
■ The article introduces the reader to a large inter-

disciplinary research project whose goal is to use 

AI to gain new insight into a complex artistic phe-

nomenon. We study fundamental principles of ex-

pressive music performance by measuring perfor-

mance aspects in large numbers of recordings by

highly skilled musicians (concert pianists) and an-

alyzing the data with state-of-the-art methods

from areas such as machine learning, data mining,

and data visualization. The article first introduces

the general research questions that guide the pro-

ject and then summarizes some of the most impor-

tant results achieved to date, with an emphasis on

the most recent and still rather speculative work. A

broad view of the discovery process is given, from

data acquisition through data visualization to in-

ductive model building and pattern discovery, and

it turns out that AI plays an important role in all

stages of such an ambitious enterprise. Our current

results show that it is possible for machines to

make novel and interesting discoveries even in a

domain such as music and that even if we might

never find the “Horowitz Factor,” AI can give us

completely new insights into complex artistic be-

havior.

T
he potential of AI, particularly machine
learning and automated discovery, for
making substantial discoveries in various

branches of science has been convincingly
demonstrated in recent years, mainly in the
natural sciences ([bio]chemistry, genetics,
physics, and so on) (Hunter 1993; King et al.
1992; Muggleton, King, and Sternberg 1992;
Shavlik, Towell, and Noordewier 1992; Valdés-
Pérez 1999, 1996, 1995). However, can AI also
facilitate substantial discoveries in less easily
quantifiable domains such as the arts?

In this article, we want to demonstrate that

it can. We report on the latest results of a long-
term interdisciplinary research project that us-
es AI technology to investigate one of the most
fascinating—and at the same time highly elu-
sive—phenomena in music: expressive music
performance.1 We study how skilled musicians
(concert pianists, in particular) make music
come alive, how they express and communi-
cate their understanding of the musical and
emotional content of the pieces by shaping
various parameters such as tempo, timing, dy-
namics, and articulation.

Our starting point is recordings of musical
pieces by actual pianists. These recordings are
analyzed with intelligent data analysis meth-
ods from the areas of machine learning, data
mining, and pattern recognition with the aim
of building interpretable quantitative models
of certain aspects of performance. In this way,
we hope to obtain new insight into how ex-
pressive performance works and what musi-
cians do to make music sound like music to us.
The motivation is twofold: (1) by discovering
and formalizing significant patterns and regu-
larities in the artists’ musical behavior, we
hope to make new contributions to the field of
musicology, and (2) by developing new data vi-
sualization and analysis methods, we hope to
extend the frontiers of the field of AI-based sci-
entific discovery.

In this article, we take the reader on a grand
tour of this complex discovery enterprise, from
the intricacies of data gathering—which al-
ready require new AI methods—through novel
approaches to data visualization all the way to
automated data analysis and inductive learn-
ing. We show that even a seemingly intangible
phenomenon such as musical expression can
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is data driven: We collect recordings of perfor-
mances of pieces by skilled musicians;2 mea-
sure aspects of expressive variation (for exam-
ple, the detailed tempo and loudness changes
applied by the musicians); and search for pat-
terns in these tempo, dynamics, and articula-
tion data. The goal is to find interpretable
models that characterize and explain consis-
tent regularities and patterns, if such should
indeed exist. This requires methods and algo-
rithms from machine learning, data mining,
and pattern recognition as well as novel meth-
ods of intelligent music processing.

Our research is meant to complement recent
work in contemporary musicology that has
largely been hypothesis driven (for example,
Friberg [1995]; Sundberg [1993]; Todd [1992,
1989]; Windsor and Clarke [1997]), although
some researchers have also taken real data as
the starting point of their investigations (for ex-
ample, Palmer [1988]; Repp [1999, 1998,
1992]). In the latter kind of research, statistical
methods were generally used to verify hypothe-
ses in the data. We give the computer a more
autonomous role in the discovery process by
using machine learning and related techniques.

Using machine learning in the context of ex-
pressive music performance is not new. For ex-
ample, there have been experiments with case-
based learning for generating expressive
phrasing in jazz ballads (Arcos and López de
Mántaras, 2001; Lopez de Mántaras and Arcos
2002). The goal of that work was somewhat dif-
ferent from ours; the target was to produce
phrases of good musical quality, so the system
makes use of musical background knowledge
wherever possible. In our context, musical
background knowledge should be introduced
with care because it can introduce biases in the
data analysis process. In our own previous re-
search (Widmer 1998, 1995), we (re-)discovered
a number of basic piano performance rules with
inductive learning algorithms. However, these
attempts were extremely limited in terms of
empirical data and, thus, made it practically im-
possible to establish the significance of the
findings in a statistically well-founded way. Our
current investigations, which are described
here, are the most data-intensive empirical
studies ever performed in the area of musical
performance research (computer-based or oth-
erwise) and, as such, probably add a new kind
of quality to research in this area.

Two Basic Questions:
Commonalities and Differences

The starting points for the following presenta-
tion are two generic types of questions regard-

be transformed into something that can be
studied formally and that the computer can in-
deed discover some fundamental (and some-
times surprising) principles underlying the art
of music performance. It turns out that AI
plays an important role in each step of this
complex, multistage discovery project.

The title of the article refers to the late
Vladimir Horowitz (1903–1989), Russian pi-
anist, legendary virtuoso, and one of the most
famous and popular pianists of the twentieth
century, who symbolizes, like few others, the
fascination that great performers hold for the
general audience.

Formally explaining the secret behind the
art and magic of such a great master would be
an extremely exciting feat. Needless to say, it is
not very likely, and no “Horowitz Factor” will
be revealed in this article. Still, we do hope the
following description of the project and its re-
sults will capture the reader’s imagination.

Expressive Music Performance

Expressive music performance is the art of shaping
a musical piece by continuously varying impor-
tant parameters such as tempo and dynamics.
Human musicians do not play a piece of music
mechanically, with constant tempo or loudness,
exactly as written in the printed music score.
Rather, they speed up at some places, slow down
at others, stress certain notes or passages by var-
ious means, and so on. The most important pa-
rameter dimensions available to a performer (a
pianist, in particular) are timing and continuous
tempo changes, dynamics (loudness variations),
and articulation (the way successive notes are
connected). The precise parameter changes are
not specified in the written score, but at the
same time, they are absolutely essential for the
music to be effective and engaging. The expres-
sive nuances added by an artist are what makes
a piece of music come alive (and what makes
some performers famous).

Expressive variation is more than just a devi-
ation from, or a distortion of, the original (no-
tated) piece of music. In fact, the opposite is the
case: The notated music score is but a small part
of the actual music. Not every intended nuance
can be captured in a limited formalism such as
common music notation, and the composers
were and are well aware of this. The performing
artist is an indispensable part of the system, and
expressive music performance plays a central
role in our musical culture. That is what makes
it a central object of study in the field of musi-
cology (see Gabrielsson [1999] for an excellent
overview of pertinent research in the field).

Our approach to studying this phenomenon
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Inductive Learning of Classification
Rules and the PLCG Algorithm

The induction of classification rules is one of the major classes

of learning scenarios investigated in machine learning. Given a

set of examples, each described by a well-defined set of descrip-

tors and labeled as belonging to one of n disjoint classes c1 ... cn,
the task is to induce a general model that is (more or less) con-

sistent with the training examples and can predict the class of

new, previously unseen examples. One class of models are clas-

sification rules of the form class = ci IF <condition1> AND <con-

dition2> AND.... If there are only two classes a and b, one of

which (a, say) is the class we want to find a definition for, one

usually speaks of concept learning and refers to instances of a as

positive examples and instances of b as negative examples. Sets of

classification rules are commonly referred to as theories.
The most common strategy for learning classification rules in

machine learning is known as sequential covering, or separate-

and-conquer (Fürnkranz 1999). The strategy involves inducing

rules one by one and, after having learned a rule, removing all

the examples covered by the rule so that the following learning

steps will focus on the still-uncovered examples. In the simplest

case, this process is repeated until no positive examples are left

that are not covered by any rule. A single rule is learned by usu-

ally starting with the most general rule (a rule with no condi-

tions) that would cover all given examples, positive and nega-

tive, and then refining the rule step by step by adding one

condition at a time so that many negative examples are exclud-

ed, and many positive ones remain covered. The process of se-

lecting conditions is usually guided by heuristics such as weight-

ed information gain (Quinlan 1990) that assess the

discriminatory potential of competing conditions. In the sim-

plest case, rule refinement stops when the current rule is pure,
that is, covers no more negative examples. However, in real life,

data can be noisy (that is, contain errors), and the given data and

rule representation languages might not even permit the formu-

lation of perfectly consistent theories; so, good rule

learning algorithms perform some kind of pruning to

avoid overfitting. They usually learn rules that are not

entirely pure, and they stop before all positive exam-

ples have been covered. The short presentation given

here is necessarily simplified in various ways, and the

reader who wishes to learn the whole story is referred

to Fürnkranz (1999).

At the heart of our new learning algorithm

PLCG is such a sequential covering algorithm. However,

“wrapped around” this simple rule learning algorithm

is a metaalgorithm that essentially uses the underlying

rule learner to induce several partly redundant theo-

ries and then combines these theories into one final

rule set. In this sense, PLCG is an example of what is

known in machine learning as ensemble methods (Di-

etterich 2000). The PLCG algorithm proceeds in several

stages (figure A); it is here we can explain the acronym

PLCG. PLCG stands for partition + learn + cluster + gen-

eralize. In a first step, the training examples are parti-

tioned into several subsets (partition). From each of

these subsets, a set of classification rules is induced

(learn). These rule sets are then merged into one large set, and a

hierarchical clustering of the rules into a tree of rule sets is per-

formed (cluster), where each set contains rules that are some-

how similar. Each of these rule sets is then replaced with the

least general generalization of all the rules in the set (generalize).

The result is a tree of rules of varying degrees of generality. Final-

ly, a heuristic algorithm selects the most promising rules from

this generalization tree and joins them into the final rule set that

is then returned.

The motivation for this rather complex procedure is that in

this way the advantage of ensemble learning—improved predic-

tion accuracy by selectively combining the expertise of several

classifiers—is combined with the benefit of inducing compre-

hensible theories. In contrast to most common ensemble learn-

ing methods such as bagging (Breiman 1996), stacking (Wolpert

1992), or boosting (Freund and Shapire 1996), which only com-

bine the predictions of classifiers to improve prediction accura-

cy, PLCG combines the theories directly and produces one final

rule set that can be interpreted. This is important in the context

of our project, where the focus is on the discovery of inter-

pretable patterns.

Systematic large-scale experiments have shown that PLCG con-

sistently learns more precise theories than state-of-the-art rule-

learning algorithms such as RIPPER (Cohen 1995), but these the-

ories also tend to be much simpler and also more specific; that

is, they cover, or explain, fewer of the positive examples. To put

it in simple terms, PLCG only learns rules for those parts of the

target concept where it is quite sure it can competently predict;

this feature is quite desirable  in our discovery context. More de-

tail on algorithm and experimental results can be found in Wid-

mer (2003).
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Figure A. The PLCG Learning Algorithm: Main Stages.
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ing expressive music performance. First, are
there general, fundamental principles of music
performance that can be discovered and char-
acterized? Are there general (possibly uncon-
scious and definitely unwritten) rules that all
or most performers adhere to? In other words,
to what extent can a performer’s expressive ac-
tions be predicted? Second, is it possible to for-
mally characterize and quantify aspects of indi-
vidual artistic style? Can we formally describe
what makes the special art of a Vladimir Horo-
witz, for example?

The first set of questions thus relates to sim-
ilarities or commonalities between different
performances and different performers, and
the second focuses on the differences. The fol-
lowing project presentation is structured ac-
cording to these two types of questions. The
section entitled “Studying Commonalities” fo-
cuses on the commonalities and briefly recapit-
ulates some of our recent work on learning
general performance rules from data. The ma-
jor part of this article is presented in Studying
Differences, which describes currently ongoing
(and very preliminary) work on the discovery
of stylistic characteristics of great artists.

Both of these lines of research are complex
enterprises and comprise a number of impor-
tant steps—from the acquisition and measur-
ing of pertinent data to computer-based dis-
covery proper. As we see, AI plays an important
role in all these steps.

Studying Commonalities:
Searching for Fundamental 

Principles of Music Performance

The question we turn to first is the search for
commonalities between different performan-
ces and performers. Are there consistent pat-
terns that occur in many performances and
point to fundamental underlying principles?
We are looking for general rules of music per-
formance, and the methods used will come
from the area of inductive machine learning.
This section is kept rather short and only
points to the most important results because
most of this work has already been published
elsewhere (Widmer 2003, 2002b, 2001; Wid-
mer and Tobudic 2003).

Data Acquisition: Measuring
Expressivity in Performances

The first problem is data acquisition. What we
require are precise measurements of the tempo,
timing, dynamics, and articulation in a perfor-
mance of a piece by a musician. In principle, we
need to measure exactly when and how long

and how loud each individual note was played
and how these measurements deviated from
the nominal values prescribed in the written
musical score. Extracting this information with
high precision from sound recordings is not
possible for basic signal processing reasons. In-
stead, our main source of information are spe-
cial pianos that precisely record each action by
a performer. In particular, the Bösendorfer
SE290 is a full-concert grand piano with a spe-
cial mechanism that measures every key and
pedal movement with high precision and stores
this information in a format similar to MIDI.
(The piano also features a mechanical reproduc-
tion facility that can reproduce a recorded per-
formance with very high accuracy.) From these
measurements, and by comparing them to the
notes as specified in the written score, every ex-
pressive nuance applied by a pianist can be
computed.

These nuances can be represented as expres-
sion curves. For example, figure 1 shows dy-
namics curves—the dynamics patterns pro-
duced by three different pianists in performing
the same piece. More precisely, each point rep-
resents the relative loudness with which a par-
ticular melody note was played (relative to an
averaged standard loudness); a purely mechan-
ical, unexpressive rendition of the piece would
correspond to a perfectly flat horizontal line at
y = 1.0. Variations in tempo and articulation
can be represented in an analogous way.

Figure 1 exhibits some clear common pat-
terns and tendencies in the three performan-
ces. Despite individual differences between the
recordings, there seem to be common strate-
gies, or “rules,” that are followed by the pi-
anists, consciously or unconsciously. Obvious-
ly, there is hope for automated discovery
algorithms to find some general principles.

Induction of Note-Level 
Performance Rules

Some such general principles have indeed
been discovered with the help of a new induc-
tive rule-learning algorithm named PLCG (Wid-
mer 2003) (see page 113). PLCG was applied to
the task of learning note-level performance
rules; by note level, we mean rules that predict
how a pianist is going to play a particular note
in a piece—slower or faster than notated, loud-
er or softer than its predecessor, staccato or
legato. Such rules should be contrasted with
higher-level expressive strategies such as the
shaping of an entire musical phrase (for exam-
ple, with a gradual slowing toward the end),
which is addressed later. The training data
used for the experiments consisted of record-
ings of 13 complete piano sonatas by W. A.
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ity and generality of the discovered rules, here
is an extreme example:

Rule TL2:
abstract_duration_context = equal-longer
& metr_strength ≤ 1
⇒ lengthen

“Given two notes of equal duration fol-
lowed by a longer note, lengthen the
note (that is, play it more slowly) that
precedes the final, longer one if this note
is in a metrically weak position (metrical
strength ≤ 1).”

This is an extremely simple principle that
turns out to be surprisingly general: Rule TL2
correctly predicts 1,894 cases of local note
lengthening, which is 14.12 percent of all the
instances of significant lengthening observed
in the training data. The number of incorrect
predictions is 588 (2.86 percent of all the coun-
terexamples), which gives a precision (percent-
age of correct predictions) of .763. It is remark-
able that one simple principle like this is
sufficient to predict such a large proportion of
observed note lengthenings in complex music
such as Mozart sonatas.

To give the reader an impression of just how
effective a few simple rules can be in predicting
a pianist’s behavior in certain cases, figure 2
compares the tempo variations predicted by
our rules to the pianist’s actual timing in a per-
formance of the well-known Mozart Sonata
K.331 in A major (first movement, first sec-

Mozart (K.279-284, 330-333, 457, 475, and
533), performed by the Viennese concert pi-
anist Roland Batik. The resulting data set com-
prises more than 106,000 performed notes and
represents some 4 hours of music. The experi-
ments were performed on the melodies (usual-
ly the soprano parts) only, which gives an ef-
fective training set of 41,116 notes. Each note
was described by 29 attributes (10 numeric, 19
discrete) that represent both intrinsic proper-
ties (such as scale degree, duration, metrical
position) and some aspects of the local context
(for example, melodic properties such as the
size and direction of the intervals between the
note and its predecessor and successor notes,
rhythmic properties such as the durations of
surrounding notes and so on, and some ab-
stractions thereof).

From these 41,116 examples of played notes,
PLCG learned a small set of 17 quite simple clas-
sification rules that predict a surprisingly large
number of the note-level choices of the pianist.
The rules have been published in the musico-
logical literature (Widmer 2002b) and have cre-
ated some interest. The surprising aspect is the
high number of note-level actions that can be
predicted by very few (and mostly very simple)
rules. For example, 4 rules were discovered that
together correctly predict almost 23 percent of
all the situations where the pianist lengthened
a note relative to how it was notated (which
corresponds to a local slowing of the tempo).3

To give the reader an impression of the simplic-
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Figure 1. Dynamics Curves (relating to melody notes) of Performances of the Same Piece (Frédéric Chopin, Etude op.10 no.3, E ma-
jor) by Three Different Viennese Pianists (computed from recordings on a Bösendorfer 290SE computer-monitored grand piano).
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tion). In fact, it is just two simple rules (one for
note lengthening, one for shortening) that
produce the system’s timing curve.4

Experiments also showed that most of these
rules are highly general and robust: They carry
over to other performers and even music of dif-
ferent styles with virtually no loss of coverage
and precision. In fact, when the rules were test-
ed on performances of quite different music
(Chopin), they exhibited significantly higher
coverage and prediction accuracy than on the
original (Mozart) data they had been learned
from. What the machine has discovered here
really seem to be fundamental performance
principles.

A detailed discussion of the rules, as well as
a quantitative evaluation of their coverage and
precision, can be found in Widmer (2002b);
the learning algorithm PLCG is described and
analyzed in Widmer (2003).

Multilevel Learning of 
Performance Strategies

As already mentioned, not all a performer’s de-
cisions regarding tempo or dynamics can be
predicted on a local, note-to-note basis. Musi-
cians understand the music in terms of a mul-
titude of more abstract patterns and structures
(for example, motifs, groups, phrases), and
they use tempo and dynamics to “shape” these
structures, for example, by applying a gradual
crescendo (growing louder) or decrescendo
(growing softer) to entire passages. Music per-

formance is a multilevel phenomenon, with
musical structures and performance patterns at
various levels embedded in each other.

Accordingly, the set of note-level perfor-
mance rules described earlier is currently being
augmented with a multilevel learning strategy
where the computer learns to predict elemen-
tary tempo and dynamics “shapes” (like a grad-
ual crescendo-decrescendo) at different levels
of the hierarchical musical phrase structure
and combines these predictions with local tim-
ing and dynamics predicted by learned note-
level models. Preliminary experiments, again
with performances of Mozart sonatas, yielded
very promising results (Widmer and Tobudic
2003). Just to give an idea, figure 3 shows the
predictions of the integrated learning algo-
rithm on part of a test piece after learning from
other Mozart sonatas. As can be seen in the
lower part of the figure, the system manages to
predict not only local patterns but also higher-
level trends (for example, gradual increases of
overall loudness) quite well.

The curve shown in figure 3 is from a com-
puter-generated performance of the Mozart pi-
ano sonata K.280 in F major. A recording of
this performance was submitted to an Interna-
tional Computer Piano Performance Rendering
Contest (RENCON’02) in Tokyo in September
2002,5 where it won second prize behind a
rule-based rendering system that had carefully
been tuned by hand. The rating was done by a
jury of human listeners. Although this result in
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Figure 2. Mozart Sonata K.331, First Movement, First Part, as Played by Pianist and Learner. 

The curve plots the relative tempo at each note; notes above the 1.0 line are shortened relative to the tempo of the piece, and notes below

1.0 are lengthened. A perfectly regular performance with no timing deviations would correspond to a straight line at y = 1.0.
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ed in studying famous artists. Can we find the

“Horowitz Factor”?

This question might be the more intriguing

one for the general audience because it in-

volves famous artists. However, the reader

must be warned that the question is  difficult.

The following is work in progress, and the ex-

amples given should be taken as indications of

the kinds of things that we hope to discover

rather than as truly significant, established dis-

covery results.

Data Acquisition: Measuring 
Expressivity in Audio Recordings

The first major difficulty is again data acquisi-

tion. With famous pianists, the only source of

data are audio recordings, that is, records and

music CDs (we cannot very well invite them all

no way implies that a machine will ever be able
to learn to play music like a human artist, we
do consider it a nice success for a machine
learning system.

Studying Differences: 
Trying to Characterize 
Individual Artistic Style

The second set of questions guiding our re-
search concerns the differences between indi-
vidual artists. Can one characterize formally
what is special about the style of a particular pi-
anist? Contrary to the research on common
principles described earlier, where we mainly
used performances by local (though highly
skilled) pianists, here we are explicitly interest-
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Figure 3. Learner’s Predictions for the Dynamics Curve of Mozart Sonata K.280, Third Movement, mm. 25-50. 

Top: dynamics shapes predicted for phrases at four levels. Bottom: composite predicted dynamics curve resulting from phrase-level shapes

and note-level predictions (gray) versus pianist’s actual dynamics (black). Line segments at the bottom of each plot indicate hierarchical

phrase structure.
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to Vienna to perform on the Bösendorfer
SE290 piano). Unfortunately, it is impossible,
with current signal-processing methods, to ex-
tract precise performance information (start
and end times, loudness, and so on) about each
individual note directly from audio data. Thus,
it will not be possible to perform studies at the
same level of detail as those based on MIDI da-
ta. In particular, we cannot study how individ-
ual notes are played.

What is currently possible is to extract tem-
po and dynamics at the level of the beat.6 That
is, we extract these time points from the audio
recordings that correspond to beat locations.
From the (varying) time intervals between
these points, the beat-level tempo and its
changes can be computed. Beat-level dynamics
is also computed from the audio signal as the
overall loudness (amplitude) of the signal at
the beat times.

The hard problem here is automatically de-
tecting and tracking the beat in audio record-
ings. Indeed, this is an open research problem
that forced us to develop a novel beat-tracking
algorithm called BEATROOT (Dixon 2001c;
Dixon and Cambouropoulos 2000) (see page
127). Beat tracking, in a sense, is what human
listeners do when they listen to a piece and tap
their foot in time with the music. As with
many other perception and cognition tasks,
what seems easy and natural for a human turns
out to be extremely difficult for a machine.

The main problems to be solved are (1) de-
tecting the onset times of musical events
(notes, chords, and so on) in the audio signal,
(2) deciding which of these events carry the
beat (that includes determining the basic tem-
po, that is, the basic rate at which beats are ex-
pected to occur), and (3) tracking the beat
through tempo changes. Tracking the beat is
extremely difficult in classical music, where the
performer can change the tempo drastically—a
slowing down by 50 percent within 1 second is
nothing unusual. It is difficult for a machine to
decide whether an extreme change in interbeat
intervals is because of the performer’s expres-
sive timing or whether it indicates that the al-
gorithm’s beat hypothesis was wrong.

After dealing with the onset-detection
problem with rather straightforward signal-
processing methods, BEATROOT models the
perception of beat by two interacting process-
es: The first finds the rate of the beats (tempo
induction), and the second synchronizes a
pulse sequence with the music (beat tracking).
At any time, multiple hypotheses can exist re-
garding each of these processes; these are
modeled by a multiple-agent architecture in
which agents representing each hypothesis

compete and cooperate to find the best solu-
tion (Dixon 2001c).

Experimental evaluations showed that the
BEATROOT algorithm is probably one of the best
beat tracking methods currently available
(Dixon 2001a). In systematic experiments with
expressive performances of 13 complete piano
sonatas by W. A. Mozart played by a Viennese
concert pianist, the algorithm achieved a cor-
rect detection rate of more than 90 percent.
However, for our investigations, we needed a
tracking accuracy of 100 percent, so we opted
for a semiautomatic, interactive procedure. The
beat-tracking algorithm was integrated into an
interactive computer program that takes a piece
of music (a sound file); tries to track the beat;7

displays its beat hypotheses visually on the
screen (figure 4); allows the user to listen to se-
lected parts of the tracked piece and modify the
beat hypothesis by adding, deleting, or moving
beat indicators; and then attempts to retrack
the piece based on the updated information.
This process is still laborious, but it is much
more efficient than manual beat tracking.

After a recording has been processed in this
way, tempo and dynamics at the beat level can
easily be computed. The resulting series of tem-
po and dynamics values is the input data to the
next processing step.

Data Visualization: 
The Performance Worm

An important first step in the analysis of com-
plex data is data visualization. Here we draw on
an original idea and method developed by the
musicologist Jörg Langner, who proposed to
represent the joint development of tempo and
dynamics over time as a trajectory in a two-di-
mensional tempo-loudness space (Langner and
Goebl 2002). To provide for a visually appeal-
ing display, smoothing is applied to the origi-
nally measured series of data points by sliding
a Gaussian window across the series of mea-
surements. Various degrees of smoothing can
highlight regularities or performance strategies
at different structural levels (Langner and Goe-
bl 2003). Of course, smoothing can also intro-
duce artifacts that have to be taken into ac-
count when interpreting the results.

We have developed a visualization program
called the PERFORMANCE WORM (Dixon, Goebl,
and Widmer 2002) that displays animated tem-
po-loudness trajectories in synchrony with the
music. A movement to the right signifies an in-
crease in tempo, a crescendo causes the trajec-
tory to move upward, and so on. The trajecto-
ries are computed from the beat-level tempo
and dynamics measurements we make with
the help of BEATROOT; they can be stored to file
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reductions in loudness) to the loudness climax
around the end of bar five, followed by a de-
crescendo toward the end of the phrase. Martha
Argerich’s trajectory, however, betrays a differ-
ent strategy. In addition to a narrower dynam-
ics range and a slower global tempo, what sets
her apart from the others is that, relatively
speaking, she starts fast and then plays the en-
tire phrase with one extended ritardando, inter-
rupted only by a short speeding up between
bars six and seven.9 Also, there is no really no-
ticeable loudness climax in her interpretation.

The point here is not to discuss the musical
or artistic quality of these three perfor-
mances—to do this, one would have to see
(and hear) the phrase in the context of the en-
tire piece—but simply to indicate the kinds of
things one can see in such a visualization.
Many more details can be seen when less
smoothing is applied to the measured data.

We are currently investing large efforts into
measuring tempo and dynamics in recordings

and used for systematic quantitative analysis
(see discussion later).

To give a simple example, Figure 5 shows
snapshots of the WORM as it displays perfor-
mances of the same piece of music (the first
eight bars of Robert Schumann’s Von fremden
Ländern und Menschen, from Kinderszenen,
op.15) by three different pianists.8 Con-
siderable smoothing was applied here to high-
light the higher-level developments within
this extended phrase.

It is immediately obvious from figure 5 that
Horowitz and Kempff have chosen a similar
interpretation. Both essentially divide the
phrase into two four-bar parts, where the first
part is played more or less with an accelerando
(the worm moves to the right) and the second
part with a ritardando, interrupted by a local
speeding up in bar 6 (more pronounced in the
Kempff performance). Their dynamics strate-
gies are highly similar too: a general crescendo
(interweaved, in Horowitz’s case, with two local

Figure 4. Screen Shot of the Interactive Beat-Tracking System BEATROOT Processing the First Five Seconds of a Mozart Piano Sonata. 

Shown are the audio wave form (bottom), the spectrogram derived from it (black “clouds”), the detected note onsets (short vertical lines),

the system’s current beat hypothesis (long vertical lines), and the interbeat intervals in milliseconds (top).
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of different pieces by different famous pianists,
using the interactive BEATROOT system. Our
current collection (as of January 2003)
amounts to more than 500 recordings by pi-
anists such as Martha Argerich, Vladimir
Horowitz, Artur Rubinstein, Maurizio Pollini,
Sviatoslav Richter, and Glenn Gould, playing
music by composers such as Mozart, Bee-
thoven, Schubert, Chopin, Schumann, or
Rachmaninov. Precisely measuring these took
some 12 person-months of hard work.

Figure 6 shows a complete tempo-loudness
trajectory representing a performance of a
Chopin Ballade by Artur Rubinstein. The sub-
sequent analysis steps will be based on this
kind of representation.

Transforming the Problem: 
Segmentation, Clustering, 
Visualization

The smoothed tempo-loudness trajectories
provide intuitive insights, which might make
visualization programs such as the WORM a use-
ful tool for music education. However, the goal
of our research is to go beyond informal obser-
vations and derive objective, quantitative con-
clusions from the data.

Instead of analyzing the raw tempo-loudness
trajectories—which, mathematically speaking,
are bivariate time series—directly, we chose to
pursue an alternative route, namely, to trans-
form the data representation and, thus, the en-
tire discovery problem into a form that is acces-
sible to common inductive machine learning
and data-mining algorithms. To this end, the
performance trajectories are cut into short seg-
ments of fixed length, for example, two beats.
The segments are optionally subjected to vari-
ous normalization operations (for example,
mean and/or variance normalization to ab-
stract away from absolute tempo and loudness
and/or absolute pattern size, respectively). The
resulting segments are then grouped into class-
es of similar patterns using clustering. For each
of the resulting clusters, a prototype is comput-
ed. These prototypes represent a set of typical
elementary tempo-loudness patterns that can
be used to approximately reconstruct a “full”
trajectory (that is, a complete performance). In
this sense, they can be seen as a simple alphabet
of performance, restricted to tempo and dy-
namics. Figure 7 displays a set of prototypical
patterns computed from a set of Mozart sonata
recordings by different artists.

The particular clustering shown in figure 7
was generated by a self-organizing map (SOM)
algorithm (Kohonen 2001). A SOM produces a
geometric layout of the clusters on a two-di-
mensional grid or map, attempting to place

8

 57.0

 11.5

 59.0

 10.5

 61.0

 9.5

 63.0

 8.5

 65.0

 7.5

 67.0

 6.5

 69.0

 5.5

 71.0

 4.5

 73.0

 3.5

sone

BPM

8

 57.0

 14.0

 59.0

 13.0

 61.0

 12.0

 63.0

 11.0

 65.0

 10.0

 67.0

 9.0

 69.0

 8.0

 71.0

 7.0

 73.0

 6.0

sone

BPM

8

 57.0

 17.4

 59.0

 16.3

 61.0

 15.2

 63.0

 14.1

 65.0

 13.0

 67.0

 11.9

 69.0

 10.8

 71.0

 9.7

 73.0

 8.6

sone

BPM

Time: 16.6
Bar: 8
Beat: 16

Time: 14.3
Bar: 8
Beat: 16

Time: 16.4
Bar: 8
Beat: 16

Figure 5. Performance Trajectories over the First Eight Bars of Von fremden
Ländern und Menschen (from Kinderszenen, op.15, by Robert Schumann),
as Played by Martha Argerich (top), Vladimir Horowitz (center), and Wil-

helm Kempff (bottom). 

Horizontal axis: tempo in beats per minute (bpm); vertical axis: loudness in sone

(Zwicker and Fastl 2001). The largest point represents the current instant; instants

further in the past appear smaller and fainter. Black circles mark the beginnings

of bars. Movement to the upper right indicates a speeding up (accelerando) and

loudness increase (crescendo) and so on. Note that the y axes are scaled different-

ly. The musical score of this excerpt is shown at the bottom.
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ciples that all artists adhere to. Most obvious
are the common bright areas in the upper right
and lower left corners; these correspond to a
coupling of tempo and dynamics increases and
decreases, respectively (see figure 7). That is, a
speeding up often goes along with an increase
in loudness, and vice versa. This performance
principle is well known  and is well in accor-
dance with current performance models in
musicology.

The differences between pianists emerge
when we filter out the commonalities. The
right half of figure 8 shows the same pianists
after the commonalities (the joint SDH of all
pianists) have been subtracted from each indi-
vidual SDH. Now we can see clear stylistic dif-
ferences. Witness, for example, the next-to-
rightmost cluster in the bottom row, which
represents a slowing down associated with an
increase in loudness (a movement of the trajec-

similar clusters close to each other. This prop-
erty, which is quite evident in figure 7, facili-
tates a simple, intuitive visualization method.
The basic idea, named smoothed data his-
tograms (SDHs), is to visualize the distribution
of cluster members in a given data set by esti-
mating the probability density of the high-di-
mensional data on the map (see Pampalk,
Rauber, and Merkl [2002] for details). Figure 8
shows how SDHs can be used to visualize the
frequencies with which certain pianists use el-
ementary expressive patterns (trajectory seg-
ments) from the various clusters.

Looking at these SDHs with the correspond-
ing cluster map (figure 7) in mind gives us an
impression of which types of patterns are
preferably used by different pianists. Note that
generally, the overall distributions of pattern
usage are quite similar (figure 8, left). Obvious-
ly, there are strong commonalities, basic prin-

50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

Figure 6. A Complete WORM: Smoothed Tempo-Loudness Trajectory Representing a 
Performance of Frédéric Chopin’s Ballade op.47 in A Flat Major by Artur Rubinstein.

Horizontal axis: tempo in beats per minute (bpm); vertical axis: loudness in sone (Zwicker and Fastl 2001).
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tory toward the upper left). This pattern is
found quite frequently in performances by
Horowitz, Schiff, and Batik but much less so in
performances by Barenboim, Uchida, and (es-
pecially) Pires. An analogous observation can
be made in the next-to-leftmost cluster in the
top row, which also represents a decoupling of
tempo and dynamics (speeding up but growing
softer). Again, Pires is the pianist who does this
much less frequently than the other pianists.
Overall, Maria João Pires and András Schiff ap-
pear to be particularly different from each oth-
er, and this impression is confirmed when we
listen to the Mozart recordings of these two pi-
anists.

Structure Discovery in Musical Strings

The SDH cluster visualization method gives
some insight into very global aspects of perfor-
mance style—the relative frequency with
which different artists tend to use certain styl-

istic patterns. It does show that there are sys-
tematic differences between the pianists, but
we want to get more detailed insight into char-
acteristic patterns and performance strategies.
To this end, another (trivial) transformation is
applied to the data.

We can take the notion of an alphabet liter-
ally and associate each prototypical elementary
tempo-dynamics shape (that is, each cluster
prototype) with a letter. For example, the pro-
totypes in figure 7 could be named A, B, C, and
so on. A full performance—a complete trajectory
in tempo-dynamics space—can be approximat-
ed by a sequence of elementary prototypes and
thus be represented as a sequence of letters,
that is, a string. Figure 9 shows a part of a per-
formance of a Mozart sonata movement coded
in terms of such an alphabet.

This final transformation step, trivial as it
might be, makes it evident that our original
musical problem has now been transferred into
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Figure 7. A Mozart Performance Alphabet (cluster prototypes) Computed by Segmentation, Mean, and Variance 
Normalization and Clustering from performances of Mozart Piano Sonatas by Six Pianists 

(Daniel Barenboim, Roland Batik, Vladimir Horowitz, Maria João Pires, András Schiff, and Mitsuko Uchida).

To indicate directionality, dots mark the end points of segments. Shaded regions indicate the variance within a cluster.
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Barenboim Pires

Schiff Uchida

Batik Horowitz

Barenboim (–Average) Pires (–Average)

Schiff (–Average) Uchida (–Average)

Batik (–Average) Horowitz (–Average)

Figure 8. A Smoothed Data Histogram (SDH) Visualization of the Mozart Performances, 
Grouped by Pianist (see figure 7 for the corresponding cluster map). 

Left: “Plain” SDH showing the relative frequency of pattern use by the individual pianists. Right: To emphasize the differences between the

artists, the joint SDH of all pianists was subtracted from each individual SDH. Bright areas indicate high frequency of pattern use.

CDSRWHGSNMBDSOMEXOQVWOQQHHSRQVPHJFATGFFUVPLDTPNMECDOVTOMECDSPFXP

OFAVHDTPNFEVHHDXTPMARIFFUHHGIEEARWTTLJEEEARQDNIBDSQIETPPMCDTOMAW

OFVTNMHHDNRRVPHHDUQIFEUTPLXTORQIEBXTORQIECDHFVTOFARBDXPKFURMHDTT

PDTPJARRQWLGFCTPNMEURQIIBDJCGRQIEFFEDTTOMEIFFAVTTPKIFARRTPPPNRRM

IEECHDSRRQEVTTTPORMCGAIEVLGFWLHGARRVLXTOQRWPRRLJFUTPPLSRQIFFAQIF

ARRLHDSOQIEBGAWTOMEFETTPKECTPNIETPOIIFAVLGIECDRQFAVTPHSTPGFEJAWP

ORRQICHDDDTPJFEEDTTPJFAVTOQBHJRQIBDNIFUTPPLDHXOEEAIEFFECXTPRQIFE

CPOVLFAVPTTPPPKIEEFRWPNNIFEEDTTPJFAXTPQIBDNQIECOIEWTPPGCHXOEEUIE

FFICDSOQMIFEEBDTPJURVTTPPNMFEARVTTFFFFRVTLAMFFARQBXSRWPHGFBDTTOU

...............................

Figure 9. Beginning of a Performance by Daniel Barenboim (W. A. Mozart piano sonata K.279 in C major) 
Coded in Terms of a 24-Letter Performance Alphabet Derived from a Clustering of Performance Trajectory Segments.
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a quite different world: the world of string
analysis. The fields of pattern recognition, ma-
chine learning, data mining, and so on, have
developed a rich set of methods that can find
structure in strings and that could now prof-
itably be applied to our musical data.10

There are a multitude of questions one
might want to ask of these musical strings. For
example, one might search for letter sequences
(substrings) that are characteristic of a particu-
lar pianist (see later discussion). One might
search for general, frequently occurring sub-
strings that are typical components of perfor-
mances—stylistic clichés, so to speak. Using
such frequent patterns as building blocks, one
might try to use machine learning algorithms
to induce—at least partial—grammars of musi-
cal performance style (for example, Nevill-
Manning and Witten 1997). One might also
investigate whether a machine can learn to
identify performers based on characteristics of
their performance trajectories.

We are working along several of these lines.
For example, we are currently experimenting
with classification algorithms that learn to rec-
ognize famous pianists based on aspects of
their performance trajectories, both at the level
of the raw trajectories (numeric values) and at
the level of performance strings. First experi-
mental results are quite encouraging (Sta-
matatos and Widmer 2002; Zanon and Wid-
mer 2003): there seem to be artist-specific
patterns in the performances that a machine
can identify.

In the following discussion, we look at a
more direct attempt at discovering stylistic pat-
terns typical of different artists. Let’s take the
previous performance strings and ask the fol-
lowing question: Are there substrings in these
strings that occur much more frequently in
performances by a particular pianist than in
others?

Such a question is a data-mining one. We do
not want to bore the reader with a detailed
mathematical and algorithmic account of the
problem. Essentially, what we are looking for
are letter sequences with a certain minimum
frequency that occur only in one class of
strings (that is, in performances by one pi-
anist). In data-mining terms, these could be
called discriminative frequent sequences. In reali-
ty, patterns that perfectly single out one pianist
from the others will be highly unlikely, so in-
stead of requiring uniqueness of a pattern to a
particular pianist, we will be searching for pat-
terns that exhibit a certain level of discrimina-
tory power.

Data mining has developed a multitude of
methods for discovering frequent subsets or se-

quences in huge sequences of events or items
(for example, Agrawal and Srikant [1994] and
Mannila, Toivonen, and Verkamo [1997]). We
extended one of these basic methods—the lev-
elwise search algorithm for finding frequent
item sets (Agrawal and Srikant 1994)—toward
being able to find frequent subsequences that
are also discriminative, where discriminatory
potential is related to the level of certainty
with which one can predict the pianist after
having observed a particular pattern. Techni-
cally, this method involves computing the en-
tropies of the distribution of the pattern occur-
rences across the pianists and selecting
patterns with low entropy (Widmer 2002a).

In a first experiment with recordings of
Mozart piano sonatas—5 sonatas, 54 sections,
6 pianists (Daniel Barenboim, Roland Batik,
Glenn Gould, Maria João Pires, András Schiff,
and Mitsuko Uchida)—a number of sequences
were discovered that are discriminative accord-
ing to our definition and also look like they
might be musically interesting. For example, in
one particular alphabet, the sequence FAVT
came up as a typical Barenboim pattern, with
seven occurrences in Barenboim’s Mozart per-
formances, two in Pires, one in Uchida, and
none in the other pianists (see also figure 9).

Now what is FAVT? To find out whether a
letter sequence codes any musically interesting
or interpretable behavior, we can go back to
the original data (the tempo-loudness trajecto-
ries) and identify the corresponding trajectory
segments in the recordings that are coded by
the various occurrences of the sequence. As the
left part of figure 10 shows, what is coded by
the letter sequence FAVT in Daniel Baren-
boim’s performances of Mozart is an increase
in loudness (a crescendo), followed by a slight
tempo increase (accelerando), followed by a
decrease in loudness (decrescendo) with more
or less constant tempo. This pattern is, indeed,
rather unusual. In our experience to date, it is
quite rare to see a pianist speed up during a
loudness maximum. Much more common in
such situations are slowings down (ritardandi),
which gives a characteristic counterclockwise
movement of the WORM; for example, the right
half of figure 10 shows instantiations of a pat-
tern that seems characteristic of the style of
Mitsuko Uchida (8 occurrences versus 0 in all
the other pianists). This “Barenboim pattern”
might, thus, really be an interesting discovery
that deserves more focused study.

What about Vladimir Horowitz, the reader
might ask. Where is the Horowitz factor? This
is a fair question, given the rather grandiose ti-
tle of this article. Figure 11 shows a pattern
that was discovered as potentially typical of
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Horowitz in an experiment with Chopin
recordings by various famous pianists, includ-
ing Horowitz, Rubinstein, and Richter. The
tempo-loudness trajectory corresponding to
the pattern describes a slowing down with a
decrescendo—a movement from the upper
right to the lower left—followed by a little
speedup—the loop—followed again by a slow-
ing down, now with a crescendo, an increase
in loudness. If nothing else, this pattern cer-
tainly looks nice. Instantiations of the pattern,
distorted in various forms, were found in
Horowitz recordings of music by Mozart,
Chopin, and even Beethoven (see figure 12).

Is this a characteristic Horowitz performance
pattern, a graphic illustration of Horowitz’s in-
dividuality?

A closer analysis shows that the answer is
no.11 When we actually listen to the corre-
sponding sections from the recordings, we find
that most of these patterns are not really per-
ceivable in such detail. In particular, the little
interspersed accelerando in the bottom left
corner that makes the pattern look so interest-
ing is so small in most cases—it is essentially
the result of a temporal displacement of a sin-
gle melody note—that we do not hear it as a
speedup. Moreover, it turns out that some of
the occurrences of the pattern are artifacts,
caused by the transition from the end of one
sonata section to the start of the next, for ex-
ample.

One must be careful not to be carried away
by the apparent elegance of such discoveries.
The current data situation is still too limited to
draw serious conclusions. The absolute num-
bers (8 or 10 occurrences of a supposedly typi-
cal pattern in recordings by a pianist) are too
small to support claims regarding statistical sig-
nificance. Also, we cannot say with certainty
that similar patterns do not occur in the perfor-
mances by the other pianists just because they
do not show up as substrings—they might be
coded by a slightly different character se-
quence! Moreover, many alternative perfor-
mance alphabets could be computed; we cur-
rently have no objective criteria for choosing
the optimal one in any sense. Finally, even if
we can show that some of these patterns are
statistically significant, we will still have to es-
tablish their musical relevance, as the Horowitz
example clearly shows. The ultimate test is lis-
tening, and that is a very time-consuming ac-
tivity.

Thus, this section appropriately ends with a
word of caution. The reader should not take
any of the patterns shown here too literally.
They are only indicative of the kinds of things
we hope to discover with our methods.
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Figure 11. A Typical Horowitz Pattern?

ways of looking at high-level aspects of perfor-
mance and visualizing differences in perfor-
mance style (Dixon, Goebl, and Widmer 2002);
and a first set of performance patterns that
look like they might be characteristic of partic-
ular artists and that might deserve more de-
tailed study.

Along the way, a number of novel methods
and tools of potentially general benefit were
developed: the beat-tracking algorithm and the
interactive tempo-tracking system (Dixon
2001c), the PERFORMANCE WORM (Dixon et al.
2002) (with possible applications in music ed-
ucation and analysis), and the PLCG rule learn-
ing algorithm (Widmer 2003), to name a few.

However, the list of limitations and open
problems is much longer, and it seems to keep
growing with every step forward. Here, we dis-
cuss only two main problems related to the lev-
el of the analysis:

First, the investigations should look at much
more detailed levels of expressive performance,
which is currently precluded by fundamental
measuring problems. At the moment, it is only
possible to extract rather crude and global in-
formation from audio recordings; we cannot
get at details such as timing, dynamics, and ar-
ticulation of individual voices or individual
notes. It is precisely at this level—in the
minute details of voicing, intervoice timing,
and so on—that many of the secrets of what
music connoisseurs refer to as a pianist’s
unique “sound” are hidden. Making these ef-
fects measurable is a challenge for audio analy-
sis and signal processing, one that is currently
outside our own area of expertise.

Second, this research must be taken to high-
er structural levels. It is in the global organiza-
tion of a performance, the grand dramatic
structure, the shaping of an entire piece, that
great artists express their interpretation and
understanding of the music, and the differ-
ences between artists can be dramatic. These
high-level “master plans’”do not reveal them-
selves at the level of local patterns we studied
earlier. Important structural aspects and global
performance strategies will only become visible
at higher abstraction levels.

These questions promise to be a rich source
of challenges for sequence analysis and pattern
discovery. First, we may have to develop appro-
priate high-level pattern languages.

In view of these and many other problems,
this project will most likely never be finished.
However, much of the beauty of research is in
the process, not in the final results, and we do
hope that our (current and future) sponsors
share this view and will keep supporting what
we believe is an exciting research adventure.

Whether these findings will indeed be musical-

ly relevant and artistically interesting can only

be hoped for at the moment.

Conclusion

It should have become clear by now that ex-

pressive music performance is a complex phe-

nomenon, especially at the level of world-class

artists, and the “Horowitz Factor,” if there is

such a thing, will most likely not be explained

in an explicit model, AI-based or otherwise, in

the near future. What we have discovered to

date are only tiny parts of a big mosaic. Still, we

do feel that the project has produced a number

of results that are interesting and justify this

computer-based discovery approach.

On the musical side, the main results to date

were a rule-based model of note-level timing,

dynamics, and articulation with surprising

generality and predictivity (Widmer 2002b); a

model of multilevel phrasing that even won a

prize in a computer music performance contest

(Widmer and Tobudic 2003); completely new
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Finding the Beat 
with BEATROOT

Beat tracking involves identifying the basic rhythmic pulse of a

piece of music and determining the sequence of times at which

the beats occur. The BEATROOT (Dixon 2001b, 2001c) system ar-

chitecture is illustrated in figure A. Audio or MIDI data are

processed to detect the onsets of notes, and the timing of these

onsets is analyzed in the tempo induction subsystem to generate

hypotheses of the tempo at various metric levels. Based on these

tempo hypotheses, the beat-tracking subsystem performs a mul-

tiple hypothesis search that finds the sequence of beat times fit-

ting best to the onset times.

For audio input, the onsets of events are found using a time-

domain method that detects local peaks in the slope of the am-

plitude envelope in various frequency bands of the signal. The

tempo-induction subsystem then proceeds by calculating the in-

teronset intervals (IOIs) between pairs of (possibly nonadjacent)

onsets, clustering the intervals to find common durations, and

then ranking the clusters according to the number of intervals

they contain and the relationships between different clusters to

produce a ranked list of basic tempo hypotheses.

These hypotheses are the starting point for the beat-tracking

algorithm, which uses a multiple-agent architecture to test the

different tempo and phase hypotheses simultaneously and finds

the agent whose predicted beat times most closely match those

implied by the data. Each hypothesis is handled by a beat-track-

ing agent, characterized by its state and history. The state is the

agent’s current hypothesis of the beat frequency and phase, and

the history is the sequence of beat times selected to date by the

agent. Based on their current state, agents predict beat times and

match them to the detected note onsets, using deviations from

predictions to adjust the hypothesized current beat rate and

phase or create a new agent when there is more than one reason-

able path of action. The agents assess their performance by eval-

uating the continuity, regularity, and salience of the matched

beats.

Figure A. BEATROOT Architecture.
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Notes

1. See also the project web page at www.oefai.at/mu-

sic.

2. At the moment, we restrict ourselves to classical

tonal music and the piano.

3. It should be clear that a coverage of close to 100

percent is totally impossible, not only because ex-

pressive music performance is not a perfectly deter-

ministic, predictable phenomenon but also because

the level of individual notes is clearly insufficient as

a basis for a complete model of performance; musi-

cians think not (only) in terms of single notes but al-

so in terms of higher-level musical units such as mo-

tifs and phrases—see the subsection entitled

Multilevel Learning of Performance Strategies.

4. To be more precise, the rules predict whether a

note should be lengthened or shortened; the precise

numeric amount of lengthening or shortening is pre-

dicted by a k–nearest-neighbor algorithm (with k = 3)

that uses only instances for prediction that are cov-

ered by the matching rule, as proposed in Weiss and

Indurkhya (1995) and Widmer (1993).

5. Yes, there is such a thing….

6. The beat is an abstract concept related to the met-

rical structure of the music; it corresponds to a kind

of quasiregular pulse that is perceived as such and

that structures the music. Essentially, the beat is the

time points where listeners would tap their foot

along with the music. Tempo, then, is the rate or fre-

quency of the beat and is usually specified in terms

of beats per minute.

7. The program has been made publicly available and

can be downloaded at www.oefai.at/~simon.

8. Martha Argerich, Deutsche Grammophon, 410

653-2, 1984; Vladimir Horowitz, CBS Records (Mas-

terworks), MK 42409, 1962; Wilhelm Kempff, DGG

459 383-2, 1973.

9. Was this unintentional? A look at the complete

trajectory over the entire piece reveals that quite in

contrast to the other two pianists, she never returns
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Figure 12. The Alleged Horowitz Pattern in Horowitz Recordings of
Music by Mozart (top), Chopin (center), and Beethoven (bottom). (W.

A. Mozart: Piano Sonata K281, Bb major, 1st movement, recorded
1989; F. Chopin: Etude op.10 no. 3, E major and Ballade no.4,
op.52, F minor, recorded 1952; L. van Beethoven: Piano Sonata

op.13 in C minor [“Pathéthique”], 2nd movement, recorded 1963).



to the starting tempo again. Could it be that she

started the piece faster than she wanted to?

10. However, it is also clear that through this long se-

quence of transformation steps—smoothing, seg-

mentation, normalization, replacing individual ele-

mentary patterns by a prototype—a lot of

information has been lost. It is not clear at this point

whether this reduced data representation still per-

mits truly significant discoveries. In any case, what-

ever kinds of patterns might be found in this repre-

sentation will have to be tested for musical

significance in the original data.

11. That would have been too easy, wouldn’t it?
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