
In search of the best constraint satisfaction search *

Daniel Frost and Rina Dechter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Dept. of Information and Computer Science

University of California, Irvine, CA 92717

{ dfrost ,dechter}@ics.uci.edu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We present the results of an empirical study of several

constraint satisfaction search algorithms and heuris-

tics. Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa random problem generator that allows us

to create instances with given characteristics, we show

how the relative performance of various search meth-

ods varies with the number of variables, the tightness

of the constraints, and the sparseness of the constraint

graph. A version of backjumping using a dynamic

variable ordering heuristic is shown to be extremely

effective on a wide range of problems. We conducted

our experiments with problem instances drawn from

the 50% satisfiable range.

1. Introduction

We are interested in studying the behavior of algo-

rithms and heuristics that can solve large and hard

constraint satisfaction problems via systematic search.

Our approach is to focus on the average-case behavior

of several search algorithms, all variations of backtrack-

ing search, by analyzing their performance over a large

number of randomly generated problem instances. Ex-

perimental evaluation of search methods may allow us

to identify properties that cannot yet be identified for-

mally. Because CSPs are an NP-complete problem, the

worst-case performance of any algorithm that solves

them is exponential. Nevertheless, the average-case

performance between different algorithms, determined

experimentally, can vary by several orders of magni-

tude.

An alternative to our approach is to do some form

of average-case analysis. An average-case analysis re-

quires, however, a precise characterization of the distri-

bution of the input instances. Such a characterization

is often not available.

There are limitations to the approach we pursue

here. The most important is that the model we use

to generate random problems may not correspond to

*This work was partially supported by NSF grant IRI-

9157636, by Air Force Ofice of Scientific Research grant

AFOSR 900136 and by grants from Toshiba of America

and Xerox.

the type of problems which a practitioner actually en-

counters, possibly rendering our results of little or no

relevance. Another problem is that subtle biases, if

not outright bugs, in our implementation may skew

the results. The only safeguard against such bias is

the repetition of our experiments, or similar ones, by

others; to facilitate such repetition we have made our

instance generating program available by FTP’.

In the following section we define formally constraint

satisfaction problems and describe briefly the algo-

rithms and heuristics to be studied. We then show

that the linear relationship between the number of con-

straints and the number of variables at the 50% solv-

able region, observed for S-SAT problems by (Mitchell,

Selman, & Levesque 1992; Crawford & Auton 1983),

is observed only approximately for binary CSPs with

more than two values per variable. We conducted our

experiments with problems drawn from this region.

Section 3 describes those studies, which involved back-

tracking, backjumping, backmarking, forward check-

ing, two variable ordering heuristics, and a new value

ordering heuristic called sticking values. The results

of these experiments show that backjumping with a

dynamic variable ordering is a very effective combina-

tion, and also that backmarking and the sticking values

heuristic can significantly improve backjumping with

a fixed variable ordering. The final section states our

conclusions.

2. efinitions and Algorithms

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconstraint satisfaction problem (CSP) is represented

by a constraint network, consisting of a set of n

variables, X1, . . . , X,; their respective value domains, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%..., D,; and a set of constraints. A constraint

Ci(Xil, . . . , Xij) is a subset of the Cartesian prod-

uct Di, x... x Dij, consisting of all tuples of values for

a subset (Xi,, . . . , Xij) of the variables which are com-

patible with each other. A solution is an assignment

of values to all the variables such that no constraint is

‘ftp to ics.uci.edu, login as “ anonymous,” give your e-

mail address as password, enter “ cd /pub/CSP-repository,”

and read the README file for further information.

Advances in Backtracking 301

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

violated; a problem with a solution is termed saiisfi-

able. Sometimes it is desired to find all solutions; in

this paper, however, we focus on the task of finding one

solution, or proving that no solution exists. A binary

CSP is one in which each of the constraints involves at

most two variables. A constraint satisfaction problem

can be represented by a constraint graph consisting of

a node for each variable and an arc connecting each

pair of variables that are contained in a constraint.

Algorithms and Heuristics

Our experiments were conducted with backtracking

(Bitner & Reingold 1985), backmarking (Gaschnig

1979; Haralick & Elliott 1980), forward checking (Har-

alick & Elliott 1980), and a version of backjumping

(Gaschnig 1979; Dechter 1990) proposed in (Prosser

1993) and called there conflict-directed backjumping.

Space does not permit more than a brief discussion of

these algorithms. All are based on the idea of con-

sidering the variables one at a time, during a forward

phase, and instantiating the current variable V with a

value from its domain that does not violate any con-

straint either between V and all previously instantiated

variables (backtracking, backmarking, and backjump-

ing) or between V and the last remaining value of any

future, uninstantiated variable (forward checking). If

V has no such non-conflicting value, then a dead-end

occurs, and in the backwards phase a previously in-

stantiated variable is selected and re-instantiated with

another value from its domain. With backtracking, the

variable chosen to be re-instantiated after a dead-end

is always the most recently instantiated variable; hence

backtracking is often called chronological backtracking.

Backjumping, in contrast, can in response to a dead-

end identify a variable U, not necessarily the most re-

cently instantiated, which is connected in some way

to the dead-end. The algorithm then “ jumps back”

to U, uninstantiates all variables more recent than U,

and tries to find a new value for U from its domain.

The version of backjumping we use is very effective in

choosing the best variable to jump back to.

Determining whether a potential value for a variable

violates a constraint with another variable is called a

consistency check. Because consistency checking is per-

formed so frequently, it constitutes a major part of the

work performed by all of these algorithms. Hence a

count of the number of consistency checks is a com-

mon measure of the overall work of an algorithm.

Backmarking is a version of backtracking that can re-

duce the number of consistency checks required by

backtracking without changing the search space that

is explored. By recording, for each value of a vari-

able, the shallowest variable-value pair with which it

was inconsistent, if any, backmarking can eliminate

the need to repeat unnecessarily checks which have

been performed before and will again succeed or fail.

Although backmarking per se is an algorithm based

on backtracking, its consistency check avoiding tech-

niques can be applied to backjumping (Nadel 1989;

Prosser 1983). In our experiments we evaluate the suc-

cess of integrating backjumping and backmarking.

The forward checking algorithm uses a look-ahead

approach: before a value is chosen for V, consistency

checking is done with all future (uninstantiated) vari-

ables. Any conflicting value in a future variable W

is removed temporarily from W’s domain, and if this

results in W having an empty domain then the value

under consideration for V is rejected.

We used two variable ordering heuristics, min-width

and dynamic variable ordering, in our experiments.

The minimum width (MW or min-width) heuristic

(Freuder 1982) d or ers the variables from last to first

by repeatedly selecting a variable in the constraint

graph that connects to the minimal number of vari-

ables that have not yet been selected. Min-width is

a static ordering that is computed once before the

algorithm begins. In a dynamic variable ordering

(DVO) scheme (Haralick & Elliott 1980; Purdom 1983;

Zabih & McAllester 1988) the variable order can be

different in different branches of the search tree. Our

implementation selects at each step the variable with

the smallest remaining domain size, when only values

that are consistent with all instantiated variables are

considered. Ties are broken randomly, and the variable

participating in the most constraints is selected to be

first.

We also experimented with a new value ordering

heuristic for backjumping called sticking value. The

notion is to remember the value a variable is assigned

during the forward phase, and then to select that value,

if it is consistent, the next time the same variable

needs to be instantiated during a forward phase. (If

the “ sticking value” is not consistent, then another

value is chosen arbitrarily.) The intuition is that if

the value was successful once, it may be useful to try

it first later on in the search. This heuristic is in-

spired by local repair strategies (Minton et al. 1992;

Selman, Levesque, & Mitchell 1992) in which all vari-

ables are instantiated, and then until a solution is

found the values of individual variables are changed,

but never uninstantiated.

Before jumping to our empirical results, we want to

mention that the backjumping algorithm when used

with a fixed ordering has a nice graph-based complex-

ity bound. Given a graph G, a dfs ordering of the nodes

is an ordering generated by a depth first search traver-

sal on G, generating a DFS tree (Even 1979). We

have shown elsewhere the following theorem:

Theorem l(Collin, Dechter, & Katz 1991): Let G be

a constraint network and let d be a dfs ordering of G

whose DFS tree has depth m. Backjumping on d is

qexpw.

3. Methodology and Results

The experiments reported in this paper were run on

random instances generated using a model that takes

302 Constraint SatisfacLm

Figure 1: The “ C” columns show values of C which empirically produce 50% solvable problems, using the model

described in the text and the given values of N, I<, and T. The “ C/ N” column shows the value from the “ C”

column to its left, divided by the current value for N. “ **” indicates that at this setting of N, K and T, even the

maximum possible value of C produced only satisfiable instances. A blank entry signifies that problems generated

with these parameters were too large to run.

four parameters: N, I<, T and C. The problem in-

stances are binary CSPs with N variables, each having

a domain of size K. The parameter 7’ (tightness) spec-

ifies a fraction of the IiT2 value pairs in each constraint

that are disallowed by the constraint. The value pairs

to be disallowed by the constraint are selected ran-

domly from a uniform distribution, but each constraint

has the same fraction T of such incompatible pairs. T

ranges from 0 to 1, with a low value of T, such as

l/ 9, termed a loose or relaxed constraint. The param-

eter C specifies the number of constraints out of the

N *(N - I)/ 2 possible. The specific constraints are cho-

sen randomly from a uniform distribution. This model

is the binary CSP analog of the Random KSAT model

described in (Mitchell, Selman, & Levesque 1992).

Although our random generator can create ex-

tremely hard instances, they may not be typical of

actual problems encountered in applications. There-

fore, in order to capture a wider variety of instances

we introduce another generator, the chain model, that

creates problems with a specific structure. A chain

problem instance is created by generating several dis-

joint subproblems, called nodes, with our general gen-

erator described above, ordering them arbitrarily, and

then joining them sequentially so that a single con-

straint connects one variable in one subproblem with

one variable in the next.

58% Solvable Points for CSPs

All experiments reported in this paper were run with

combinations of N, K, T and C that produces prob-

lem instances which are about 50% solvable (some-

times called the “ cross-over” point). These combina-

tions were determined empirically, and are reported in

Fig. 1. To find cross-over points we selected values

of N, I< and T, and then varied C, generating 250 or

more instances from each set of parameters until half

of the problems had solutions. Sometimes no value of

C resulted in exactly 50% satisfiable; for instance with

N= 50, I(= 6,T = 12/ 36 we found with C = 194

that 46% of the instances had solutions, while with

C = 193 54% did. In such cases we report the value of

C that came closest to 50%.

For some settings of N, Ii’ and T, all values of C pro-

duce only satisfiable instances. Since generally there is

an inverse relationship between T, the tightness of each

Advances in Backtracking 303

constraint, and C, the number r of constraints, this sit-

uation occurs when the constraints are so loose that

even with C at its maximum value, N * (N - 1)/ 2, no

unsatisfiable instances result. Our data indicate that

this phenomenon only occurs at small values of N.

I N 11 BT+MW 1 BJ+MW 1 BT+DVO I BJ+DVO 1

K=9 T=9/81

15 5,844 724 673 673

25 859,802 116,382 1,929 1,924

35 119,547,843 219,601 217,453

K=9 T=18/81

15 110,242 48,732 2,428 2,426

25 15,734,382 6,841,255 253,289 252,581

35 392.776.002 17.988.106 17.901.386
I

I I I I I , I I

I II K=9 T=27/81 1
7

15 106,762 73,541 10,660 10,648

25 1,099,838 583,038 55,402 54,885

35 4.868.528 201.658 189.634

Figure 2: Comparison of backjumping and backtrack-

ing with min-width and dynamic variable ordering.

Each number represents mean consistency checks over

1000 instances. The chart is blank where no experi-

ments were conducted because the problems became

too large for the algorithm.

We often found that the peak of difficulty, as mea-

sured by mean consistency checks or mean CPU time,

is not exactly at the 50% point, but instead around the

10% to 30% solvable point, and the level of difficulty at

this peak is about 5% to 10% higher than at the 50%

point. We nevertheless decided to use the 50% satisfi-

able point, since it is algorithm independent. The pre-

cise value of C that produces the peak of difficulty can

vary depending on algorithm, since some approaches

handle satisfiable instances more efficiently.

In contrast to the findings of (Mitchell, Selman, &

Figure 3: Comparison of backjumping and backtrack-

ing with min-width and dynamic variable ordering, us-

ing “ chain” problems with 15-variable nodes. K=3,

T=1/ 9, and N = 15 * “ Nodes” . Each number repre-

sents mean consistency checks over 1000 instances.

Levesque 1992; Crawford & Auton 1983) for S-SAT, we

did not observe a precise linear relationship between

the number of variables and the number of constraints

(which are equivalent to clauses in CNF). The ratio of

C to N appears to be asymptotically linear, but it is

impossible to be certain of this from our data.

Static and Dynamic Variable Orderings

In our first set of experiments we wanted to assess the

merits of static and dynamic variable orderings when

used with backtracking and backjumping. As the data

from Fig. 2 indicate, DVO prunes the search space so

effectively that when using it the distinction between

backtracking and backjumping is not significant until

the number of variables becomes quite large. An excep-

tion to this general trend occurs when using backtrack-

ing with dynamic variable ordering on sparse graphs.

For example, with N = 100, K = 3, and T= 3/ 9, C is

set to 169, which creates a very sparse graph that oc-

casionally consists of two or more disjoint sub-graphs.

If one of the sub-graphs has no solution, backtracking

will still explore its search space repeatedly while find-

ing solutions to the other sub-graphs. Because back-

jumping jumps between connected variables, in effect

it solves the disconnected sub-graphs separately, and if

one of them has no solution the backjumping algorithm

will halt once that search space is explored. Thus the

data in Fig. 2 show that backtracking, even with dy-

namic variable ordering, can be extremely inefficient

on large CSPs that may have disjoint sub-graphs.

Figure 4: Data with N = 75, K = 3, drawn from the

same experiments as in Fig. 2. The column “ C/ 2775”

indicates the ratio of constraints to the maximumpos-

sible for N = 75.

At large N, the combination of DVO and backjump-

ing is particularly felicitous. Backjumping is more ef-

fective on sparser constraint graphs, since the average

304 Constraint Satisfaction

6 35 4136 639,699 646,529

6 35 8136 78,217 79,527
6 35 12136 18.404 18.981

I I I

6 35 16j36 1 6;863 1 71125

9 25 9181 1,929 1,935
9 25 18/81 253,289 255,589
9 25 27181 55,402 56,006
9 25 36181 17.976 18,274

Figure 5: Comparison of backtracking and forward

checking with DVO. Each number is the mean con-

sistency checks over 1000 instances.

size of each “ jump” increases with increasing sparse-

ness. DVO, in contrast, tends to function better when

there are many constraints, since each constraint pro-

vides information it can utilize in deciding on the next

variable. We assessed this observation quantitatively

by recording the frequency with which backjumping

with DVO selected a variable that only had one re-

maining compatible value. This is the situation where

DVO can most effectively prune the search space, since

it is acting exactly like unit-propagation in boolean sat-

isfiability problems, and making the forced choice of

variable instantiation as early as possible. See Fig. 4,

where the column labelled “ DVO single” shows how

likely DVO was to find a variable with one remain-

ing consistent value, for one setting of N and Ii’ . The

decreasing frequency of single-valued variables as the

constraint graph becomes sparse indicates that DVO

has to make a less-informed choice about the variable

to choose next.

For the backjumping algorithm with a MW ordering

we recorded the average size of the jump at a dead-end,

that is, how many variables were passed over between

the dead-end variable and the variable jumped back

to. With backtracking this statistic would always be

1. This statistic is reported in the “ MW jmp size”

column in Fig. 4, and shows how backjumping jumps

further on sparser graphs.

Dynamic variable order was somewhat less successful

when applied to the chain type problems. With these

structured problems we were able to experiment with

much larger instances, up to 450 variables organized

as thirty 15-variable nodes. The data in Fig. 3 show

that backjumping was more effective on this type of

problem than was DVO, and the combination of the

two was over an order of magnitude better than either

approach alone.

Forward Checking

A benefit of studying algorithms by observing their

average-case behavior is that it is sometimes possible to

determine which component of an algorithm is actually

responsible for its performance. For instance, forward

checking is often acclaimed as a particularly good al-

gorithm (Nadel 1989). We note that it is possible to

implement just part of forward checking as a variable

ordering heuristic: if instantiating a variable with a

certain value will cause a future variable to be a dead-

end, then rearrange the variable ordering to make that

future variable the next variable. The result is essen-

tially backtracking with DVO. This method does not

do all of forward checking, which would require reject-

ing the value that causes the future dead-end. In Fig. 5

we compare forward checking with backtracking, using

DVO for both algorithms. The result is approximately

equivalent performance. Thus we suggest that forward

checking should be recognized more as a valuable vari-

able ordering heuristic than as a powerful algorithm.

ackmarking and sticking values

The next set of experiments was designed to deter-

mine whether backmarking and sticking values, alone

or in combination, could improve the performance of

backjumping under a static min-width ordering. (We

plan to report on backmarking and sticking values

with dynamic variable ordering in future work.) Since

backmarking and sticking values remember informa-

tion about the history of the search in order to guide

future search, we report on CPU time as well as con-

sistency checks (see Fig. 6). Is the overhead of main-

taining additional information less than the cost of the

saved consistency checks ? Only by examining CPU

time can we really tell. We implemented all the algo-

rithms and heuristics described in this paper in a single

C program, with common data structures, subroutines,

and programmer skill, so we believe comparing CPU

times is meaningful, though not definitive.

Our experiments as summarized in Fig. 6 show that

both backmarking and sticking values offer significant

improvement when integrated with backjumping, usu-

ally reducing CPU time by a half or a third. As ex-

pected, the improvement in consistency checks is much

greater, but both enhancements seem to be cost effec-

tive. Backmarking offers more improvement than does

sticking values. Both techniques are more effective

on the problems with smaller domain sizes; at K = 9

the benefit of sticking values in terms of reduced CPU

time has almost disappeared. Backmarking helps back-

jumping over all the problem types we studied. The

results from chain problems did not vary significantly

from those of the unstructured problems.

4. Conclusions

We have several results from experimenting with larger

and harder CSPs than have been reported before.

Backjumping with dynamic variable ordering seems in

general to be a powerful complete search algorithm.

The two components complement each other, with

backjumping stronger on sparser, more structured, and

possibly disjoint graphs. We have shown that the

Advances in Backtracking 305

Figure 6: Results from experiments with backjumping, backmarking and sticking values. Each number is the mean

of 1000 instances, and a min-width ordering was used throughout.

power of forward checking is mostly subsumed by a dy-

namic variable ordering heuristic. We have introduced

a new value ordering heuristic called sticking values

and shown that it can significantly improve backjump-

ing when the variables’ domains are relatively small.

We have also shown that the backmarking technique

can be applied to backjumping with good results over

a wide range of problems.

One result visible in all our experiments is that

among problems with a given number of variables,

and drawn from the 50% satisfiable region, those with

many loose constraints are much harder than those

with fewer and tighter constraints. This is consis-

tent with tightness properties shown in (van Beek &

Dechter 1994). The pattern is not always observed for

low values of N and T, since there may be no 50%

region at all. We have also shown that the linear rela-

tionship between variables and clauses observed with

boolean satisfiability problems at the cross-over point

is not found with CSPs generated by our model.

References

Bitner, J. R., and Reingold, E. 1985. Backtrack pro-

gramming techniques. Communications of the ACM

18:651-656.

Collin, Z.; Dechter, R.; and Katz, S. 1991. On the

Feasibility of Distributed Constraint Satisfaction. In

Proceedings of the International Joint Conference on

Artificial Intelligence, 318-324.

Crawford, J. M., and Auton, L. D. 1983. Experi-

mental results on the crossover point in satisfiability

problems. In Proceedings of the Eleventh National

Conference on Artificial Intelligence, 21-27.

Dechter, R. 1990. Enhancement Schemes for Con-

straint Processing: Backjumping, Learning, and Cut-

set Decomposition. Artificial Intelligence 41:273-312.

Even, S. 1979. Graph Algorithms. Maryland: Com-

puter Science Press.

306 Constraint Satisfaction

Freuder, E. C. 1982. A sufficient condition for

backtrack-free search. JACM 21(11):958-965.

Gaschnig, J. 1979. Performance measurement and

analysis of certain search algorithms. Technical Re-

port CMU-CS-79-124, Carnegie Mellon University.

Haralick, R. M., and Elliott, G. L. 1980. Increas-

ing Tree Search Efficiency for Constraint Satisfaction

Problems. Artificial Intelligence 14:263-313.

Minton, S.; Johnson, M. D.; Phillips, A. B.; and

Laird, P. 1992. Minimizing conflicts: a heuristic re-

pair method for constraint satisfaction and scheduling

problems. Artificial Intelligence 58(l-3):161-205.

Mitchell, D.; Selman, B.; and Levesque, H. 1992.

Hard and Easy Distributions of SAT Problems. In

Proceedings of the Tenth National Conference on Ar-

tificial Intelligence, 459-465.

Nadel, B. A. 1989. Constraint satisfaction algorithms.

Computational Intelligence 5~188-224.

Prosser, P. 1983. BM + BJ = BMJ. In Proceedings

of the Ninth Conference on Artificial Intelligence for

Applications, 257-262.

Purdom, P. W. 1983. Search Rearrangement Back-

tracking and Polynomial Average Time. Artifkial In-

Prosser, P. 1993. Hybrid Algorithms for the Con-

telligence 21~117-133.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A

straint Satisfaction Problem. Computational Intelli-

New Method for Solving Hard Satisfiability Problems.

In Proceedings of the Tenth National Conference on

Artificial Intelligence, 440-446.

gence 9(3):268-299.

van Beek, P., and Dechter, R. 1994. Constraint tight-

ness versus global consistency. In Proc. of KR-94.

Zabih, R., and McAllester, D. 1988. A Rearrange-

ment Search Strategy for Determining Propositional

Satisfiability. In Proceedings of the Seventh National

Conference on Artificial Intelligence, 155-160.

