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Abstract
Complementary metal-oxide-semiconductor (CMOS) image sensors are a visual outpost of many
machines that interact with the world. While they presently separate image capture in front-end silicon
photodiode arrays from image processing in digital back-ends, efforts to process images within the
photodiode array itself are rapidly emerging, in hopes of minimizing the data transfer between sensing
and computing, and the associated overhead in energy and bandwidth. Electrical modulation, or
programming, of photocurrents is requisite for such in-sensor computing, which was indeed
demonstrated with electrostatically doped, but non-silicon, photodiodes. CMOS image sensors are
currently incapable of in-sensor computing, as their chemically doped photodiodes cannot produce
electrically tunable photocurrents. Here we report in-sensor computing with an array of electrostatically
doped silicon p-i-n photodiodes, which is amenable to seamless integration with the rest of the CMOS
image sensor electronics. This silicon-based approach could more rapidly bring in-sensor computing to
the real world due to its compatibility with the mainstream CMOS electronics industry. Our wafer-scale
production of thousands of silicon photodiodes using standard fabrication emphasizes this
compatibility. We then demonstrate in-sensor processing of optical images using a variety of
convolutional filters electrically programmed into a 3 × 3 network of these photodiodes.

Main Text
Complementary metal oxide semiconductor (CMOS) image sensors have become an indispensable part
of our data-driven world, where visual information prevails1,2. The front-end silicon photodiode array in a
CMOS image sensor converts light into electrical currents. These electrical data undergo analog-to-digital
conversion and are then shuttled to a digital back-end for image processing. While this standard
sequence of front-end image capture and back-end processing restricts the role of the photodiode array to
sensing, emerging machine vision applications would benefit from data processing within the photodiode
array itself3,4. For example, in object tracking for self-driving vehicles, drones, or robots, where only the
edges of objects are relevant5–8, edge extraction in the front-end photodiode array would be much more
economical in energy expenditure, processing latency, required bandwidth, and memory usage, as
compared to transferring the whole image data containing superfluous information to the back-end
digital processor—only to extract the edges9. 

Such in-sensor computing would require an electrical modulation, or programming, of photocurrents. In
fact, in-sensor computing has been recently demonstrated with electrostatically doped photodiodes
whose photocurrents can be modulated with gate biasing10,11. These pioneering works have realized
electrostatically doped photodiodes by gating two-dimensional (2D) transition metal dichalcogenide
(TMD) layers or their van der Waals (vdW) stacks12–14. In contrast, such in-sensor computing is not
possible with the present build of CMOS image sensors, for they employ chemically doped silicon
photodiodes, whose photocurrents are not amenable to electrical modulation. Here, we report in-sensor
computing with an array of electrostatically doped silicon p-i-n photodiodes, which can be seamlessly
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integrated with the remainder of the CMOS image sensor electronics, while replacing the chemically
doped silicon photodiode array. Such silicon-based approach could expedite the real-world application of
in-sensor computing due to its compatibility with the mainstream CMOS electronics industry3,4,15,16.
Concretely, we first demonstrate large-scale device production by fabricating thousands of dual-gate
silicon p-i-n photodiodes at the wafer scale. We then perform in-sensor computing on serial optical
images using a 3 × 3 network of these electrostatically doped photodiodes by electrically programming
the network into 7 different convolutional filters. 

 

Electrostatically doped silicon photodiodes

The photocurrent of a diode, Iph, grows with the power of the incident light, P, with the responsivity, R,

being the proportionality constant17, i.e., Iph = R · P. A conventional, chemically doped photodiode exhibits
a constant responsivity R, since the parameters that determine R, especially the doping densities of the p
and n regions, are fixed. On the other hand, in an electrostatically doped photodiode, where the doping
densities can be modified by gate biasing, R is electrically programmable. The electrostatically doped
photodiode can thus perform analog multiplication between the incident light power P and the electrically
programmed responsivity R. This programmable optoelectronic analog multiplication is the key to in-
sensor image processing. 

Our electrostatically doped photodiode is built on an intrinsic silicon wafer. It contains two contact
electrodes—i.e., electrode 1 and 2—to provide the current path, and two top gate metals, which, when
biased with the same voltage magnitude of opposite signs, create electrostatically doped p and n regions
in silicon (Figs. 1a and b). The part of the silicon without any overlying gate metal is an intrinsic (i) region,
and acts as a channel in the device. This channel region is directly exposed to light from above. The
contact and gate electrodes are arranged in an interdigitated fashion for a high channel width/length
ratio of 5576 µm/5 µm. Detailed fabrication steps are described in Methods and Supplementary Fig. 1.
The resulting p-i-n diode exhibits a standard rectifying behavior (Supplementary Fig. 2), which confirms
the electrostatic doping. As we swap the signs of the two gate biases, the rectifying behavior flips its
polarity (Supplementary Fig. 2), which further verifies the electrostatic doping. 

Illumination of the intrinsic channel region with a frequency of light higher than the silicon bandgap
(~1.12 eV, or ~1,100 nm) generates a photocurrent. For this photocurrent generation mode, throughout
this work, we bias both contact electrodes at zero voltage and define the current flow from electrode 1 to
2 as positive. The genesis of the photocurrent is the electrons and holes excited by the light, which are
swept in opposite directions by the built-in potential (Vbi) of the diode, which is determined by the doping
densities of the p and n regions (Fig. 1b). The electrostatic alteration of the doping densities via the gate
voltages changes Vbi, which in turn can modify the magnitude and direction of the photocurrent for a
given power of incident light. In other words, the gate biases tune the responsivity R. 
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We demonstrate this dependence of R on the gate biases by measuring the photocurrent with a fixed
power, red-filtered halogen lamp that is periodically shuttered on and off, while the voltage at the gate
above electrode 1 (VG, 1) is stepped up from -3 V to 3 V with a 0.5 V step, and simultaneously the voltage
at the gate above electrode 2 (VG, 2) is stepped down from 3 V to -3 V with a 0.5 V step (inset of the Fig.
1c). The optical power of the light source, Psource, is 15 µW, which is different from, but proportional to, the
power P of the light incident on the device, scaled according to the device and/or beam area. The
measured photocurrent, shown in Fig. 1c, exhibits the expected modulation of R by the gate bias
voltages. Repetition of such gate-controlled photocurrent modulation for ~50 min shows the stability of
the programmability in R (Supplementary Fig. 3). 

COMSOL Multiphysics simulation also confirms the operating principle of the electrostatically doped p-i-n
diode. The gating clearly creates p and n regions, with the band bending across the channel
(Supplementary Fig. 4a-c) and the responsivity R changing with the gating as expected (Supplementary
Fig. 4d; more on this shortly, in connection with Fig. 2c). 

 

Programmable optoelectronic multiplication

We further investigate the dependence of the photo response on the gate voltages, and now, also on the
light power (Fig. 2a). Figure 2b shows the photocurrent map with two gate voltages independently swept,
each from -5 V to 5 V with a step of 0.1 V, while the photodiode is illuminated by blue laser light (473 nm)
with a fixed Psource of 125 µW. When the two gate voltages are identical, i.e., VG, 1 = VG, 2, whether it is
positive (n-n doping) or negative (p-p doping), no overall potential gradient develops, and thus no
photocurrent should be produced. The corresponding pp to nn line, with zero current, is indeed close to
the ideal positive diagonal line, and its slight deviation is possibly due to charge carrier trapping at
defects formed during fabrication. On the other hand, when we sweep the two gate voltages at the same
magnitude, but with opposite signs, along the negative diagonal line, the photocurrent
monotonically increases from the negative maximum to the positive maximum, which is consistent
with the monotonic change of Vbi from the negative maximum to the positive maximum (Fig. 1b). Figure
2c plots this photocurrent response along the negative diagonal line as a function of VG, 1 = -VG, 2, which
we denote as programming voltage Vp. This measured dependence of the photocurrent on Vp is also
qualitatively consistent with the COMSOL simulation (Supplementary Fig. 4d). From here on, all the gate
biasing is configured as Vp = VG, 1 = -VG, 2.

Moreover, we demonstrate the linear dependence of Iph on Psource––and therefore on P––for any given
R programmed by tuning Vp. This linearity is important for high-fidelity analog multiplication between P
and a given R. Figure 2d shows the measured Iph as a function of Psource (red-filtered halogen lamp) for
various Vp (and thus R) values. A simple linear fit yielding a high coefficient of determination
(0.996 averaged across all Vp values) confirms the linear dependence of Iph on Psource, and thus on P, for
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each programmed value of R. Linearity is also confirmed for different wavelengths of incident light
(Supplementary Fig. 5). 

 

Wafer-scale characterization of electrostatically doped silicon photodiodes

Electrostatically doped silicon photodiodes may accelerate the real-world realization of in-sensor
computing due to their suitability for large-scale integration with CMOS electronics. To demonstrate, we
have fabricated, in-house, 4,900 of the dual-gate p-i-n silicon photodiodes on a 4-inch silicon wafer (Fig.
3a, left) using the CMOS-compatible fabrication (see Methods). The fabricated wafer features 7 × 7 = 49
reticles, with each reticle containing 10 × 10 = 100 photodiodes (Fig. 3a, right). 

Figure 3b shows photocurrent maps obtained by illuminating a 400 nm LED light with a fixed Psource of
170 µW serially––diode by diode––across an example reticle containing 100 photodiodes, for various Vp

values (-5 V to 5 V with a 2 V step, clockwise from right, top corner). These maps show a high device-to-
device uniformity in the responsivity programming within the reticle. In the wafer-scale photocurrent
measurement of a 5 × 5 reticle array (2,500 photodiodes) with an automated probe station with Vp varied
from -5 V to 5 V with a 0.1 V step, 2,372 devices showed programmable responsivity (~95% yield).
Concretely, as we sweep Vp, the photocurrents of the 2,372 devices, in response to the 400 nm LED light
with the fixed Psource of 170 µW, varied from -380 ± 50 nA to 430 ± 47 nA (Fig. 3c). Figure 3d shows the
distribution of the 2,372 photocurrents for selected Vp values (-5 V to 5 V with a 1 V step), where device-to-
device variations are more pronounced than those from the single reticle, which is standard at the wafer
scale.

 

Optoelectronic convolutional image processing in a photodiode network

We connect 9 photodiodes as shown in Fig. 4a to perform analog multiplication between the incident
light power and the programmed responsivity in each photodiode, and to sum, or accumulate, the
resulting 9 photocurrents via Kirchhoff’s current law. The photocurrent sum resulting from this analog
multiply-accumulate (MAC) operation is a dot product between the 1 × 9 incident light power vector and
the 1 × 9 vector of programmed responsivities. Consequently, the 9-photodiode network of Fig. 4a serves
as an optoelectronic convolutional processor, with the 1 × 9 vector of programmed responsivities––or
equivalently the 3 × 3 map of responsivities programmed across the photodiode array––serving as an
image filter kernel. The accumulated photocurrent is converted to an output voltage (Vout) via a
transimpedance amplifier on a printed circuit board (PCB). Our measurement system is detailed in
Supplementary Fig. 6.

With an image filter kernel programmed, the 9-photodiode network not only captures an input scene, but
also processes it simultaneously. Figures 4b-d show an example demonstration where the network finds
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the edges of a moving light spot. We program the photodiode network to feature the specific responsivity
map of Fig. 4b by independently tuning Vp of each photodiode (see Methods). This filter kernel is
designed for edge-detection along the x-axis, resulting in positive and negative photocurrents when the
photodiode network is at the right and left edges of the light spot, respectively, and otherwise negligible
photocurrents. Figure 4c shows Vout monitored with a light spot from an LCD projector (power set to 255
out of 255, green channel only) moving from left to right at a frequency of 4 Hz, demonstrating the
consistent positive (6 V) and negative (-6 V) responses as the spot moves over the array. We have
evaluated this dynamic processing up to a spot movement frequency of 500 Hz (Fig. 4d), the maximum
frequency of our optical setup. 

            Expanding from the simple example above, we perform in-sensor processing of a 256 × 256 pixel
image (Fig. 5a, grey scale, 8 bit depth) with the contrast inversion filter kernel (Fig. 5b) programmed into
the 9-photodiode network (see Methods for programming). Illumination of a 3 × 3 patch of the image
onto the photodiode network using an LCD projector (green channel only) results in an accumulated
photocurrent as the outcome of the optoelectronic convolution. By sliding the 3 × 3 patch through the 256
× 256 image and repeating the optoelectronic convolution, we generate a 254 × 254 matrix of
accumulated photocurrents (a total of 64,516 accumulated photocurrents), which represents the image
(Fig. 5c) processed with the contrast inversion filter kernel. 

Besides the contrast inversion filtering, we have repeated in-sensor image processing using 6 other widely
used filter kernels11,18–22: difference of Gaussians (DoG), Gaussian blurring, image sharpening, box
blurring, horizontal Sobel, and vertical Sobel filters (Supplementary Fig. 7). As the 63 photocurrent values
programmed with a fixed Psource from the LCD projector (green channel only; 9 values per filter and a total
of 7 filters), which correspond to the 63 programmed R values, are compared to their target values, which
range from -2 µA to 4 µA, the maximum error was 18 nA. Since the ratio of the maximum error to the
target range, 1/333, lies between 1/29 and 1/28, the programming accuracy is 8 bit. The images shined
with the LCD projector (green channel only) and processed with these filter kernels are shown in Fig. 5e,
bottom; the Sobel filtered image in Fig. 5e, bottom is a composite produced by the root sum of squares of
the horizontal and vertical Sobel filtered images (Supplementary Fig. 8)20. The juxtaposition of these
images processed in the analog domain within the photodiode array (Fig. 5e, bottom) with those
computed digitally (Fig. 5e, top) unequivocally verify our in-sensor computing scheme.

Conclusion
Bio-inspired computing has nucleated intense, worldwide research efforts in recent years, with in-memory
computing motivated by the co-location of memory and computing in the brain, and with the even more
recent in-sensor computing inspired by the sensory peripherals of the brain, where sensing is
accompanied by early information processing3,4,10,11,23–28. In this work, we have demonstrated analog
image convolution processing as a form of in-sensor computing, where we have developed and utilized
the electrostatically doped silicon photodiode array. This approach based on silicon devices suggests a
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way to accelerate the practical realization of in-sensor computing by taking advantage of the mainstream
CMOS electronics infrastructure. A monolithic integration of the electrostatically doped silicon
photodiode array with conventional CMOS image sensor electronics, while replacing the chemically
doped silicon photodiode array, is the next step of research our development suggests. The
electrostatically doped photodiode we have fabricated in-house in this demonstration occupies an area
orders of magnitude larger than a chemically doped photodiode in the state-of-the-art CMOS image
sensor. Thus, increasing the density of the electrostatically doped photodiode array through substantial
device miniaturization, while maintaining per-pixel gate and contact electrodes and their control by CMOS
electronics, would be both a key direction and a challenge in this line of investigation.

Methods
Electrostatically doped silicon photodiode fabrication. Device fabrication began with wafer cleaning by
dipping 4-inch un-doped Si wafer with 200 nm thermal oxide (Biotain Hong Kong Co., Limited, resistivity >
10,000 ohm·cm) in Piranha solution (H2SO4:H2O2 = 3:1) at 80 ˚C for 10 min. To build a device on a Si
surface, the device fabrication area is defined through the conventional photolithography.
Hexamethyldisiloxane (HMDS) is employed in advance to the photoresist to prevent undercut during a
wet-etch process. Spin-Rinse-Dryer (SRD) is used for wafer drying through all the process. The 200 nm of
thermal oxide is etched using buffered oxide etchant (BOE, 6:1) for 3 min. The pattern is stripped by
acetone, isopropyl alcohol (IPA), and SRD. Contact electrodes (Cr/Au = 10/25 nm) are formed by
conventional lift-off process using e-beam evaporator. Lift-off-resistor (LOR 3A) is employed for higher
fabrication yield. 30 nm Al2O3 gate dielectric is deposited using atomic layer deposition (ALD) at 250 ºC.
After via formation by patterning with HMDS and BOE (1 min), gate electrodes (Cr/Au = 10/250 nm) are
formed by the lift off process. 

 

Iterative programming. While all the pixels are exposed to constant, maximum light from the LCD
projector (255 for the 8 bit range, green channel only), Vp for each pixel is set to a calculated Vk for the kth

iteration calculated by the following equation: 

where Itarget is the target current and Ik is the measured photocurrent at nth iteration cycle, for each of 9
pixel. We keep modulating Vp until the difference between Itarget and Ik is less than allowed error range, i.e.,
23 nA if we set an 8 bit accuracy for the full range of 6 µA. 
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Figure 1

Electrostatically doped silicon p-i-n photodiode. a, Optical microscope (top), scanning electron
microscope (SEM, middle), and atomic force microscope (AFM, bottom) images of an electrostatically
doped p-i-n photodiode prototype. Contact electrode 1 and 2 and two gate electrodes above (false-colored
with blue and red shades in the SEM and AFM images) are interdigitated. b, Part of the device SEM image
(top) and corresponding schematic illustration (bottom) of the cross-sectional view of the photodiode,
gate-biased to form p-i-n and n-i-p configurations. For a more realistic spatial profile of the electron
concentration under gate biasing, see Supplementary Fig. 4. c, Measured photocurrent with pulsed light
(blue) and stepped gate voltages (VG,1, red; VG,2, not shown). A red-filtered halogen lamp (Psource = 15 µW)
is used as the light source, VG, 1 is stepped up from -3 V to 3 V with a 0.5 V step, and VG, 2 is
simultaneously stepped down from 3 V to -3 V with a 0.5 V step.
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Figure 2

Programmable photo response of the dual-gate silicon p-i-n photodiode. a, Schematic illustration of the
measurement setup. Incident light with power P—i.e. Psource scaled according to the device and/or beam
area—is converted to the photocurrent, Iph, which is modulated by the two gate voltages, VG, 1 and VG, 2. b,
Photocurrent map measured with each gate voltage independently swept from -5 V to 5 V with a 0.1 V
step. c, Photocurrent response with Vp = VG, 1 = -VG, 2 swept from -5 V to 5 V with a 0.1 V step. The light
source for parts b and c is a blue laser (473 nm) with a Psource of 125 µW. d, The measured photocurrent
vs. Psource with Vp as a parameter, varied from -4 V (blue) to 4 V (red) with a 1 V step. The light source is a
red-filtered halogen lamp.



Page 13/16

Figure 3

Wafer-scale array of the dual-gate silicon p-i-n photodiodes. a, Optical images of a fabricated wafer
containing 7 × 7 reticles (left) and a reticle containing 10 × 10 photodiodes (top, right), and an SEM image
of 9 example photodiodes. b, The photocurrent map of a single reticle (10 × 10 photodiodes) with Vp

varied from -5 V to 5 V with a 2 V step (clockwise from top, right). c, The average (solid line) and standard
deviation (shades) of photocurrents measured from 2,372 working photodiodes from 5 × 5 reticles
containing 2,500 photodiodes, with Vp varied from -5 V to 5 V with a step of 0.1 V. d, The histogram of the
photocurrent data collected in part c., with Vp from -5 V (blue) to 5 V (red) shown in 1 V increments for
clarity. All measurements shown in this figure were performed with a 400 nm LED light with a Psource of
170 µW.
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Figure 4

A 3 × 3 photodiode network for analog multiply-accumulate (MAC) computation. a, Schematic illustration
of the network comprising 9 dual-gate silicon p-i-n photodiodes. The accumulated photocurrent as a
result of the analog optoelectronic MAC operation is converted to a voltage (Vout) by a transimpedance
amplifier on a printed circuit board. b, A photocurrent map programmed with a constant light power, i.e., a
responsivity map, which represents a filter kernel for edge-detection along the x-axis. c, Measured Vout of
the photodiode network arranged into the filter kernel of part b, with a light spot moving from left to right
at 4 Hz. d, Repetition of part c, but with the light spot moving frequencies at 10, 50, 100, 250, and 500 Hz.
For all experiments in this figure, an LCD projector (green channel only) with a power 255 out of 255 is
used as a light source.
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Figure 5

In-sensor image processing using the 3 × 3 dual-gate p-i-n photodiode network. a, A 256 × 256 input
image (left) and its example portion (top, right). The bottom right is an example of a 3 × 3 patch from this
input image, which is projected onto the photodiode network. b, A programmed photocurrent map with a
fixed power of light—i.e., a responsivity map—for contrast inversion filtering. The maximum LCD projector
brightness (255 out of 255, green channel only) is used for this programming. c, The 254 × 254 map of
accumulated photocurrents with the 9 photodiode network programmed as in part b, where the 64,516
accumulated photocurrents are serially obtained by illuminating, using the LCD projector (green channel
only), the photodiode network with a 3 × 3 patch sliding through the 256 × 256 input image. d, Various
filtered images obtained with digital computing (top) and in-sensor computing (bottom). 
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