum (Max.) of the variables considered in the empirical application. We
follow Flannery and Rangan (2006) and define the explanatory variables as follows. The dependent
variable, book leverage (BDR), is measured by the ratio of total debt, including debt of both long-term
and short-term maturities, to total assets. Non-debt tax shields (DEP) is the ratio of depreciation to
total assets. Profitability (EBIT) is the ratio of Earnings Before Interest and Taxes to total assets. Asset
tangibility (FA) is the ratio of property, plant, and equipment (PPE) to total assets. The industry median
book leverage (IND) is calculated based on Fama and French’s (2002) 49 industry groupings. Growth
opportunities (MB) or the market-to-book ratio is the ratio of total liabilities plus the market value of
equity to total assets. R&D expenses (RD) is the ratio of R&D expenses to total assets. The R&D
dummy variable (RDD) is equal to one if the firm did not report R&D expenses and zero otherwise.
Firm size (SIZE) is the natural log of total assets, measured in 1983 dollars, where CPI is the consumer
price index (1983=100).
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Table 8. Summary of regression results for the dynamic partial adjustment model of leverage

Variable POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC DPF II
L.BDR 0.848*** 0.604*** 0.846*** 0.836*** 0.821*** 0.855*** 0.929*** 0.736*** 0.718*** 0.727*** 0.757***

(0.003) (0.006) (0.020) (0.018) (0.011) (0.050) (0.010) (0.003) (0.003) (0.004) (0.003)
EBIT -0.027*** -0.035*** 0.119*** 0.108*** 0.032*** -0.269** 0.012** -0.029*** -0.030*** -0.016*** -0.032***

(0.004) (0.005) (0.009) (0.009) (0.005) (0.109) (0.006) (0.002) (0.003) (0.003) (0.003)
MB 0.000 -0.002*** -0.002* -0.001 0.000 0.013 0.000 -0.001** -0.001*** -0.001*** -0.002***

(0.000) (0.001) (0.001) (0.001) (0.001) (0.010) (0.001) (0.000) (0.000) (0.000) (0.000)
DEP -0.105*** -0.152*** -0.074 -0.107* -0.036 -0.123 -0.268*** -0.185*** -0.176*** -0.169*** -0.166***

(0.017) (0.032) (0.064) (0.061) (0.027) (0.469) (0.038) (0.018) (0.019) (0.021) (0.020)
TA 0.000 0.012*** -0.045*** -0.042*** 0.000 -0.002 0.007*** 0.009*** 0.009*** 0.009*** 0.010***

(0.000) (0.001) (0.004) (0.004) (0.000) (0.005) (0.001) (0.001) (0.001) (0.001) (0.001)
FA 0.019*** 0.034*** -0.157*** -0.138*** 0.013*** 0.003 -0.015* 0.027*** 0.025*** 0.030*** 0.030***

(0.002) (0.007) (0.017) (0.017) (0.004) (0.046) (0.009) (0.005) (0.004) (0.005) (0.004)
RDD 0.004*** -0.004* -0.009** -0.010** 0.007*** -0.001 0.002 0.000 -0.003* -0.001 -0.003*

(0.001) (0.002) (0.004) (0.004) (0.001) (0.013) (0.002) (0.002) (0.002) (0.002) (0.002)
RD -0.033*** -0.022 0.105*** 0.085*** 0.016 0.029 0.076*** -0.012 -0.018 0.007 -0.020*

(0.011) (0.020) (0.034) (0.033) (0.015) (0.246) (0.026) (0.013) (0.011) (0.013) (0.012)
IND 0.080*** 0.088*** -0.223*** -0.202*** 0.067*** 0.119 -0.032** 0.094*** 0.071*** 0.083*** 0.074***

(0.006) (0.014) (0.022) (0.022) (0.009) 0.100 0.012 (0.007) (0.010) (0.010) (0.011)
SOA 15% 40% 15% 16% 18% 15% 7% 26% 28% 27% 24%
AR(2) test -2.21 [0.03] -2.09 [0.04] -1.59 [0.11]
Sargan test 240.72 [0.00] 394.12 [0.00] 42.7 [0.24] 138.6 [0.00]
Year dummies Yes Yes Yes Yes Yes No No No Yes No Yes
Observations 92,517 92,517 80,149 80,149 86,870 164 39,435 92,517 92,517 92,517 92,517

Notes: The speed of adjustment (SOA) is derived from the coefficient on lagged leverage. Variable definitions are listed in Table 7. AR(2) is a test for the null of no residual
serial correlation and Sargan is a test for the joint null of validity of the moment conditions (over-identifying restrictions). *, **, and *** indicate significance of the coefficients
at the 1%, 5%, and 10% levels, respectively. Figures in (·) are the standard errors and those in [·] are the p-values of test statistics.
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Table 9. Summary of regression results for the dynamic partial adjustment model of cash holdings

Variable POLS FE AH-IV FD-GMM SYS-GMM LD-GMM LDP-GMM LSDVC BC II
L.CASH 0.720*** 0.375*** 0.463*** 0.468*** 0.460*** 0.897*** 0.459*** 0.521*** 0.519*** 0.511***

(0.003) (0.005) (0.010) (0.010) (0.009) (0.067) (0.011) (0.002) (0.003) (0.003)
IND_CFASD 0.187*** 0.079*** 0.124*** 0.090*** 0.243*** -0.192 0.142*** 0.149*** 0.078*** 0.202***

(0.015) (0.021) (0.031) (0.031) (0.021) (0.132) (0.021) (0.019) (0.018) (0.019)
MB 0.019*** 0.019*** -0.017*** -0.010* 0.042*** -0.088*** 0.017*** 0.010*** 0.013*** 0.021***

(0.002) (0.003) (0.005) (0.005) (0.003) (0.024) (0.004) (0.002) (0.002) (0.003)
SIZE -0.005*** -0.129*** -0.403*** -0.379*** -0.034*** 0.079 -0.154*** -0.115*** -0.106*** -0.033***

(0.002) (0.010) (0.020) (0.020) (0.004) (0.057) (0.010) (0.008) (0.006) (0.007)
CFA 0.097*** 0.129*** -0.098 -0.122* -0.290*** 2.738** 0.180*** 0.110*** 0.117*** 0.047

(0.031) (0.041) (0.065) (0.067) (0.046) (1.309) (0.051) (0.037) (0.032) (0.033)
NWC -0.306*** -0.218*** 0.771*** 0.709*** -0.345*** 0.195 -0.109*** -0.147*** -0.184*** -0.354***

(0.019) (0.035) (0.056) (0.057) (0.033) (0.473) (0.040) (0.021) (0.024) (0.024)
CAPEX -1.035*** -1.073*** 0.629*** 0.600*** -0.520*** -0.109 -1.352*** -1.146*** -1.079*** -1.324***

(0.053) (0.075) (0.102) (0.104) (0.077) (2.171) (0.086) (0.075) (0.060) (0.062)
LEV -0.456*** -0.292*** 1.140*** 1.080*** -0.792*** 1.469*** -0.168*** -0.139*** -0.177*** -0.333***

(0.020) (0.035) (0.062) (0.062) (0.041) (0.504) (0.042) (0.016) (0.024) (0.025)
RDS 0.107*** 0.025** -0.039** -0.017 0.189*** 0.963** 0.021 0.005 0.013 0.019*

(0.007) (0.012) (0.019) (0.019) (0.012) (0.395) (0.016) (0.008) (0.009) (0.010)
DIV -0.055*** -0.020 -0.068*** -0.061*** -0.075*** -0.115 -0.062*** -0.014 -0.021 -0.046**

(0.007) (0.015) (0.021) (0.021) (0.014) (0.160) (0.015) (0.017) (0.013) (0.013)
MA -1.029*** -0.822*** 0.742*** 0.698*** -0.150* 1.873 -1.107*** -1.013*** -0.920*** -0.856**

(0.065) (0.070) (0.091) (0.094) (0.080) (2.018) (0.084) (0.046) (0.065) (0.068)
SOA 28% 63% 54% 53% 54% 10% 54% 48% 48% 49%
AR(2) test 3.80 [0.00] 3.68 [0.00] 5.08 [0.00]
Sargan test 694.87 [0.00] 798.14 [0.00] 27.65 [0.73] 24.53 [0.00]
Year dummies Yes Yes Yes Yes Yes No No No Yes Yes
Observations 107,554 107,554 90,263 90,263 100,098 102 60,758 107,554 107,554 107,554

Notes: The speed of adjustment (SOA) is derived from the coefficient on the lagged cash. Our variable definitions strictly follow BKS; summary statistics are not reported but
are available on request. AR(2) is a test for the null of no residual serial correlation and Sargan is a test for the joint null of validity of the moment conditions (over-identifying
restrictions). *, **, and *** indicate significance of the coefficients at the 1%, 5%, and 10% levels, respectively. Figures in (·) are the standard errors and those in [·] are the
p-values of test statistics.
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Internet Appendix for “In search of robust methods for dynamic panel data models in

empirical corporate finance”

Here we provide details of our estimation algorithms for the BC and II estimators, deriva-

tions of the formulas used in our simulations in Section 3 of the paper, and additional Monte

Carlo simulation studies on leverage processes generated under random financing.

1. Estimation algorithm for BC

Consider the dynamic panel data ARDL(1,0) model:

yit = γyi,t−1 +β ′
xit +ηi + vit , i = 1, . . . ,N; t = 2, . . . ,T. (A.1)

Using the FE estimator eliminates the fixed effect, ηi, in (A.1) via the within-group transfor-

mation:

ỹit = γ ỹi,t−1 +β ′
x̃it + ṽit , (A.2)

where ỹit , ỹi,t−1, x̃it , and ṽit are the deviations from the variables’ respective individual means.

Next, let π̂ be the FE estimator of π =(γ,β )′ from (A.2). Then, for a fixed T , we have E [π̂] 6= π .

The bootstrap-based estimator, BC, corrects for the finite-sample bias of the FE estimator

in the following way. First, suppose that we generate a sequence of L biased FE estimates,

π̂(1) (π) , ..., π̂(L) (π), by means of repeated sampling experiments. It then follows that

E [π̂] = lim
L→∞

1

L

L

∑
ℓ=1

π̂(ℓ) (π) , (A.3)

and π̄ will be an unbiased estimator of π if the following condition holds:

π̂ =
1

L

L

∑
ℓ=1

π̂(ℓ) (π̄) . (A.4)

Hence, if we sample repeatedly from a population with parameters π̄ , and estimate π̂(ℓ) (π̄)

in each sample, then π̄ is an unbiased estimator of π if the average of π̂(ℓ) (π̄) corresponds to

the FE estimate, π̂ , based on the original data. That is, a bias-corrected estimate of π can be
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obtained by searching over the parameter space until a π̄ is found that satisfies (A.4). This is

implemented using a bootstrap procedure, as detailed below:

Step 1: We estimate the N×1 vector of the fixed effects, η̂ =(η̂1, ..., η̂N)
′=(T −1)−1

D′ (y−Zπ̂(0)

)

,

and the residuals, ṽ= (ṽ′1, ..., ṽ
′
N)

′ = ỹ−Z̃π̂(0), where π̂(0) is the FE estimate based on the origi-

nal data, D= IN ⊗
(

IT−1 − 1
T−1

ιT−1ι ′T−1

)

is an idempotent transformation matrix that removes

the fixed effects, and

ỹ =













ỹ1

...

ỹN













, Z̃ =













Z̃1

...

Z̃N













, ỹi =













ỹi2

...

ỹiT













, Z̃i =













ỹi,1 x̃i,2

...
...

ỹi,T−1 x̃i,T













, ṽi =













ṽi2

...

ṽiT













.

Next, following previous research (MacKinnon, 2002), we rescale the residuals as

ṽ∗it =

√

T −1

T −2

(

ṽit√
mit

− 1

T −1

T

∑
s=2

ṽis√
mis

)

, (A.5)

where mit is the {(i−1)(T −1)+(t −1)}th diagonal element of the idempotent matrix, M =

IN(T−1)−D′Z(Z′DZ)−1
Z′D.

Step 2: We generate the bth bootstrap sample residual, denoted ṽ(b), from the rescaled

estimated residuals, ṽ∗, and generate a bootstrap sample y
(b)
it using

y
(b)
it = γ̂(0)y

(b)
i,t−1 + β̂

′
(0)xit + η̂i + ṽ

∗(b)
it , t = 2, . . . ,T ;b = 1, ...,B, (A.6)

where we use y
(b)
i1 = yi1 and take xit as given. Next, we obtain the FE estimate, namely

π̂(b)
(

π̂(0)

)

, using y(b) and Z(b) where

y(b) =













y
(b)
1

...

y
(b)
N













Z =













Z
(b)
1

...

Z
(b)
N













y
(b)
i =













y
(b)
i2

...

y
(b)
iT













Z
(b)
i =













y
(b)
i1 xi,2

...
...

y
(b)
i,T−1 xi,T













.
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Step 3: We repeat Step 2 B times and calculate the sample mean of π̂(b)
(

π̂(0)

)

as follows:

π̄(0) = B−1
B

∑
b=1

π̂(b)
(

π̂(0)

)

. (A.7)

Step 4: We define the difference between π̂(0) and π̄(0) as d(0) = π̂(0)− π̄(0). If sup
∣

∣d(0)

∣

∣=

0, then π̂(0) will be an unbiased estimator of π according to condition (A.4). Otherwise, we

update π̂(k+1) = π̂(k)+d(k) for k ≥ 0.

We iterate the bootstrap procedure outlined in Steps 1 - 4 until condition (A.4) is satisfied.

Following Everaert and Pozzi (2007), we set the number of bootstrap samples B to 1000. We

use the convergence criterion, sup
∣

∣d(k)

∣

∣ < 0.005 and set the upper bound on the number of

iterations at k = 20. We use the FE estimate based on the original data for π̂(0).

Alternative resampling schemes. Resampling ṽ(b) in a non-parametric way, as described above,

has the advantage that it does not require a distributional assumption for v. Here, we consider

two alternative resampling schemes. First, assuming that vit is i.i.d. across i and over t, we

resample ṽit from

ṽ
(b)
i =

(

ṽ∗i1,t2 , ..., ṽ
∗
iN ,tT

)

, i = 1, ...,N, (A.8)

where the vectors of the indices (i1, ..., iN) and (t2, ..., tT ) are obtained by drawing randomly

with replacement from (1, ...,N)′ and (2, ...,T )′, respectively. Second, if we allow vit to exhibit

temporal dependence (e.g., conditional heteroskedasticity), we resample it by using the wild

bootstrap (e.g., Goncalves and Kilian, 2004),

ṽ
(b)
i =

(

τi2ṽ∗j2, ...,τiT ṽ∗jT
)

, i = 1, ...,N, (A.9)

where the index j is drawn with replacement from (1, ...,N)′, and τit is a binomial random

variable (with a mean of 0 and a variance of 1) that takes the values -1 and 1 with equal

probability, 0.5. This is asymptotically valid as either T , N or both become sufficiently large.

We then collect all the resampled residual vectors in ṽ(b) =
(

ṽ
(b)′
1 , ..., ṽ

(b)′
N

)

.
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2. Estimation algorithm for II

Gouriéroux et al. (2010) develop the II method for the AR(1) model. They show how to

use simulations to approximate the binding function and then obtain an unbiased estimate by

taking the inverse of this binding function. A similar procedure can be applied to a model

with multiple regressors, although it is more complicated and the associated computation time

increases exponentially. In our paper, while we only consider two parameters in the Monte

Carlo simulations, we estimate nine to eleven parameters in the empirical applications.

Recall the dynamic panel data model under consideration:

yit = γyi,t−1 +β ′
xit +ηi + vit , i = 1, . . . ,N; t = 1, . . . ,T. (A.10)

Following Gouriéroux et al. (2000) we propose an II estimator using MLE (FE) as the baseline

estimator. Further, we also choose the auxiliary model to be the true one. Let θ =
(

γ,β ′)′
be

the vector of parameters with the parameter space, Θ ⊂ R
k+1. First, we estimate the model by

FE and obtain the (biased) estimate, θ̂ . We then use simulations to obtain an unbiased estimate

of θ that satisfies:

θ̂ II = argmin
θ∈Θ

∥

∥θ̂ −bNT (θ)
∥

∥ , (A.11)

where bNT (θ) is the binding function defined by

bNT (θ) = E
[

θ̃
h
(θ)

]

, (A.12)

and θ̃
h
(θ) is the FE obtained from the h-th simulated path, ỹh

it in (A.13) below.

To generate the h-th simulated path of the DGPs given the parameter vector, θ , we calibrate

it by

ỹh
it = γ ỹh

i,t−1 +β ′
x̃it + ṽh

it , h = 1, ...,H, (A.13)

where variables with tilde are the deviations from their respective individual means, e.g., ỹit =

yit − ȳi with ȳi =
1
T ∑

T
t=1 yit . Without the loss of generality we assume that x̃it is exogenous and

the within transformation eliminates the individual effect, ηi from (A.10). Hence, the simulated
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path in (A.13) can be generated simply by drawing ṽh
it parametrically or nonparametrically. To

this end we first obtain the residuals from the initial estimation:

ˆ̃vit = ỹit − γ̂ ỹit − β̂
′
x̃it , (A.14)

and compute the variance, σ̂2
ṽ . Then, we draw ṽh

it from a normal distribution with a mean of

zero and a variance of σ̂2
v . With a sufficient number of simulated paths, H, we can estimate the

binding function by

b̂NT (θ) =
1

H

H

∑
h=1

θ̃ (θ) . (A.15)

In principle, θ̂ II can be obtained by minimizing the quadratic distance measure as

θ̂ II = argmin
θ∈Θ

(

θ̂ −bNT (θ)
)′

W
(

θ̂ −bNT (θ)
)

, (A.16)

where W is a positive definite weighting matrix. However, due to dimensionality, the above

algorithm would be computationally demanding. Hence, we follow a simpler algorithm pro-

posed by Gouriéroux et al. (2000), who observe that the objective function is (approximately)

linear, and further assume that it holds in the multidimensional case, see also Phillips (2012)

for the stationary case. Thus, we consider the following numerical optimization:

θ (n+1) = θ (n)+λ
[

θ̂ − b̂NT

(

θ (n)

)]

, for n = 0,1,2... (A.17)

Starting from the (biased) initial estimate, θ̂ , we iterate the algorithm until the following con-

vergence criterion is satisfied:

∥

∥bNT (θ)− θ̂
∥

∥≤ c, (A.18)

where c is a small positive number.

To implement the above II procedure, we make three choices regarding the number of

simulated paths, the estimation criterion, and the distribution of the data used for simulation.

The first and the second choices are trivial. Gouriéroux et al. (2010) show that the II estimator

can correct the bias and reduce the standard error effectively and simultaneously using a small
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number of simulated paths (e.g., 10). In this study, we set the number of simulated paths to 50.

Further, we also choose the estimation criterion in a flexible manner, depending on the baseline

estimator used (e.g., MLE and GMM). The third choice is a more important one. It is crucial to

calibrate the sampling distribution so that it can be close to the true DGP, although the latter is

generally unknown. Gouriéroux et al. (2010) suggest using the auxiliary model to calibrate the

simulated path of the data, in which case the number of parameters is the same in both models.

We also follow this approach here and summarize our estimation algorithm in four steps below.

Step 1: We estimate the residuals, ṽit = ỹit − γ̂(0)ỹi,t−1 − β̂
′
(0)x̃it , where θ̂ (0) =

(

γ̂(0), β̂(0)

)′

is the FE estimate based on the original data. Next using the residuals, we estimate the variance

of ṽit , i.e., σ̂2
v .

Step 2: We generate the hth sample path of yit using ṽh
it drawn from a normal distribution

with a mean of zero and a variance of σ̂2
v :

ỹh
it = γ̂(0)ỹ

h
i,t−1 + β̂

′
(0)x̃it + ṽh

it , h = 1, ...,H, (A.19)

where we use ỹh
i1 = β̂

′
(0)x̃i1+ ṽi1 and take x̃it as given. Next, we obtain the FE estimate, namely

θ̂
h (

θ̂ (0)

)

, using ỹh
it and x̃it .

Step 3: We repeat Step 2 H times with H= 50, and calculate the binding function of

θ̂
h (

θ̂ (0)

)

as follows:

b̂NT

(

θ̂ (0)

)

= H−1
H

∑
h=1

θ̂
h (

θ̂ (0)

)

. (A.20)

Step 4: We define the difference between θ̂ (0) and b̂NT

(

θ̂ (0)

)

as d(0)=
∥

∥b̂NT

(

θ̂ (0)

)

− θ̂ (0)

∥

∥.

If d(0) = 0, then θ̂ (0) will be an unbiased estimator of θ . Otherwise, we update

θ̂ (n+1) = θ̂ (n)+λ
[

θ̂ (n)− b̂NT

(

θ (n)

)]

, for n = 0,1,2... (A.21)

We iterate the algorithm outlined in Steps 1 - 4 until the convergence criterion in (A.18) is

satisfied. We initially set λ = 1. For some simulated paths, however, the estimator tends to be

close to the frontier of the set, bNT (Θ) such that the algorithm fails to converge. In such a case

we switch to λ = 0.2, as recommended by Gouriéroux et al. (2000).
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3. Derivations of the formulas used in the DGP in the simulation experiments

3.1. Derivation of Var (zi) and Cov(xit ,zi)

First, the covariance between xit and zi can be expressed as

Cov(xit ,zi) =Cov(xit , x̄i)−Cov(xit , x̄) .

Using x̄i = T−1 ∑
T
s=1 xis, it is easily seen that

Cov(xit , x̄i) = T−1

(

T

∑
s=1

ρ |s−t|
)

σ2
x .

Next, using x̄ = N−1 ∑
N
i=1 x̄i, and noticing that Cov

(

xit , x̄ j

)

= 0 for i 6= j, we have:

Cov(xit , x̄) = N−1Cov(xit , x̄i) = (NT )−1

(

T

∑
s=1

ρ |s−t|
)

σ2
x .

Combining these results, we obtain:

Cov(xit ,zi) =

(

N −1

NT

)

(

T

∑
s=1

ρ |s−t|
)

σ2
x . (A.22)

Next, employing

Cov(x̄i, x̄) =Cov

(

x̄i,
1

N

N

∑
i=1

x̄i

)

=
1

N
Var (x̄i) ,

since Cov
(

x̄i, x̄ j

)

= 0 for i 6= j, and

Var (x̄) =Var

(

1

N

N

∑
i=1

x̄i

)

=
1

N2
Var

(

N

∑
i=1

x̄i

)

=
1

N
Var (x̄i) ,

the variance of zi is given by

Var (zi) =Var (x̄i)+Var (x̄)−2Cov(x̄i, x̄) =Var (x̄i)+
1

N
Var (x̄i)−

2

N
Var (x̄i) .

Therefore,

Var (zi) =

(

N −1

N

)

Var (x̄i) . (A.23)
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The variance of x̄i = T−1 ∑
T
t=1 xit is then given by

Var (x̄i) = T−2Var

(

T

∑
t=1

xit

)

= T−2
T

∑
t=1

T

∑
s=1

Cov(xit ,xis) ,

where

T−2
T

∑
t=1

T

∑
s=1

Cov(xit ,xis) = T−2

{

2

[

T−1

∑
t=0

(T − t)ρ t

]

−T

}

Var (xit)

=

[

T−1
(

1−ρ2
)

−2T−2
(

ρ −ρT+1
)

(1−ρ)2

]

Var (xit) .

After some tedious, but otherwise straightforward, algebra, we finally obtain:

Var (x̄i) = σ2
ξ

[

T−1
(

1−ρ2
)

−2T−2
(

ρ −ρT+1
)

(1−ρ)2 (1−ρ2)

]

. (A.24)

3.2. Derivation of ϕit and ψit

We rewrite the DGP as follows:

yit =
β

1− γL
xit +

1

1− γL
vit +

1

1− γ
ηi, (A.25)

where L is a lag operator. Replacing xit and vit in (A.25) with

xit =
1

1−ρL
ξit , vit =

1

1−φL
εit ,

we then obtain:

yit = βϕit +ψit +
ηi

1− γ
, (A.26)

where ϕit =
1

(1−γL)(1−ρL)ξit and ψit =
1

(1−γL)(1−φL)εit can be expressed as two mutually inde-

pendent stationary AR(2) processes:

ϕit = (γ +ρ)ϕi,t−1 − γρϕi,t−2 +ξit , (A.27)

ψit = (γ +φ)ψi,t−1 − γφψi,t−2 + εit . (A.28)

8



3.3. Derivation of the variance of the signal, σ2
s

The variance of sit = wit − vit is defined as

Var (wit − vit) =Var (wit)+Var (vit)−2Cov(wit ,vit)

= β 2Var (ϕit)+Var (ψit)+Var (vit)−2Cov(ψit ,vit) ,

where

Var (vit) =
σ2

ε

1−φ 2
,

Cov(ψit ,vit) =Var (vit)+ γCov(vit ,vi,t−1) =Var (vit)+ γφVar (vit) = (1+ γφ)Var (vit) .

Thus,

σ2
s = β 2Var (ϕit)+Var (ψit)− (1+2γφ)Var (vit)

= β 2σ2
ξ

[

1+
(γ +ρ)2 (γρ −1)

1+ γρ
− (γρ)2

]−1

+σ2
v

(

1−φ 2
)

[

1+
(γ +φ)2 (γφ −1)

1+ γφ
− (γφ)2

]−1

− (1+2γφ)σ2
v

= β 2σ2
ξ A+σ2

v B, (A.29)

where

A =

[

1+
(γ +ρ)2 (γρ −1)

1+ γρ
− (γρ)2

]−1

,

B =
(

1−φ 2
)

[

1+
(γ +φ)2 (γφ −1)

1+ γφ
− (γφ)2

]−1

− (1+2γφ) .

Finally, the variances of ξit and εit can be obtained as follows:

σ2
ξ = σ2

v

(

ϑ −B

β 2A

)

and σ2
ε =

(

1−φ 2
)

σ2
v . (A.30)
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3.4. Derivation of the initial conditions

Following Kiviet (1995), we can easily obtain the initial conditions for xi0, ϕi0, and ψi0 as

follows: First,

xi0 = ξi0

(

1−ρ2
)−1/2

. (A.31)

Next,

ϕi0 = ξi0

[

Var (ϕit)

σ2
ξ

]1/2

, (A.32)

ϕi1 = ϕi0Corr (ϕit ,ϕi,t−1)+ξi1

[

Var (ϕit)

σ2
ξ

]1/2
[

1−Corr (ϕit ,ϕi,t−1)
2
]1/2

, (A.33)

where

Var (ϕit) = σ2
ξ [1− (γ +ρ)Corr (ϕit ,ϕi,t−1)+ γρCorr (ϕit ,ϕi,t−2)]

−1 ,

Corr (ϕit ,ϕi,t−1) =
γ +ρ

1+ γρ
,

Corr (ϕit ,ϕi,t−2) = (γ +ρ)Corr (ϕit ,ϕi,t−1)− γρ.

Finally,

ψi0 = εi0

[

Var (ψit)

σ2
ε

]1/2

, (A.34)

ψi1 = ψi0Corr (ψit ,ψi,t−1)+ εi1

[

Var (ψit)

σ2
ε

]1/2
[

1−Corr (ψit ,ψi,t−1)
2
]1/2

, (A.35)

where

Var (ψit) = σ2
ε [1− (γ +φ)Corr (ψit ,ψi,t−1)+ γφCorr (ψit ,ψi,t−2)]

−1 ,

Corr (ψit ,ψi,t−1) =
γ +φ

1+ γφ
,

Corr (ψit ,ψi,t−2) = (γ +φ)Corr (ψit ,ψi,t−1)− γφ .
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4. Simulation in the presence of random financing choices

Chang and Dasgupta (2009) examine the dynamics of corporate capital structure using sim-

ulated data, where firms are assumed to follow a random type of financing to offset their financ-

ing deficit, kit : firms issue debt and equity with probabilities p and 1− p, respectively. We now

examine the performance of each estimator in an additional simulation in which the leverage

processes are generated on the basis of this type of random financing. As in Chang and Das-

gupta (2009), with random financing the leverage ratio evolves as follows:

yi,t+1 =















kit

1+kit
+
(

1
1+kit

)

yit with probability p

(

1
1+kit

)

yit wtih probability 1− p

, i = 1, . . . ,N; t = 0, . . . ,T −1. (A.36)

We then extend Chang and Dasgupta’s (2009) simulation design in two important ways. First,

to be consistent with the main simulations in Section 3 of our paper, we incorporate the firm

fixed effect and an idiosyncratic error into the DGP:

yi,t+1 =















kit

1+kit
+
(

1
1+kit

)

yit +ηi + vi,t+1 with probability p

(

1
1+kit

)

yit +ηi + vi,t+1 wtih probability 1− p

, i= 1, . . . ,N; t = 0, . . . ,T −1.

(A.37)

Second, while Chang and Dasgupta (2009) fix kit , we relax this strong restriction and allow

for heterogeneity in kit across firms via several experiments: we draw kit from the uniform

distribution across firms and over time.

For simplicity, in (A.37), we let p = 0.5. That is, the firm’s financial decision is determined

by a coin toss. In our simulations, we estimate the following AR(1) model:

yi,t+1 = γyit +ηi + vi,t+1, i = 1, . . . ,N; t = 0, . . . ,T −1, (A.38)

where we set (N,T ) = (500,10) and use 1,000 replications. We further set yi0 = 0 but discard

the first 10 years of observations to reduce the effect of the initial values. We draw vi,t+1 from

the standard normal distribution, and ηi from the uniform distribution, U (−a,a), for a > 0. To

control for the loading factor, µ , we set a=
√

3µ . Then we let µ = 1 and so a=
√

3. That is, we
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draw ηi from U
(

−
√

3,
√

3
)

. Note that, from (A.37), the AR(1) coefficient is γ = 1/(1+ kit).
1

Table A.1 below presents the results of three simulation experiments. First, as in Chang

and Dasgupta (2009), we simply fix kit at 0.15 for all firm-year observations (the choice of

kit = 0.15 corresponds to the empirical mean of the financing deficit ratio). Then, the true

AR(1) coefficient is 1/(1+0.15) ≈ 0.870. The results contained in the first row suggest that

AH-IV produces the most accurate estimate of the AR(1) coefficient, γ , although LD-GMM,

LDP-GMM, LSDVC, BC, II, and FD-GMM also perform reasonably well. However, DPF,

SYS-GMM, and POLS generate a moderate to large amount of upward bias, while FE produces

a substantial amount of downward bias.

Second, we allow kit to vary across firms and over time. To do so, we draw kit from

U (0,0.3). The AR(1) coefficient is thus equal to E [1/(1+ kit)] ≈ 0.875.2 We find that the

results, reported in the second row, are very similar to those documented for the first experi-

ment.

In the third and final experiment, we allow for both issuing and retiring/repurchasing deci-

sions. That is, the firm issues debt (or retires it if kit < 0) with probability p, and issues equity

(or repurchases it if kit < 0) with probability 1− p, where p = 0.5. Specifically, we generate

values from kit ∼U (−0.2,0.2) and find that in this case E [1/(1+ kit)]≈ 1.014. The results in

the third row show that AH-IV, FD-, LD-, LDP-GMM, LSDVC, and BC have negligible bias,

while DPF, SYS-GMM, and POLS also perform reasonably well.

In sum, our simulation experiments show that AH-IV is the most favorable method, while

LD-GMM, LDP-GMM, LSDVC, and BC are also acceptable. In contrast, DPF generally has

1Unlike EF, we show that in the random financing simulation, the SOA should not be equal to zero. This

is because, by construction, the true SOA is δ = kit/(1+ kit), meaning the SOA would only be equal to zero

in a hypothetical scenario where the firm did not have any financing deficit, i.e., kit = 0, and leverage was a

non-stationary process, i.e., γ = 1.
2It is approximated using the Taylor expansion up to the fourth moment, as follows:

E

[

1

1+ kit

]

≈ 1

1+E [kit ]
− E [kit −E [kit ]]

(1+E [kit ])
2
+

E
[

(kit −E [kit ])
2
]

(1+E [kit ])
3

−
E
[

(kit −E [kit ])
3
]

(1+E [kit ])
4

+
E
[

(kit −E [kit ])
4
]

(1+E [kit ])
5

=
1

1+ (u+l)
2

+
1

12
(u− l)2

{

1+ (u+l)
2

}3
+

9

5







1
144

(u− l)4

{

1+ (u+l)
2

}5






,

where kit ∼U (l,u).
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non-negligible (upward) bias, and is always outperformed by these estimators. Unlike in Elsas

and Florysiak (2014), our simulation results suggest that no estimator can help researchers to

distinguish between real target adjustment behavior and mechanical mean reversion caused by

random financing.
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