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The three-dimensional structure of a protein is a key determinant of its biological func-
tion. Given the cost and time required to acquire this structure through experimental
means, computational models are necessary to complement wet-lab efforts. Many com-
putational techniques exist for navigating the high-dimensional protein conformational
search space, which is explored for low-energy conformations that comprise a protein’s
native states. This work proposes two strategies to enhance the sampling of conforma-
tions near the native state. An enhanced fragment library with greater structural diver-
sity is used to expand the search space in the context of fragment-based assembly. To
manage the increased complexity of the search space, only a representative subset of the
sampled conformations is retained to further guide the search towards the native state.
Our results make the case that these two strategies greatly enhance the sampling of the
conformational space near the native state. A detailed comparative analysis shows that
our approach performs as well as state-of-the-art ab initio structure prediction protocols.

Keywords: Protein native state; conformational ensemble; probabilistic search; tree-
based projection-guided exploration; fragment library.

1. Introduction

Protein molecules play a central role in biochemical processes in the cell and in

various diseases. The spatial arrangement of a protein’s atoms, referred to as a

structure or conformation, is a key determinant of a protein’s biological function.

A protein molecule assumes specific conformations under physiologic (native) con-

ditions to fit and interact with other molecules. The great number of novel protein
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sequences with no known structures and the time and cost associated with resolving

structures in the wet lab call for computational methods to complement wet-lab

efforts.

The Anfinsen experiments showed that the amino-acid sequence governs the

folding of a protein chain into a “biologically active conformation” under a “nor-

mal physiological milieu”.1 Research also shows that proteins are not rigid. The

biologically active state is an ensemble of (native) conformations.2–4 Probing this

ensemble when employing only knowledge of the amino-acid sequence of a protein at

hand continues to challenge computational structural biology.5 Computing native

conformations, however, is crucial in associating structural and functional informa-

tion with novel protein sequences, engineering novel proteins, predicting protein

stability, and modeling protein–ligand or protein–protein interactions.6–8

A protein chain consists of smaller building blocks, amino acids. Amino acids

connect their backbone atoms to form a backbone chain, as shown in Fig. 1(a),

with side-chain atoms dangling off the backbone. Tracking the various conforma-

tions of a protein chain involves exploring a vast conformational space of many

dimensions. Many degrees of freedom (DOFs) are needed to represent a protein

chain. One can reduce the level of detail through coarse-grained representations,

such as backbone-only models, which track only conformations of the backbone.

Once a native backbone conformation is found, computational techniques can be

used to find physically relevant placements of the side chains.9,10

(a) (b)

Fig. 1. (a) Backbone atoms in the chain of four amino acids are labeled N (gray), Cα (black), C
(gray), and O (silver). A peptide bond Ni-Ci+1 links two amino acids together (i proceeds from
N- to C-terminus, which refer to backbone N and C atoms not involved in peptide bonds). Atoms
in white are labeled R for residue. There are 20 distinct residues or side chains in natural proteins.
(b) We cross-sect energy landscape (grid on z axis) and projection of conformational space (grid
on xy axis, two coordinates shown for visualization).
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A chain of n amino acids contains 2n backbone dihedral angles that can be

modified to obtain backbone conformations. The conformational space of interest

is further narrowed when focusing on native conformations. These conformations are

associated with the lowest energies in a funnel-like energy surface.3 The totality of

atomic interactions in a conformation results in a potential energy that determines

the probability of that conformation to be populated under native conditions.3

The energy surface is rich in local minima, some of which are introduced by the

current empirical energy functions that measure potential energy. By reducing the

number of atoms modeled, coarse-grained representations and the energy functions

that operate on them are more computationally appealing than all-atom functions

but may introduce more inaccuracies. It is generally accepted, however, that mod-

ern functions do not significantly hamper a powerful conformational search.11 A

powerful search algorithm needs to populate a sufficient number of energy min-

ima in order to probe the native state without spending impractical resources

on irrelevant regions of the search space. These relevant regions are not known

a priori.

We have recently proposed a probabilistic search algorithm that essentially

addresses the question of where to devote exploration time.12 The algorithm gath-

ers information about regions of the conformational space and energy surface it

explores. Discretizations of the explored conformational space and energy surface

are employed to further guide the search in the conformational space.

The algorithm grows a search tree in conformational space, reconciling two

goals: (i) expanding towards low-energy conformations while (ii) not oversampling

geometrically similar conformations. The first goal guides the tree deep in the energy

surface. The second goal grows the tree wide in conformational space. Both the

energy surface and the explored conformational space are discretized in order to

balance these two goals [see Fig. 1(b)]. The employment of discretization layers is

inspired by sampling-based motion-planning work that balance exploration between

coverage and progress toward the goal.13–21

In this paper, we propose two strategies to enhance the sampling of the confor-

mational space near the native state within reasonable resources. First, an enhanced

library of structurally diverse fragment configurations is used to assemble low-

energy conformations and increase the complexity of the search space. Increasing

the complexity appears counterintuitive to efforts to expedite search. The discretiza-

tions employed in our algorithm, however, allow implementing a second strategy

to address complexity. Only a representative subset of the sampled conformations

is maintained and employed to further guide the search for native conformations,

effectively reducing the granularity of the conformational ensemble maintained in

the search tree. Results show that these strategies enhance the sampling of the

conformational space near the native state. This work is promising for large-scale

proteomics applications, where the focus is on quickly probing the native state and

then refining selected conformations in detailed biophysical studies.
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The rest of this paper is organized as follows. A brief summary of related work

is provided in Sec. 1.1. Our method is described in Sec. 2. Results follow in Sec. 3.

The article concludes with a discussion in Sec. 4.

1.1. Related work

Where should a search algorithm devote its time? Regions that lead to the solution

space are not known a priori, since stochastic search of a high-dimensional space

affords only a local view. An effective search algorithm needs to strike the right bal-

ance between populating a large number of distinct low-energy regions and focusing

further resources to regions likely to lead to the energy basin corresponding to the

native state. Early work introduced the idea of a two-stage hierarchical exploration

that searches the whole conformational space first and then narrows the search in

a later stage to smaller regions with low energy and distinct geometry.22

Since the success of locating the energy basin in the second stage depends on

the regions populated by the first stage, the emerging state-of-the-art template

is to sample a large number of low-energy conformations in the first stage and

build a broad map of the energy landscape.6,23–27 Conformational clustering is then

conducted to reveal distinct minima that constitute good starting points from which

expensive (in finer detail) local searches in the second stage can reach the basin.

Since the local searches employed in the second stage are computationally expensive,

it is important that the first stage reveal few distinct local minima worth exploring

in greater detail. It still takes weeks on multiple CPUs to obtain a large number of

low-energy conformations potentially relevant for the native state.6,23,24,26,27

The first stage of the search and the analysis over the conformations are often

independent of each other. As a result, computed conformations cannot be ensured

to be geometrically distinct. Incorporating geometric diversity during the explo-

ration is nontrivial, in part because it remains difficult to find meaningful confor-

mational (reaction) coordinates on which to measure geometric diversity. Popular

measures like least Root-Mean-Squared-Deviation (lRMSD) and radius of gyration

(Rg) are confined to the analysis because they can mask away important differences.

Specifically, work in Ref. 23 has shown that important minima can be missed even

when employing Rg to select distinct conformations obtained at a current temper-

ature to initiate MC trajectories at the next temperature in a Simulated Annealing

MC search. Significant work in biophysics is devoted to finding effective reaction

coordinates for proteins (cf. to Ref. 11).

Our recently proposed search algorithm incorporates analysis over explored

regions of the conformational space and where they map in the energy surface

in order to adaptively direct computational resources.12,28 The analysis is carried

out over discretizations of the explored space in order to guide the search over the

continuous conformational space (a brief summary of the algorithm is provided in

Sec. 2). As our methods and results shows, sampling of the conformational space

near the native state is further enhanced if one increases the complexity of the
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space while reducing the size of the conformational ensemble maintained in the

search tree.

2. Methods

We first summarize the main steps of the algorithm proposed in Refs.12 and 28

(shown below). Given a protein sequence α, the goal is to obtain an ensemble Ωα,

where the lowest-energy backbone-only conformations are sufficiently close to the

native state that they can be further refined to recover this state in all-atom detail.

Input: α, amino-acid sequence

Output: ensemble Ωα of conformations
1: Cinit ← extended coarse-grained conf from α

2: AddConf(Cinit, LayerE , LayerProj)

3: while Time AND |Ωα| do not exceed limits do

4: ℓ ← SelectEnergyLevel(LayerE)

5: cell ← SelectGeomCell(ℓ.LayerProj.cells)

6: C ← SelectConf(cell.confs)

7: Cnew ← ExpandConf(C)

8: AddConf(Cnew, LayerE , LayerProj)

9: Ωα ← Ωα ∪ {Cnew}

10: end while

An explicit one-dimensional (1D) grid is defined over interval [Emin, Emax],

where Emin is the minimum energy over computed conformations, and Emax is

the energy of the extended conformation. Energy levels ℓ are generated every δE

units, which is set to a small 2 kcal/mol, so that the average energy Eavg(ℓ) over

conformations in a level ℓ ∈ LayerE captures the distribution of energies in ℓ well.

This discretization is used to bias the selection towards conformations in lower

energy levels through the quadratic weight function w(ℓ) = Eavg(ℓ) · Eavg(ℓ). A

level ℓ is selected with probability w(ℓ)/
∑

ℓ′∈Layer
E

w(ℓ′).

An implicit three-dimensional (3D) grid is associated with ℓ based on a uniform

discretization of geometric coordinates. Three coordinates that capture extrema

in a 3D structure are adapted from the ultrafast shape recognition (USR) features

proposed in Ref. 29. A second weight function selects cells with fewer conformations

as in 1.0/[(1.0 + nsel) · nconfs], where nsel records how often a cell is selected,

and nconfs is the number of conformations that project to the cell. Once a cell is

chosen, the actual conformation selected for expansion is obtained at random over

those in the cell.

A new conformation Cnew that expands the tree (and grows the conformational

ensemble Ωα) from a selected C conformation is sampled through a Metropolis

Monte Carlo technique that employs fragment-based assembly. The backbone dihe-

dral angles of a selected fragment of three amino acids (trimer) in C are exchanged
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388 B. Olson, K. Molloy & A. Shehu

with angles from a library of trimer configurations built from a nonredundant subset

of known protein native structures. A total of n − 2 (n amino acids in the chain)

exchanges are evaluated according to the Metropolis criterion to obtain Cnew.

Applications on different protein sequences reveal that the ensemble Ωα of low-

energy backbone conformations sampled for a sequence in a few CPU hours contains

many conformations similar to the known native structure.12 Comparisons with a

Monte Carlo trajectory show the algorithm has a higher sampling capability.12,28

However, detailed inspection of how the algorithm navigates the conformational

space near the native state reveals that the ability to add low-energy conformations

diminishes significantly with time. It becomes more difficult to find new low-energy

conformations in underexplored regions of the conformational space. Moreover, the

multitude of conformations retained in Ωα imposes restrictions on execution time.

We propose two strategies to sample more low-energy conformations near the

native state. An enhanced fragment library with greater structural diversity is used

to assemble low-energy conformations and sample more conformations near the

native state. To efficiently handle the ensuing vast conformational space, only a

representative subset of the sampled conformations is maintained and employed to

further guide the tree in conformational space. We now detail these strategies.

2.1. Enhancing the trimer configuration library

Fragment-based assembly has been incorporated into most state-of-the-art folding

algorithms.6,24–26,30,31 The diversity of the fragment library influences the quality

of the assembled conformations.31 The domain of the conformational search space is

primarily determined by the fragment library. To provide the exploration a greater

domain in which to search for native conformations, we propose an enhanced frag-

ment library that essentially adds complexity to the conformational space.

The original fragment library (OFL) used in our recent work12,28 contains trimer

configurations, organized by trimer amino-acid sequence. A subset of nonredundant

protein structures is extracted through the PISCES server32 from the Protein Data

Bank (PDB).33 The subset contains only proteins that have ≤ 40% sequence simi-

larity, ≤ 2.5 Å resolution and R-factor ≤0.2. The 40% cutoff reduces the topologies

that are overpopulated by similar protein sequences in the PDB. The remaining

6,000 protein chains are split into all overlapping trimers. The configurations, back-

bone dihedral angles, of these trimers are recorded in a fragment library indexed

by trimer amino-acid sequences.

When a conformation is selected for expansion, each of the n − 2 Monte Carlo

moves propose to replace a trimer configuration with a configuration extracted from

the fragment library. In the OFL, the candidate configurations are only those with

matching amino-acid sequences to the trimer configuration chosen for replacement.

Focusing only on trimer configurations with the same amino-acid sequence does not

allow considering configurations that, while slightly different in sequence, may allow

assembling novel conformations that meet the Metropolis criterion. Analysis of
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protein structures reveals that proteins have similar native structures with as little

as 15% sequence identity.34 Excluding trimer configurations because their amino-

acid sequence is not identical to that of the trimer selected for replacement restricts

the conformational search space. This may prevent sampling novel conformations

potentially relevant for the native state of the given protein sequence.

We propose to expand the conformational space available to our algorithm

with an enhanced fragment library (EFL). Local features predicted from the given

sequence α are used to design a structurally diverse high-quality library of configu-

rations. The candidate trimer configurations in EFL are dependent on α. We refer

to a specific library instance designed from a given α as EFLα. Our construction of

EFLα biases toward trimer configurations that share features with those predicted

from α. Essentially, EFLα, whose construction is detailed below, allows selecting

configurations that have similar (not necessarily identical) sequences to a trimer

configuration selected for replacement. While placing a more diverse set of config-

urations at the disposal of the expansion routine in the algorithm, EFLα does not

contain more configurations than OFL. The configurations are limited to those that

share secondary structure annotations with the annotation predicted on α.

EFLα is constructed as follows. A multiple-sequence alignment (MSA) lists pro-

teins that have similar sequences to the given α. PSI-BLAST35 is then employed

to analyze the MSA and yield for each position i in α a list of amino acids that

can replace the amino acid at position i. The resulting position-specific profile

for α reveals what alternative trimer sequences can be considered as similar to a

trimer from position i to i + 2. The configurations of these trimers, extracted from

a nonredundant database of protein structures as detailed above, can be added

as candidate configurations to those extracted for the trimer sequence from i to

i + 2. A filtering step improves the quality of the resulting configurations. Only

configurations with the same secondary structure (as present in the known protein

structures from which the trimer configurations are extracted) as that predicted for

α with PSI-PRED36 are added as candidate configurations for a trimer. Considering

configurations of similar sequences but identical secondary structures has become

very popular in ab initio structure prediction methods that employ fragment-based

assembly.6

The resulting EFLα represents (combinatorially) a conformational space that is

both larger and more likely to share local structural motifs with the native structure

of the sequence α. Results in Sec. 3 show that our algorithm is able to take advantage

of this more complex conformational space to discover more conformations relevant

for the native state than when employing the original fragment library.

2.2. Reducing the granularity of the conformational ensemble Ωα

One of the benefits of employing trimer configurations to assemble conformations is

that hundreds of thousands of conformations can be sampled this way in less than a

day on one CPU. Maintaining all these conformations in the ensemble Ωα introduces
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both a practical memory limitation and unnecessary difficulty in selecting a con-

formation for expansion. Our recent work limits the exploration to three hours on

one CPU in order to limit the size of the conformational ensemble.12,28 Limiting

the size of the conformational ensemble, however, limits the explorative power of

the algorithm. Moreover, the enhanced fragment library increases the size of the

conformational space to be sampled. In order to explore this broader space while

not limiting the sampling capability of the algorithm, we change the purpose of the

conformational ensemble Ωα. Instead of maintaining every sampled conformation

in Ωα, the ensemble now maintains only a carefully selected subset of the sampled

conformations through which to represent the explored conformational space.

By essentially reducing the granularity of Ωα, the linear relationship between

running time and memory requirements is removed. Each Cnew generated is first

evaluated for geometric novelty before being added to Ωα. Clustering by lRMSD

is computationally prohibitive to be performed after every sampled conformation

Cnew. Instead, we propose a less costly but effective strategy, which reduces the size

of Ωα by a factor of two or more (see Fig. 3 in Sec. 3). The strategy adds minimal

computation overhead and does not impact the ability of the algorithm to sample

low-energy conformations near the native state.

The granularity reduction exploits a feature of the energetic and geometric pro-

jection layers that is also exploited in the selection process: two conformations that

lie in the same energy level ℓ and projection cell r will be geometrically similar

(for some similarity threshold τ). Analysis shows that for the chosen granularity

of 30 geometric cells per dimension (in the geometric projection grid) the value

of τ is less than 1 Å lRMSD. If two conformations share the same ℓ and r, their

similarity is determined using lRMSD. If the lRMSD is below a chosen τ (1 Å

in our experiments), then only one of the conformations is retained; either the

existing conformation is replaced or the new conformation is discarded with equal

probability.

2.3. Implementation details

The algorithm is implemented in C++ and runs single-threaded on an AMD

2.66GHz Dual-Core Opteron and all executions are run for 48 CPU hours. This

runtime provides ample time to sample different combinations of fragment config-

urations and reduces the role of stochastic variations. The similarity threshold τ is

set to 1 Å. All other parameters are as in previous work.12,28

3. Results

We apply the proposed strategies to enhance the sampling of the native state of two

sets of target proteins listed in Tables 1 and 2. Section 3.1 compares the effectiveness

of the original and enhanced fragment libraries, and Sec. 3.2 compares our method

(using the enhanced fragment library) to published results from two established

ab initio structure prediction methods. Section 3.3 demonstrates the degree to which
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Table 1. PDB ID, fold, and length in amino acids are shown for each of the six
proteins. PDB ID refers to a unique identifier associated with an experimentally-
resolved native structure deposited for a protein in the PDB. The minimum
lRMSD to the native structure is shown for both the original and enhanced frag-
ment libraries. The final column compares the results from our method to results
obtained by the state-of-the-art Rosetta structure prediction program.

Minimum lRMSD (Å)

Protein PDB ID Length Fold Original Enhanced Rosetta

wwD 1i6c 26 β 4.52 3.47 2.90
hbd2 1fd4 41 α/β 5.34 5.84 6.17
L20 1gyz 60 α 5.11 3.66 3.68
GB1 1gb1 60 α/β 6.89 6.31 2.67
Calbindin D9k 4icb 76 α 5.76 4.70 2.73
pB119L 3gwl 106 α 10.32 8.30 9.13

Table 2. The minimum lRMSD to the native structure and the secondary structure
Q3 score is given for each of the eleven proteins. Our results (Shehu) are presented
along with those published by the Sosnick and Baker research groups.

Q3 Score (%) Minimum lRMSD (Å)

PDB ID Length Fold Shehu Sosnick Baker Shehu Sosnick Baker

1ail 70 α/β 84 76 64 3.6 5.4 6.0
1aoy 78 α/β 73 82 89 4.7 5.7 5.7
1c8cA 64 α/β 66 86 67 7.4 3.7 5.0
1cc5 76 α 73 92 86 5.6 6.5 6.2
1dtdB 61 α/β 59 71 69 7.3 6.5 5.7
1fwp 69 α/β 64 70 68 5.9 8.1 7.3
1hz6A 67 α/β 70 80 87 6.2 3.8 3.4
1isuA 62 α/β 64 82 89 6.5 6.5 6.9
1sap 66 α/β 42 85 65 6.2 4.6 6.6
1wapA 68 β 62 80 68 7.9 8.0 7.7
2ezk 93 α 90 80 85 5.8 5.5 6.6

granularity reduction compresses the conformational ensemble Ωα. Finally, Sec. 3.4

showcases the results of all-atom refinement on selected proteins.

3.1. Effectiveness of the enhanced fragment library

Table 1 lists the six targeted protein sequences selected to compare the effectiveness

of the enhanced fragment library to that of the original fragment library: Pin1 Trp-

Trp ww domain (wwD), human β-defensin 2 (hbd2), bacterial ribosomal protein

(L20), immunoglobulin binding domain of streptococcal protein G (GB1), calbindin

D9k, and the African Swine Fever Virus pB119L protein. The proteins vary in length

(number of amino-acids) and in known native topologies.

The ensemble Ωα contains low-energy coarse-grained conformations that are

good candidates for all-atom energetic refinement. In Table 1 we report the lowest

lRMSD between the conformations in Ωα and the known native structure for each
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protein, calculated with both the original and the enhanced fragment library. Lower

lRMSDs are obtained when employing the enhanced fragment library, which allows

the search algorithm to assemble conformations that are closer in lRMSD to the

native state than the original fragment library does.

Table 1 also shows the lowest lRMSD obtained for each protein when employing

the state-of-the-art Rosetta structure-prediction method.6 To perform a relevant

comparison between our algorithm and Rosetta, only the coarse-grained struc-

ture prediction component of Rosetta is employed. This component is initiated

from each of the six target sequences and allowed to run for the same amount

of time, 48 CPUh. Comparison of the lowest lRMSDs obtained with Rosetta to

those obtained with our method (when employing the enhanced fragment library)

shows that Rosetta significantly outperforms our method by more than 2 Å on only

one protein, GB1. Our method obtains better results on three of the target pro-

teins. Rosetta’s performance on GB1 may be due to the coarse-grained energy func-

tion and the modulation of temperature during its coarse-grained search. Rosetta

employs a fragment library similar to the enhanced library used in our method.

However, Rosetta uses both 9-mer and trimer fragment lengths during its search.

Our discussion in Sec. 4 lists a more accurate energy function and incorporation of

temperature modulation as interesting directions for future research. In addition,

the use of variable length fragments is an active area of research in our lab.

The enhanced fragment library, coupled with the reduction of the ensemble

Ωα, allows the search to enhance its sampling of the native state. Figure 2 shows

histograms of lRMSDs of conformations in Ωα from the known native structure,

superimposing the histograms obtained when employing both the enhanced and

original fragment library. These histograms are shown for only a few selected pro-

teins (the entire list can be found in our recent work37). These histograms show that

the enhanced fragment library allows the search algorithm to increase the number

of computed conformations with lower lRMSD to the known native structure. The

increase is significant for wwD, L20, calbindin, and pB119L; pB119L is a long pro-

tein chain used here to test the upper limits of our algorithm, with neither library

yielding conformations below 8 Å lRMSD from the native structure.

The histogram representation in Fig. 2 is useful, because local maxima in the

histograms correspond to potential clusters of conformations that can be detected

with simple clustering techniques. The ensembles obtained with the enhanced frag-

ment library for each protein contain more of these maxima at low lRMSDs. A

technique interested in selecting a few conformations would obtain more native-like

conformations if the enhanced fragment library is employed.

3.2. Comparison to state-of-the-art methods

Table 2 compares our results on eleven medium length target proteins to results

published by the Sosnick26 and Baker38 research groups. Our algorithm samples

conformations closer to the native structure for four out of the eleven target proteins
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(a) wwD (b) L20

(c) Calbindin Dgk (d) pB119L

Fig. 2. (a)–(d) show the percentage of conformations in the ensemble Ωα for a given lRMSD from
the native structure. Data obtained with the enhanced fragment library are shown with a thick
dark line and those obtained with the original fragment library are shown with a thin light line.

evaluated (1ail, 1aoy, 1cc5, and 1dtdB). In three cases (1isuA, 1wapA, and 2ezk),

our results are in between those of the other groups, with no significant difference

between out method and the best performing method. The four cases in which

our method performs worse than the both of the other methods (1c8cA, 1dtdB,

1hz6A, and 1sap) are explained by inferior secondary structure prediction, shown

by the Q3 scores in columns 4–6 (The Q3 score measures the percentage of amino

acids in correctly predicted secondary structures). The enhanced fragment library

heavily biases our method towards the secondary structure predicted during library
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generation. In the case of 1c8cA, 1dtdB, 1hz6A, and 1sap the Q3 score produced

by our method is at least 10% lower than the best performing method.

3.3. Reduction of the ensemble Ωα

Reducing the granularity of the Ωα ensemble significantly reduces the number

of conformations retained in memory. The rate of memory consumption is now

directly related to the algorithm’s ability to discover geometrically novel conforma-

tions with similar energies. In practice, this enhancement allows exploration of the

conformational space for days as opposed to hours. Figure 3 illustrates the relation-

ship between runtime and memory requirement for the algorithm on wwD (similar

results are observed for all other tested systems). Our ongoing research attempts to

further quantify the diversity of Ωα and develop novel geometric projection methods

to enhance clustering of similar conformations.

3.4. All-atom refinement

Conformations sampled in Secs. 3.1 and 3.2 are coarse-grained models representing

only the backbone of a protein structure. These coarse-grained models are typically

further refined in all-atom detail for use in ab initio structure prediction and other

biophysical studies. Here we present proof of concept all-atom refinements for six

selected targets from Secs. 3.2 and 3.1. The refinement is carried out with the

protocol available in the Rosetta software package,6 which adds side-chain atoms

to the backbone structure and performs a short Metropolis Monte Carlo energy

minimization on the resulting all-atom conformation. Figure 4 shows the lRMSD

of the refined structures from the known native structure. Figures 4(a)–4(c) show

Fig. 3. Granularity reduction lowers the rate of growth of Ωα (light line versus dark line). Black
line shows maximum Ωα size stored in 16 GB of memory.
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(a) 1ail 3.7 Å (3.6 Å) (b) 2ezk 4.6 Å (5.8 Å) (a) 1i6c 3.3 Å (3.5 Å)

(d) 1c8c Å 7.1 Å (7.4 Å) (e) 1cc5 5.7 Å (5.6 Å) (f) gbd1 5.5 Å (6.3 Å)

Fig. 4. The conformation obtained from an all-atom refinement on the lowest lRMSD conforma-
tion obtained by our enhanced method is shaded dark and superimposed over the known native
structure in light gray. The refined lRMSD to native is shown for each structure. The lRMSDs
prior to the refinement are shown in parentheses.

examples where our method was able to sample conformations near the protein

native state on a variety of lengths and fold topologies. The targets in Figs. 4(d)–

4(f) represent areas for further improvement in our methods, as discussed in Sec. 4.

In particular, we expect improved secondary structure prediction during fragment

library generation to enhance performance of our algorithm on mixed α/β fold

topologies.

4. Discussion

This paper investigates the effect of increasing the complexity of the conformational

search space while decreasing the sample size required to represent it on a proba-

bilistic search algorithm. We propose a more structurally diverse fragment library to

provide our search algorithm with a larger conformational space. To efficiently han-

dle the vast search space, we reduce the granularity of the conformational ensemble

that the algorithm maintains to represent the space it has explored. Our results
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show that these two strategies allow the search algorithm to enhance the sampling

of conformations relevant for the native state.

Our recently introduced search algorithm12,28 makes use of discretizations over

projection layers of the energy surface and conformational space to guide its search

toward diverse low-energy conformations. The algorithm is a first step toward

rapidly computing coarse-grained native conformations from amino-acid sequence

alone. The strategies proposed here address the need to enhance the sampling capa-

bility of the algorithm.

Our results show that the proposed strategies confer the algorithm with the

ability to conduct longer, more detailed explorations. Results obtained with these

strategies compare favorably against that of established state-of-the-art meth-

ods.26,38 Refinement of all-atom models shows a high degree of accuracy for small to

medium length α topologies and a promising first step for more complex structures.

The enhanced sampling capability shown in this work will allow the investi-

gation of new selection-related weight functions, novel projection coordinates, and

coarser representations of complex high-dimensional conformational spaces. Fur-

thermore, state-of-the-art coarse-grained energy functions and a temperature mod-

ulation scheme will be pursued so that our methods may be applied to larger protein

systems with more challenging native topologies. Secondary structure prediction

methodologies may also be enhanced with an iterative improvement approach to

improve the sampling bias in the fragment library.
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