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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We present the results of an empirical study of several 

constraint satisfaction search algorithms and heuris- 

tics. Using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa  random problem generator that allows us 

to create instances with given characteristics, we show 

how the relative performance of various search meth- 

ods varies with the number of variables, the tightness 

of the constraints, and the sparseness of the constraint 

graph. A version of backjumping using a dynamic 

variable ordering heuristic is shown to be extremely 

effective on a wide range of problems. We conducted 

our experiments with problem instances drawn from 

the 50%  satisfiable range. 

1. Introduction 

We are interested in studying the behavior of algo- 

rithms and heuristics that can solve large and hard 

constraint satisfaction problems via systematic search. 

Our approach is to focus on the average-case behavior 

of several search algorithms, all variations of backtrack- 

ing search, by analyzing their performance over a large 

number of randomly generated problem instances. Ex- 

perimental evaluation of search methods may allow us 

to identify properties that cannot yet be identified for- 

mally. Because CSPs are an NP-complete problem, the 

worst-case performance of any algorithm that solves 

them is exponential. Nevertheless, the average-case 

performance between different algorithms, determined 

experimentally, can vary by several orders of magni- 

tude. 

An alternative to our approach is to do some form 

of average-case analysis. An average-case analysis re- 

quires, however, a precise characterization of the distri- 

bution of the input instances. Such a characterization 

is often not available. 

There are limitations to the approach we pursue 

here. The most important is that the model we use 

to generate random problems may not correspond to 
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AFOSR 900136 and by grants from Toshiba of America 

and Xerox. 

the type of problems which a practitioner actually en- 

counters, possibly rendering our results of little or no 

relevance. Another problem is that subtle biases, if 

not outright bugs, in our implementation may skew 

the results. The only safeguard against such bias is 

the repetition of our experiments, or similar ones, by 

others; to facilitate such repetition we have made our 

instance generating program available by FTP’. 

In the following section we define formally constraint 

satisfaction problems and describe briefly the algo- 

rithms and heuristics to be studied. We then show 

that the linear relationship between the number of con- 

straints and the number of variables at the 50% solv- 

able region, observed for S-SAT problems by (Mitchell, 

Selman, & Levesque 1992; Crawford & Auton 1983), 

is observed only approximately for binary CSPs with 

more than two values per variable. We conducted our 

experiments with problems drawn from this region. 

Section 3 describes those studies, which involved back- 

tracking, backjumping, backmarking, forward check- 

ing, two variable ordering heuristics, and a new value 

ordering heuristic called sticking values. The results 

of these experiments show that backjumping with a 

dynamic variable ordering is a very effective combina- 

tion, and also that backmarking and the sticking values 

heuristic can significantly improve backjumping with 

a fixed variable ordering. The final section states our 

conclusions. 

2. efinitions and Algorithms 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconstraint satisfaction problem (CSP) is represented 

by a constraint network, consisting of a set of n 

variables, X1, . . . , X,; their respective value domains, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%..., D,; and a set of constraints. A constraint 

Ci(Xil, . . . , Xij) is a subset of the Cartesian prod- 

uct Di, x... x Dij, consisting of all tuples of values for 

a subset (Xi,, . . . , Xij) of the variables which are com- 

patible with each other. A solution is an assignment 

of values to all the variables such that no constraint is 

‘ftp to ics.uci.edu, login as “ anonymous,”  give your e- 

mail address as password, enter “ cd /pub/CSP-repository,”  

and read the README file for further information. 
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violated; a problem with a solution is termed saiisfi- 

able. Sometimes it is desired to find all solutions; in 

this paper, however, we focus on the task of finding one 

solution, or proving that no solution exists. A binary 

CSP is one in which each of the constraints involves at 

most two variables. A constraint satisfaction problem 

can be represented by a constraint graph consisting of 

a node for each variable and an arc connecting each 

pair of variables that are contained in a constraint. 

Algorithms and Heuristics 

Our experiments were conducted with backtracking 

(Bitner & Reingold 1985), backmarking (Gaschnig 

1979; Haralick & Elliott 1980), forward checking (Har- 

alick & Elliott 1980), and a version of backjumping 

(Gaschnig 1979; Dechter 1990) proposed in (Prosser 

1993) and called there conflict-directed backjumping. 

Space does not permit more than a brief discussion of 

these algorithms. All are based on the idea of con- 

sidering the variables one at a time, during a forward 

phase, and instantiating the current variable V with a 

value from its domain that does not violate any con- 

straint either between V and all previously instantiated 

variables (backtracking, backmarking, and backjump- 

ing) or between V and the last remaining value of any 

future, uninstantiated variable (forward checking). If 

V has no such non-conflicting value, then a dead-end 

occurs, and in the backwards phase a previously in- 

stantiated variable is selected and re-instantiated with 

another value from its domain. With backtracking, the 

variable chosen to be re-instantiated after a dead-end 

is always the most recently instantiated variable; hence 

backtracking is often called chronological backtracking. 

Backjumping, in contrast, can in response to a dead- 

end identify a variable U, not necessarily the most re- 

cently instantiated, which is connected in some way 

to the dead-end. The algorithm then “ jumps back”  

to U, uninstantiates all variables more recent than U, 

and tries to find a new value for U from its domain. 

The version of backjumping we use is very effective in 

choosing the best variable to jump back to. 

Determining whether a potential value for a variable 

violates a constraint with another variable is called a 

consistency check. Because consistency checking is per- 

formed so frequently, it constitutes a major part of the 

work performed by all of these algorithms. Hence a 

count of the number of consistency checks is a com- 

mon measure of the overall work of an algorithm. 

Backmarking is a version of backtracking that can re- 

duce the number of consistency checks required by 

backtracking without changing the search space that 

is explored. By recording, for each value of a vari- 

able, the shallowest variable-value pair with which it 

was inconsistent, if any, backmarking can eliminate 

the need to repeat unnecessarily checks which have 

been performed before and will again succeed or fail. 

Although backmarking per se is an algorithm based 

on backtracking, its consistency check avoiding tech- 

niques can be applied to backjumping (Nadel 1989; 

Prosser 1983). In our experiments we evaluate the suc- 

cess of integrating backjumping and backmarking. 

The forward checking algorithm uses a look-ahead 

approach: before a value is chosen for V, consistency 

checking is done with all future (uninstantiated) vari- 

ables. Any conflicting value in a future variable W 

is removed temporarily from W’s domain, and if this 

results in W having an empty domain then the value 

under consideration for V is rejected. 

We used two variable ordering heuristics, min-width 

and dynamic variable ordering, in our experiments. 

The minimum width (MW or min-width) heuristic 

(Freuder 1982) d or ers the variables from last to first 

by repeatedly selecting a variable in the constraint 

graph that connects to the minimal number of vari- 

ables that have not yet been selected. Min-width is 

a static ordering that is computed once before the 

algorithm begins. In a dynamic variable ordering 

(DVO) scheme (Haralick & Elliott 1980; Purdom 1983; 

Zabih & McAllester 1988) the variable order can be 

different in different branches of the search tree. Our 

implementation selects at each step the variable with 

the smallest remaining domain size, when only values 

that are consistent with all instantiated variables are 

considered. Ties are broken randomly, and the variable 

participating in the most constraints is selected to be 

first. 

We also experimented with a new value ordering 

heuristic for backjumping called sticking value. The 

notion is to remember the value a variable is assigned 

during the forward phase, and then to select that value, 

if it is consistent, the next time the same variable 

needs to be instantiated during a forward phase. (If 

the “ sticking value”  is not consistent, then another 

value is chosen arbitrarily.) The intuition is that if 

the value was successful once, it may be useful to try 

it first later on in the search. This heuristic is in- 

spired by local repair strategies (Minton et al. 1992; 

Selman, Levesque, & Mitchell 1992) in which all vari- 

ables are instantiated, and then until a solution is 

found the values of individual variables are changed, 

but never uninstantiated. 

Before jumping to our empirical results, we want to 

mention that the backjumping algorithm when used 

with a fixed ordering has a nice graph-based complex- 

ity bound. Given a graph G, a dfs ordering of the nodes 

is an ordering generated by a depth first search traver- 

sal on G, generating a DFS tree (Even 1979). We 

have shown elsewhere the following theorem: 

Theorem l(Collin, Dechter, & Katz 1991): Let G be 

a constraint network and let d be a dfs ordering of G 

whose DFS tree has depth m. Backjumping on d is 

qexpw. 

3. Methodology and Results 

The experiments reported in this paper were run on 

random instances generated using a model that takes 
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Figure 1: The “ C”  columns show values of C which empirically produce 50% solvable problems, using the model 

described in the text and the given values of N, I<, and T. The “ C/ N”  column shows the value from the “ C”  

column to its left, divided by the current value for N. “ **”  indicates that at this setting of N, K and T, even the 

maximum possible value of C produced only satisfiable instances. A blank entry signifies that problems generated 

with these parameters were too large to run. 

four parameters: N, I<, T and C. The problem in- 

stances are binary CSPs with N variables, each having 

a domain of size K. The parameter 7’ (tightness) spec- 

ifies a fraction of the IiT2 value pairs in each constraint 

that are disallowed by the constraint. The value pairs 

to be disallowed by the constraint are selected ran- 

domly from a uniform distribution, but each constraint 

has the same fraction T of such incompatible pairs. T 

ranges from 0 to 1, with a low value of T, such as 

l/ 9, termed a loose or relaxed constraint. The param- 

eter C specifies the number of constraints out of the 

N *( N - I)/ 2 possible. The specific constraints are cho- 

sen randomly from a uniform distribution. This model 

is the binary CSP analog of the Random KSAT model 

described in (Mitchell, Selman, & Levesque 1992). 

Although our random generator can create ex- 

tremely hard instances, they may not be typical of 

actual problems encountered in applications. There- 

fore, in order to capture a wider variety of instances 

we introduce another generator, the chain model, that 

creates problems with a specific structure. A chain 

problem instance is created by generating several dis- 

joint subproblems, called nodes, with our general gen- 

erator described above, ordering them arbitrarily, and 

then joining them sequentially so that a single con- 

straint connects one variable in one subproblem with 

one variable in the next. 

58% Solvable Points for CSPs 

All experiments reported in this paper were run with 

combinations of N, K, T and C that produces prob- 

lem instances which are about 50% solvable (some- 

times called the “ cross-over”  point). These combina- 

tions were determined empirically, and are reported in 

Fig. 1. To find cross-over points we selected values 

of N, I< and T, and then varied C, generating 250 or 

more instances from each set of parameters until half 

of the problems had solutions. Sometimes no value of 

C resulted in exactly 50% satisfiable; for instance with 

N= 50, I( = 6,T = 12/ 36 we found with C = 194 

that 46% of the instances had solutions, while with 

C = 193 54% did. In such cases we report the value of 

C that came closest to 50%. 

For some settings of N, Ii’ and T, all values of C pro- 

duce only satisfiable instances. Since generally there is 

an inverse relationship between T, the tightness of each 
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constraint, and C, the number r of constraints, this sit- 

uation occurs when the constraints are so loose that 

even with C at its maximum value, N * (N - 1)/ 2, no 

unsatisfiable instances result. Our data indicate that 

this phenomenon only occurs at small values of N. 

I N 11 BT+MW 1 BJ+MW 1 BT+DVO I BJ+DVO 1 

K=9 T=9/81 

15 5,844 724 673 673 

25 859,802 116,382 1,929 1,924 

35 119,547,843 219,601 217,453 

K=9 T=18/81 

15 110,242 48,732 2,428 2,426 

25 15,734,382 6,841,255 253,289 252,581 

35 392.776.002 17.988.106 17.901.386 
I 

I I I I I , I I 

I II K=9 T=27/81 1 
7 

15 106,762 73,541 10,660 10,648 

25 1,099,838 583,038 55,402 54,885 

35 4.868.528 201.658 189.634 

Figure 2: Comparison of backjumping and backtrack- 

ing with min-width and dynamic variable ordering. 

Each number represents mean consistency checks over 

1000 instances. The chart is blank where no experi- 

ments were conducted because the problems became 

too large for the algorithm. 

We often found that the peak of difficulty, as mea- 

sured by mean consistency checks or mean CPU time, 

is not exactly at the 50% point, but instead around the 

10% to 30% solvable point, and the level of difficulty at 

this peak is about 5% to 10% higher than at the 50% 

point. We nevertheless decided to use the 50% satisfi- 

able point, since it is algorithm independent. The pre- 

cise value of C that produces the peak of difficulty can 

vary depending on algorithm, since some approaches 

handle satisfiable instances more efficiently. 

In contrast to the findings of (Mitchell, Selman, & 

Figure 3: Comparison of backjumping and backtrack- 

ing with min-width and dynamic variable ordering, us- 

ing “ chain”  problems with 15-variable nodes. K=3, 

T=1/ 9, and N = 15 * “ Nodes” . Each number repre- 

sents mean consistency checks over 1000 instances. 

Levesque 1992; Crawford & Auton 1983) for S-SAT, we 

did not observe a precise linear relationship between 

the number of variables and the number of constraints 

(which are equivalent to clauses in CNF). The ratio of 

C to N appears to be asymptotically linear, but it is 

impossible to be certain of this from our data. 

Static and Dynamic Variable Orderings 

In our first set of experiments we wanted to assess the 

merits of static and dynamic variable orderings when 

used with backtracking and backjumping. As the data 

from Fig. 2 indicate, DVO prunes the search space so 

effectively that when using it the distinction between 

backtracking and backjumping is not significant until 

the number of variables becomes quite large. An excep- 

tion to this general trend occurs when using backtrack- 

ing with dynamic variable ordering on sparse graphs. 

For example, with N = 100, K = 3, and T= 3/ 9, C is 

set to 169, which creates a very sparse graph that oc- 

casionally consists of two or more disjoint sub-graphs. 

If one of the sub-graphs has no solution, backtracking 

will still explore its search space repeatedly while find- 

ing solutions to the other sub-graphs. Because back- 

jumping jumps between connected variables, in effect 

it solves the disconnected sub-graphs separately, and if 

one of them has no solution the backjumping algorithm 

will halt once that search space is explored. Thus the 

data in Fig. 2 show that backtracking, even with dy- 

namic variable ordering, can be extremely inefficient 

on large CSPs that may have disjoint sub-graphs. 

Figure 4: Data with N = 75, K = 3, drawn from the 

same experiments as in Fig. 2. The column “ C/ 2775”  

indicates the ratio of constraints to the maximumpos- 

sible for N = 75. 

At large N, the combination of DVO and backjump- 

ing is particularly felicitous. Backjumping is more ef- 

fective on sparser constraint graphs, since the average 

304 Constraint Satisfaction 



6 35 4136 639,699 646,529 

6 35 8136 78,217 79,527 
6 35 12136 18.404 18.981 

I I I 

6 35 16j36 1 6;863 1 71125 

9 25 9181 1,929 1,935 
9 25 18/81 253,289 255,589 
9 25 27181 55,402 56,006 
9 25 36181 17.976 18,274 

Figure 5: Comparison of backtracking and forward 

checking with DVO. Each number is the mean con- 

sistency checks over 1000 instances. 

size of each “ jump”  increases with increasing sparse- 

ness. DVO, in contrast, tends to function better when 

there are many constraints, since each constraint pro- 

vides information it can utilize in deciding on the next 

variable. We assessed this observation quantitatively 

by recording the frequency with which backjumping 

with DVO selected a variable that only had one re- 

maining compatible value. This is the situation where 

DVO can most effectively prune the search space, since 

it is acting exactly like unit-propagation in boolean sat- 

isfiability problems, and making the forced choice of 

variable instantiation as early as possible. See Fig. 4, 

where the column labelled “ DVO single”  shows how 

likely DVO was to find a variable with one remain- 

ing consistent value, for one setting of N and Ii’ . The 

decreasing frequency of single-valued variables as the 

constraint graph becomes sparse indicates that DVO 

has to make a less-informed choice about the variable 

to choose next. 

For the backjumping algorithm with a MW ordering 

we recorded the average size of the jump at a dead-end, 

that is, how many variables were passed over between 

the dead-end variable and the variable jumped back 

to. With backtracking this statistic would always be 

1. This statistic is reported in the “ MW jmp size”  

column in Fig. 4, and shows how backjumping jumps 

further on sparser graphs. 

Dynamic variable order was somewhat less successful 

when applied to the chain type problems. With these 

structured problems we were able to experiment with 

much larger instances, up to 450 variables organized 

as thirty 15-variable nodes. The data in Fig. 3 show 

that backjumping was more effective on this type of 

problem than was DVO, and the combination of the 

two was over an order of magnitude better than either 

approach alone. 

Forward Checking 

A benefit of studying algorithms by observing their 

average-case behavior is that it is sometimes possible to 

determine which component of an algorithm is actually 

responsible for its performance. For instance, forward 

checking is often acclaimed as a particularly good al- 

gorithm (Nadel 1989). We note that it is possible to 

implement just part of forward checking as a variable 

ordering heuristic: if instantiating a variable with a 

certain value will cause a future variable to be a dead- 

end, then rearrange the variable ordering to make that 

future variable the next variable. The result is essen- 

tially backtracking with DVO. This method does not 

do all of forward checking, which would require reject- 

ing the value that causes the future dead-end. In Fig. 5 

we compare forward checking with backtracking, using 

DVO for both algorithms. The result is approximately 

equivalent performance. Thus we suggest that forward 

checking should be recognized more as a valuable vari- 

able ordering heuristic than as a powerful algorithm. 

ackmarking and sticking values 

The next set of experiments was designed to deter- 

mine whether backmarking and sticking values, alone 

or in combination, could improve the performance of 

backjumping under a static min-width ordering. (We 

plan to report on backmarking and sticking values 

with dynamic variable ordering in future work.) Since 

backmarking and sticking values remember informa- 

tion about the history of the search in order to guide 

future search, we report on CPU time as well as con- 

sistency checks (see Fig. 6). Is the overhead of main- 

taining additional information less than the cost of the 

saved consistency checks ? Only by examining CPU 

time can we really tell. We implemented all the algo- 

rithms and heuristics described in this paper in a single 

C program, with common data structures, subroutines, 

and programmer skill, so we believe comparing CPU 

times is meaningful, though not definitive. 

Our experiments as summarized in Fig. 6 show that 

both backmarking and sticking values offer significant 

improvement when integrated with backjumping, usu- 

ally reducing CPU time by a half or a third. As ex- 

pected, the improvement in consistency checks is much 

greater, but both enhancements seem to be cost effec- 

tive. Backmarking offers more improvement than does 

sticking values. Both techniques are more effective 

on the problems with smaller domain sizes; at K = 9 

the benefit of sticking values in terms of reduced CPU 

time has almost disappeared. Backmarking helps back- 

jumping over all the problem types we studied. The 

results from chain problems did not vary significantly 

from those of the unstructured problems. 

4. Conclusions 

We have several results from experimenting with larger 

and harder CSPs than have been reported before. 

Backjumping with dynamic variable ordering seems in 

general to be a powerful complete search algorithm. 

The two components complement each other, with 

backjumping stronger on sparser, more structured, and 

possibly disjoint graphs. We have shown that the 
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Figure 6: Results from experiments with backjumping, backmarking and sticking values. Each number is the mean 

of 1000 instances, and a min-width ordering was used throughout. 

power of forward checking is mostly subsumed by a dy- 

namic variable ordering heuristic. We have introduced 

a new value ordering heuristic called sticking values 

and shown that it can significantly improve backjump- 

ing when the variables’ domains are relatively small. 

We have also shown that the backmarking technique 

can be applied to backjumping with good results over 

a wide range of problems. 

One result visible in all our experiments is that 

among problems with a given number of variables, 

and drawn from the 50% satisfiable region, those with 

many loose constraints are much harder than those 

with fewer and tighter constraints. This is consis- 

tent with tightness properties shown in (van Beek & 

Dechter 1994). The pattern is not always observed for 

low values of N and T, since there may be no 50% 

region at all. We have also shown that the linear rela- 

tionship between variables and clauses observed with 

boolean satisfiability problems at the cross-over point 

is not found with CSPs generated by our model. 
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