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Abstract
Genetic testing for mutations in high-risk cancer susceptibility genes often reveals missense
substitutions that are not easily classified as pathogenic or neutral. Among the methods that can
help in their classification are computational analyses. Predictions of pathogenic vs neutral, or the
probability that a variant is pathogenic, can be made based on 1) inferences from evolutionary
conservation using protein multiple sequence alignments (PMSAs) of the gene of interest for
almost any missense sequence variant, and 2) for many variants, structural features of wild type
and variant proteins. These in silico methods have improved considerably in recent years. In this
paper, we review and/or make suggestions with respect to 1) the rationale for using in silico
methods to help predict the consequences of missense variants, 2) important aspects of creating
PMSAs that are informative for classification, 3) specific features of algorithms that have been
used for classification of clinically observed variants, 4) validation studies demonstrating that
computational analyses can have predictive values of ~75–95%, 5) current limitations of data sets
and algorithms that need to be addressed in order to improve the computational classifiers, and 6)
how in silico algorithms can be a part of the “integrated analysis” of multiple lines of evidence to
help classify variants. We conclude that carefully validated computational algorithms, in the
context of other evidence, can be an important tool for classification of missense variants.
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INTRODUCTION
Mutation screening of high-risk cancer susceptibility genes often reveals sequence variants
that are labeled pathogenic essentially a priori because they either disrupt the gene’s
structure or truncate the open reading frame. However, many other sequence variants that
turn up during clinical mutation screening are not readily classified due to the interplay
between gene structure and the genetic code. Most of the initially unclassified sequence
variants are missense substitutions arising from a single nucleotide substitution to the open
reading frame.

On the basis of basic biochemistry, molecular biology, and general protein structural
principles, we often “feel” that we can evaluate a missense substitution and its context in the
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protein of interest and judge whether or not it will affect function based on notions of
“radical”, “non-conservative”, and “conservative” missense substitution. However,
conclusions that are based solely on differences between wild type and variant amino acid
for features such as substitution matrix comparisons, physico-chemical “scores”, and simple
protein structural change have not proven sufficiently robust to be clinically useful [Goldgar
et al., 2004; Tavtigian et al., 2006; Chan et al., 2007].

Over the last 10 years, computational approaches to in silico analysis of substitutions have
improved considerably over older comparisons based on inferences from matrix scores or
protein structure. Most of the currently available algorithms rely on protein multiple
sequence alignments (PMSAs) of the gene of interest across multiple species. When
carefully validated, they become a valuable tool for classification, as reviewed in this paper.
A limitation of PMSA-based analyses is that the parameter being measured, evolutionary
fitness - like functional assays, which measure damage to protein function -is only a
surrogate for the parameter of interest, pathogenicity [Kryukov et al., 2007]. Thus, PMSA-
based methods are indirect measures of pathogenicity. Their validation involves both careful
application of computer algorithms and careful curation of sequence data, such as model
organism genome sequences that contribute to the PMSAs.

A second important contribution has come from the idea of “integrated analysis” of multiple
parameters to classify missense substitutions [Goldgar et al., 2004]. The integrated analysis
approach, discussed briefly below and in more detail in a companion paper in this issue
[Goldgar et al., 2008] can cope with some uncertainty within each parameter and does not
require each method to output a perfect binary classification (“pathogenic” versus “benign”).
The ability of the integrated analyses to cope with uncertainty in the individual analysis
methods allows us to quantify the computational approaches that depend on PMSAs and to
use them to classify variants alongside more direct measures of pathogenicity (statistical
genetic, epidemiologic, tumor pathologic, etc.) [Goldgar et al., 2008; Hofstra et al., 2008].

This paper describes how combining improved in silico missense analysis algorithms with
higher quality multiple sequence alignments should lead to better in silico assessment.
Incorporated within an integrated analysis, in silico assessment of missense substitutions can
indeed stand as a clinically useful first line of analysis for newly observed substitutions.

OVERVIEW OF IN SILICO APPROACHES TO MISSENSE SUBSTITUTION
ANALYSIS

Fundamentally, there are four classes of amino acid, sequence, or structural attribute that
have been used to try to distinguish between neutral and pathogenic missense substitutions
in silico: (1) pairwise comparison of the physico-chemical characteristics or evolutionary
substitution frequencies between the wild-type and variant amino acid, (2) evolutionary
conservation at the position at which a missense substitution is observed, (3) comparison
between the variant amino acid and the evolutionarily tolerated amino acid range of
variation at its position in the protein, and (4) protein structural considerations. In silico
missense analysis algorithms may use data from just one of these classes, or combine data
from two, three, or all four of the classes.

Pairwise amino acid comparisons may be based on data from amino acid substitution
scoring matrices (e.g., PAM250, BLOSUM62). These matrices were derived from the
frequencies with which the 20 amino acids are observed to substitute for each other in
multiple sequence alignments of related proteins [Dayhoff et al., 1978; Henikoff and
Henikoff, 1992]. BLOSUM62 scores range from 4–11 for identities, from 0–3 for
commonly observed substitutions, and from (−1) to (−4) for substitutions rarely observed in
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related proteins. The average BLOSUM62 score is lower for pathogenic substitutions than
for neutral substitutions [Ferrer-Costa et al., 2002; Balasubramanian et al., 2005].
Alternatively, comparisons may be based on amino acid physical or chemical properties. A
score called the Grantham Difference describes the difference in side chain atomic
composition, polarity, and volume between two amino acids [Grantham, 1974].
Substitutions with Grantham Differences of 5–60 are generally considered “conservative”,
60–100 “non-conservative”, and >100 “radical”. The average Grantham Difference for
pathogenic substitutions is higher than for neutral substitutions [Miller et al., 2001;
Abkevich et al., 2004; Balasubramanian et al., 2005]. However, these methods of pairwise
amino acid comparisons alone have not led to popular missense substitution classification
algorithms.

The observation that disease associated missense variants are over abundant at the positions
in human proteins that are evolutionarily conserved has led to the use of PMSAs to help
analyze missense substitutions [Walker et al., 1999; Miller et al., 2001; Ferrer-Costa et al.,
2002; Abkevich et al., 2004; Balasubramanian et al., 2005]. The logical basis for using
PMSAs to help assess whether missense substitutions cause pathogenic loss of function in
disease susceptibility genes traces back to work done between the mid-1960s and the early
1970s [Zuckerkandl and Pauling, 1965; Jukes and King, 1971] and can be summarized in
two related statements: (1) missense substitutions falling at positions in the gene that are
evolutionarily constrained are often pathogenic, whereas those falling at positions that are
not constrained are often neutral or have minimal impact, and (2) missense substitutions
falling outside of the cross-species range of variation observed at their position in the PMSA
are often pathogenic, whereas substitutions falling within the cross-species range of
variation are often neutral or have minimal impact. Alignment based prediction tools have
been tested against a number of sets of variants thought to be associated with genetic disease
(Table 1). Current versions of several algorithms appear to have an accuracy of about 80%,
and in some cases over 90% in classifying variants as pathogenic or not [Chan et al., 2007;
Balasubramanian et al., 2005; Chao et al., 2008].

In order to use this logic in practice, one must be able to answer three questions. (1) Is a
particular PMSA is reasonably informative, i.e., has it sampled enough sequences at
sufficient evolutionary remove from each other (“alignment depth”) to contribute to
missense substitution analysis with reasonable sensitivity and specificity? (2) How does one
use a PMSA to distinguish between positions that are functionally constrained or not? (3)
Do different substitutions have different effects, and can we distinguish them based on
variation observed in a PMSA?

Is the Protein Multiple Sequence Alignment (PMSA) informative?
For alignment based tools to have classification value, the PMSAs used with them must be
of sufficient size and carefully constructed and curated. In almost all proteins, some amino
acid positions are highly conserved and others show great variation. If an amino acid
position is invariant, it could either be due to selection against variation or by chance due to
the limited number of sequences sampled.

The statistical likelihood that an invariant amino acid position is truly functionally
constrained, rather than a false positive, depends on the size of the evolutionary database
that is used. The minimum number of substitutions that are represented in a PMSA can be
calculated by a variety of methods and expressed as the number of substitutions per amino
acid position, averaged across all positions in the gene. The expected number of invariant
positions in the alignment can be calculated based on the null hypothesis that variants should
be uniformly distributed. Comparing the observed and expected numbers of invariant amino
acids tells us whether the alignment is deep enough to be informative. In general, if a PMSA
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contains >3.0 substitutions/position, then the probability that any amino acid will be
invariant is <5%. Under ideal conditions with ~50% of the positions in the protein actually
functionally constrained, an alignment with three times as many substitutions as the gene
has codons will achieve probability >95% that a given invariant position is invariant because
it is actually functionally constrained [Greenblatt et al., 2003, Cooper et al., 2003].
However, in real world alignments, the proportion of truly conserved positions may be
smaller, requiring more substitutions per position. For example, a BRCA1 PMSA containing
7 vertebrate sequences (mammals through fish) had 137 observed invariant positions (about
14% of BRCA1’s 1863 amino acids), compared with the expected number of 36.6 (p<10–8).
Thus, up to 1/4 of the invariant positions may still have been invariant by chance [Abkevich
et al., 2004]. Consequently, even though this alignment had about 4 substitutions per
position, it did not meet the criterion that >95% of invariant positions were invariant because
of functional constraint. Reaching that criterion required adding two more sequences (from
opossum and sea urchin), and pushed the total number of substitutions per position past 5.
The fraction of constrained amino acids varies by protein. In the case of BRCA1, about 15%
of the positions in the protein appear to be under strong functional constraint and 85% not.
On the other hand, about half of CDKN2A positions appear to be constrained [Chan et al.,
2007]. In general, better conserved proteins will require fewer substitutions per position to
reach a PPV of 95%. The absolute minimum is approximately 3 substitutions per position,
and some genes will require substantially more.

An informative PMSA that meets these depth criteria must also be curated so that it uses
sequence data properly and is biologically logical. Investigators who use PMSAs as a tool to
analyze missense substitutions often treat alignments, and the individual sequences in them,
as observational data. However, several recent papers serve as reminders that sequence
alignment engines often create alignment errors, which can lead to incorrect phylogenies
[Martin et al., 2007; Wong et al., 2008; Loytynoja and Goldman, 2008]. Likewise,
alignment errors are sometimes present in the PMSAs used for analyses of missense
substitutions and have the potential to adversely affect the results. In addition, even the best
alignment engines will produce PMSAs that contain gross faults if fed incorrect sequences.
Thus we should bear in mind that genuine cDNA sequences may contain sequencing errors
or may represent unusual splice forms that are missing conserved exons. Moreover, some of
the protein sequences included in PMSAs created explicitly for analysis of missense
substitutions are actually gene models inferred by computer analysis of large scale genomic
data and may contain gene assembly errors (see Figure 1 and, for an error correction
strategy, Supplementary Figure S1). We believe that corruption of PMSAs by errors in
GenBank cDNA sequences may be a pervasive problem that must be addressed by
interpreters of in silico algorithms.

How to use a PMSA: Individual positions, range of variation, and evidence of constraint
Several different approaches have been taken to measuring either the range of variation or
the evidence of constraint for a specific amino acid in a protein of interest. They range from
1) simply listing the different amino acids present at the position of interest, through 2)
phylogenetic tree-based methods that count the minimum number of substitutions required
to account for the observed amino acid diversity and estimate the likelihood that the position
is functionally constrained [Goldgar et al., 2004], to calculating 3) the average BLOSUM62
score for all of the pairs of amino acids present at the position of interest in the PMSA
[Greenblatt et al., 2003; Walker et al., 1999]. The average BLOSUM62 score serves as a
measure of the relative amino acid interchangeability that has been evolutionarily tolerated;
low scores are indicative of a broad range of tolerance whereas high scores are indicative of
little or no tolerance for amino acid substitution. 4) The Grantham difference can be
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modified to measure the physico-chemical variation that has been evolutionarily tolerated at
a particular position in a PMSA [Abkevich et al., 2004; Tavtigian et al, 2006].

Comparing missense substitutions to the evolutionary variation observed in a PMSA
Different substitutions at the same position can have different effects (see examples in
[Greenblatt et al., 2003; Raevaara et al., 2005; Chan et al., 2007]). Methods that assess the
relevant features of a missense substitution should improve predictions over methods that
merely describe the range of variation observed at their position in a PMSA. The simplest
method is to group physico-chemically similar amino acids together into sets. A substitution
within the group would be considered probably neutral whereas an out-of-group substitution
would be considered probably deleterious. This approach by itself has not been validated as
a classifier, but it has been incorporated as one property among many in at least one
complex, multivariate classifier algorithm [Ferrer-Costa et al., 2004].

More quantitative methods have been used successfully to classify variants. Grantham
scores can measure the fit between a missense substitution, the human wild type sequence,
and the range of variation at its position in a PMSA [Vitkup et al., 2003; Tavtigian et al.,
2006]. Similar in spirit to the Grantham scores but mathematically more complex, the
MAPP (Multivariate Analysis of Protein Polymorphism) impact score is a measure of amino
acid fit that combines multiple sequence alignment with multiple amino acid physical
properties [Stone and Sidow, 2005].

Missense analysis algorithms—The assessments of range of amino acid variation
described above have led to four missense substitution analysis algorithms that depend very
heavily on PMSAs: the BLOSUM62 method [Greenblatt et al., 2003], SIFT [Ng and
Henikoff, 2001], Align-GVGD [Tavtigian et al., 2006], and MAPP [Stone and Sidow,
2005].

The BLOSUM62 method scores sequence conservation at positions in a PMSA, as described
above, without consideration of the fit between missense substitutions and the observed
range of variation. Yet, using a set of clinically observed, already classified, missense
substitutions from five human genes, the predictive value (PV) of cross-species sequence
conservation at the site of a missense substitution using an optimized cutoff value of
BLOSUM62 (above or below 3.5) was around 75–80%. When methods that considered
features of the substituted amino acid were used, there was consensus for ~63% of variants,
but classification of “deleterious” versus “neutral” differed for over 35% of variants.
However, no other method by itself was statistically superior to the BLOSUM62 cutoff
score [Chan et al., 2007].

SIFT (Sorting Intolerant from Tolerant) uses Dirichlet mixtures extracted from PMSAs to
create position specific scoring matrices (PSSM) and score missense substitutions. The
algorithm is accessible through an easily used web server
(http://blocks.fhcrc.org/sift/SIFT.html). The output score is a normalized probability for
each of the 19 possible missense substitutions at each position in the aligned target gene.
Important considerations with SIFT are: (1) the program has the capacity to query sequence
databases and build a PMSA from a user supplied target sequence; however, better results
are usually obtained if a user supplies his/her own curated alignment [Chan et al., 2007]. (2)
SIFT scores of ≤0.05 are usually taken as indicative of deleterious substitutions. However,
the authors specifically point out that in some situations higher or lower cutoffs might give a
more accurate result for binary deleterious/neutral classifications [Ng and Henikoff, 2001;
Ng and Henikoff, 2003].
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A second missense analysis algorithm that uses scoring matrices (similar to the SIFT
approach) is embedded in the PANTHER database [Thomas et al., 2003; Thomas and
Kejariwal, 2004] (http://www.pantherdb.org/). The primary mission of the PANTHER
database is to organize genes into families and subfamilies and to classify them according to
inferred function. Much of the organization achieved by this database relies on making
PMSAs across a large number of gene subfamilies and families. One important limitation,
however, is that PANTHER’s PMSAs generally cover only the most conserved portions of
genes, limiting the fraction of missense substitutions to which it can be applied.

Align-GVGD calculates the Grantham Variation (GV) for positions in a PMSA and the
Grantham Deviation (GD) for missense substitutions at those positions. Like SIFT, it is
accessible through an easy to use web server (http://agvgd.iarc.fr/). The output is in the form
of two variables, GV and GD; the scores from the two variables are combined to provide a
classifier. The program has had two generations of classifiers. The original classifier
generated five categories (Enriched Deleterious 1 and 2, “unclassified”, and Enriched
Neutral 1 and 2, [Tavtigian et al., 2006]). The newer classifier does not attempt a binary
division into deleterious and neutral categories but rather provides a series of ordered grades
ranging from the most likely deleterious “C65” to the least likely deleterious “C0”. One
important feature is that the Align-GVGD website houses curated protein multiple sequence
alignments for several important cancer susceptibility genes. Users can score their missense
substitutions against the alignments provided at the website.

MAPP is available as JAVA code at its creator’s website [Stone and Sidow, 2005]
(http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html). The program requires
the user to define a PMSA and to specify the relationship among the sequences in the
PMSA. The output is a single MAPP impact score for each substitution analyzed. The
MAPP impact score is a continuous variable; while users interested in binary classification
can conduct a sensitivity/specificity test to find appropriate binary cutoffs, the algorithm’s
creators have provided evidence that the impact score can also be used to stratify
substitutions into a spectrum of graded risk. Recently, MAPP was applied to deep
alignments of MLH1 and MSH2. Results from the analysis are posted on a website that
scores all possible missense substitutions in those two genes
(http://mappmmr.blueankh.com) [Chao et al., 2008].

Analysis via protein structure—A somewhat independent approach to analysis of
missense substitutions depends more heavily on protein structural considerations, sometimes
paired with machine learning algorithms. Although many permutations have been described,
there seem to be three main strategies: (1) rule or decision tree based classifiers, (2) data
vectors analyzed by machine learning algorithms to generate classifiers, and (3) molecular
dynamics simulations.

Rule or decision tree based classifiers focus on a series of features annotated onto the
individual amino acid positions of a human protein. Many features are best extracted from
an annotated crystal structure, e.g., residues located in enzymatic active sites; in binding
sites, or residues with very low or very high solvent accessibility, residues located in an
alpha helix, etc. The features may also include a PSSM derived from a sequence alignment,
though the sequence alignment used is likely to be less extensive than that employed by pure
alignment-based analysis algorithms. An amino acid substitution is then predicted to affect
protein function if the substitution violates an empirically determined condition. PolyPhen
(Polymorphism Phenotyping) is the best known classifier from this family, and it is
available through a user-friendly web site [Sunyaev et al., 2001; Ramensky et al., 2002]
(http://coot.embl.de/PolyPhen/). Other decision-tree models [Mirkovic et al., 2004; Karchin
et al., 2007] have apparently not been developed into web servers to date.
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One weakness of the decision tree approach is that it is generally not very good at
combining marginal results from two or more of the inputs to reach a stronger result.
Machine learning algorithms such as Support Vector Machine (SVM) provide a route for
analyzing the multiple data types and considering the joint effects of multiple inputs. Given
a data vector of n components and a training set of missense substitutions all of which are
known pathogenic or known neutral, SVM creates an n-dimensional space and then finds the
hyperplane in that space that best separates the known neutral substitutions from the known
pathogenic substitutions. Other machine learning algorithms that have been applied to the
problem of missense substitution classification include Neural Nets, Random Forest, and
Naive Bayes.

Yue et al. have created algorithms and a web site, SNPs3D (http://www.snps3d.org/), that
carry out two independent analyses of missense substitutions: a structural analysis and a
sequence alignment/PSSM analysis [Yue et al., 2006]. The structural analysis begins with
either a crystal structure of the protein of interest or of a homolog having at least 40%
sequence identity. A wild-type amino acid is then replaced with a missense substitution, and
the difference between the two extracted in a series of 15 characters (hydrophobic burial,
sidechain overpacking, etc., [Wang and Moult 2001; Yue et al., 2005]). Training sets were
compiled of 3768 presumed pathogenic substitutions from 243 genes and 16,682 presumed
neutral substitutions from an overlapping set of 346 genes [Yue et al., 2005], later expanded
to 10,263 presumed pathogenic substitutions from 731 genes [Yue et al., 2006], using data
from in the Human Gene Mutation Database (HGMD), annotated with appropriate structural
information. The data vectors were used to train a SVM to distinguish between pathogenic
and neutral substitutions. Probabilities were calculated for each possible substitution to
every position in the alignment, and four manipulations of the Shannon entropy were also
calculated for each position in the alignment.

The classifiers within SNPs3D consider either structural factors or sequence alignment/
PSSM, but not both simultaneously. In contrast, Ferrer-Costa et al. have constructed a
missense analysis classifier and online server, PMUT (http://mmb2.pcb.ub.es:8080/PMut/),
that combines sequence alignment/PSSM with structural factors to characterize missense
substitutions [Ferrer-Costa et al., 2004; Ferrer-Costa et al., 2005]. The PMUT classifier uses
a feed-forward neural network to combine data across 19 parameters (analysis from an
alignment but no structural information) or 23 parameters (analysis from an alignment plus
crystal structure information, including protein structure; substitution matrix values; changes
in amino acid physico-chemical properties between wild-type and mutant amino acid; and
measures of sequence variation at the position of the mutation).

Other methods of protein structural analysis exist, such as molecular dynamics folding
simulation as implemented in the program FoldX (http://foldx.crg.es/). This method has
been used to assess protein missense variants [Pey et al., 2007; Tokuriki et al., 2007], but not
in cancer susceptibility genes. However, assessments limited to protein folding would be
blind to substitutions whose major effect is to alter an important protein:protein interaction.

BENCHMARKING – CAUTION IN USE OF DATA SETS
Development of missense classification algorithms has usually depended upon access to a
dataset of missense variants that have been classified as functional/neutral vs nonfunctional/
pathogenic. Validated sets of variants may be used to optimize the performance of score-
based classifiers, train machine-learning based classifiers, and/or compare the performance
of established classifiers. Of key importance, datasets that are used either to estimate the
error rates or to compare the performance of classifier algorithms need to be drawn from a
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distribution of missense substitutions that closely resembles the distribution of substitutions
in the real world data to which the classifiers will eventually be applied.

Most germline missense substitutions observed in high-risk cancer susceptibility genes in
human subjects result from point mutations (single base substitutions and indels). Germline
substitutions do not occur randomly with respect to the underlying DNA sequence. There
are up to 100-fold differences between sequence substitution probabilities, based mostly on
local sequence context. The most obvious example is that transitions at the dinucleotide
CpG (specifically, CG to either CA or TG) happen at a much higher rate than most other
substitutions. In general, transitions happen at a higher rate than do transversions. The
interplay between germline nucleotide substitution frequencies and the genetic code results
in mutational bias towards silent substitutions and towards relatively conservative amino
acid substitutions, an effect easily observed when dinucleotide substitution rate constants
(such as those determined by Lunter and Hein [Lunter and Hein, 2004]) are applied to the
genetic code. For example, the average Grantham Difference between all possible amino
acid pairs is 100 (by definition), whereas the average Grantham Difference between human
canonical amino acids and the missense substitutions seen in large mutation screening series,
such as Myriad Genetics’ BRCA1 and BRCA2 mutation screening data, is close to 70
[Grantham, 1974; Abkevich et al., 2004].

Three types of missense substitution data sets have been used repeatedly during the creation,
optimization, and comparison of missense classifiers: (1) datasets from systematic mutation
of a phage or viral proteins, (2) sets of expected neutral pseudo-substitutions taken as the
missense differences between human proteins and aligned mammalian ortholog sequences,
and (3) datasets derived from the annotations of human missense variants present in the
SWISS-PROT knowledgebase. Systematic mutation datasets contain many missense
substitutions that require two nucleotide substitutions, and even pseudo-substitution datasets
taken from aligned mammalian orthologs contain a substantial number of such missense
substitutions. Consequently, human variants annotated in SWISS-PROT would appear to be
better for measuring classifier performance or comparing different classifiers to each other
[Care et al., 2007].

Capriotti et al. extracted a large set of annotated human missense substitutions from the
SWISS-PROT database (8,987 substitutions in 1,434 genes) to train their SVM based
classifier (SeqProfCod), and then used an independent set of human missense substitutions
from the SWISS-PROT database (2,008 substitutions in 720 genes) to measure classifier
performance [Capriotti et al., 2008]. Because we have been intimately involved in clinical
classification of missense substitutions in high-risk cancer susceptibility genes, we examined
the set of 177 classified substitutions in BRCA1 (n=43), BRCA2 (n=68), MLH1 (n=49), and
MSH2 (n=17) present in the subset of SWISS-PROT that was used in Capriotti et al. study.

Of the 43 BRCA1 missense substitutions, all from exon 11, the SWISS-PROT database had
annotated 17 as neutral polymorphisms and 26 as disease-associated. Over the last several
years, 17 of these 43 substitutions have been securely classified, all as neutral variants
(Class 1, Plon et al., 2008), either by Myriad Genetics or by members of the Breast Cancer
Information Consortium (BIC) [Deffenbuagh et al., 2002; Goldgar et al., 2004; Judkins et
al., 2005; Tavtigian et al., 2006; Easton et al., 2007; Spurdle et al., 2008]. However, the
SWISS-PROT database had annotated 5 of these 17 Class 1 variants as pathogenic.
Moreover, we now know that the prior probability that missense substitutions falling outside
of the BRCA1 RING or BRCT domains are pathogenic is less than 0.01 [Easton et al., 2007;
Tavtigian et al., 2008]. As all 43 of these substitutions fall between the BRCA1 RING and
BRCT domains, it is likely that they are all neutral, so the other 21 variants classified as
pathogenic by SWISS-PROT are also likely errors. Of the 68 BRCA2 missense
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substitutions, 17 have been securely classified: 2 as clearly pathogenic (Class 5) and the
remaining 15 as neutral (Class 1) [Deffenbuagh et al., 2002; Goldgar et al., 2004; Chenevix-
Trench et al., 2006; Easton et al., 2007; Spurdle et al., 2008]. The two Class 5 variants were
correctly annotated in the SWISS-PROT database, but 8 of the 15 Class 1 variants were
incorrectly annotated as pathogenic.

To estimate the SWISS-PROT database annotation accuracy for missense substitutions in
MLH1 and MSH2, we merged classifications reported in three recent manuscripts [Chan et
al., 2007; Barnetson et al., 2008; Chao et al., 2008] and the online MMR Gene Missense
Mutation Database maintained by the University Medical Center Groningen
(http://www.mmrmissense.org). One variant (MLH1 A681T) was excluded because the
classification in one manuscript contradicted the classification in the other two, and three
variants reported as neutral in the papers were excluded because the Groningen database
recorded some evidence of functional deficit (MLH1 K618A, MLH1 Y646C, MSH2
G322D). The remaining set of 94 variants that had been validated by these four groups (61
likely pathogenic and 33 likely neutral substitutions) were cross-referenced against the
annotated MLH1 and MSH2 substitutions used by Capriotti et al [Capriotti et al., 2008]. The
validated data contained 18 likely pathogenic and 10 likely neutral substitutions that were
also in the SWISS-PROT data set. All 18 of the likely deleterious substitutions were
annotated as deleterious in SWISS-PROT, but 5 of the 10 likely neutral substitutions were
labeled pathogenic in SWISS-PROT.

This validated sample of the SWISS-PROT dataset represents 0.7% of their training set and
none of their benchmarking set; however, it is the subset that is most relevant to clinical
cancer genetics. There is a pattern of significant Type 1 error. Based on validation by
multiple expert groups, the PPV of a “pathogenic” classification in SWISS-PROT is at best
57% (if one uses only the 17 BRCA1 variants validated by Myriad or the BIC), or as low as
43% (if one uses all 43 BRCA1 variants and assumes that all are neutral based on Easton et
al. [Easton et al., 2007]). Consequently, the apparent error rates in the database appear to
significantly exceed the error rates in current computational classifiers, whose predictive
values range from 75% to over 90%.

It would appear that the best data sets for testing classifiers are those from locus-specific
databases that are curated by individuals or groups specialized in the analysis of one or a
few genes [Chao et al., 2008; Chan et al., 2007; Barnetsen et al., 2008; Goldgar et al., 2004;
Easton et al., 2007]. The sequence variants in such databases will be dominated by single
nucleotide substitutions and the distribution of substitutions resembles what will be present
in clinical mutation screening datasets, meeting the criteria set down by Care et al [Care et
al., 2007]. Nonetheless, even these sets contain some uncertainty. For example, many
variants are classified as pathogenic based on as few as two carriers plus some supporting
clinicopathological data [Chao et al., 2008; Chan et al., 2007]. We hope that application of
the suggestions present in the other manuscripts of this special issue will result in datasets
from which one could extract sets of substitutions classified with better than 90% overall
accuracy.

BENCHMARKING – RESULTS FROM CURRENT In silico METHODS
During the creation of PMUT, Ferrer-Costa et al compared the predictive performance of the
individual components of their data vector to each other. The “pathogenic” substitutions that
they used came from Swiss-Prot and the “neutral” substitutions were evolutionarily tolerated
substitutions observed in proteins with >95% sequence identity to the human proteins from
which the pathogenic substitutions were gathered. Thus, the underlying data set has all of
the weaknesses discussed above and the results need to be treated with caution. Nonetheless,
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an interesting result emerged: classification based on the PSSMs alone out performed
classifications based on any other single component. Classification based on BLOSUM62
alone came second, and the differences between classification based on the PSSMs alone
and any other single component (save BLOSUM62) were as great or greater difference
between the full multi-component model and the PSSM-only model [Ferrer-Costa et al.,
2004].

More recently, curated locus specific databases have been used as data sources for
comparing multiple classifiers. Chan et al. used a total of 254 substitutions from 5 different
genes (CDKN2A, MLH1, MSH2, MECP2, and TYR) to compare two pairwise missense
substitution scores (BLOSUM62 change and Grantham Difference) and four classifier
algorithms (BLOSUM62 pairwise, SIFT, PolyPhen, and Align-GVGD). Five interesting
results emerged from this analysis. (1) The four classifier algorithms all outperformed the
two simple substitution scores. (2) BLOSUM62 pairwise and Align-GVGD showed better
specificity than sensitivity and thus relatively low false-positive prediction of pathogenic.
On the other hand, SIFT and PolyPhen showed better sensitivity than specificity and thus
relatively low false negative prediction of neutral. (3) The sensitivity and specificity
differences between the algorithms more or less balanced out, so that their overall predictive
values, which ranged from 73%–82%, were not significantly different from each other. (4)
Using informative sequence alignments that met a 3 substitutions per position criterion,
invariance at a position in an alignment became a very good predictor of pathogenic
substitutions (PPV= 96.8%, better than any single method). (5) Concordance among
methods was a strong predictor. When all 4 methods agreed that a variant was deleterious,
the positive predictive value was 94.6%, and when all 4 methods agreed that a variant was
neutral, the negative predictive value was 73.5%. The concordant NPV and PPV were better
than the corresponding values for any single prediction algorithm [Chan et al., 2007].

Using a set of 55 classified MLH1 missense substitutions and 21 classified MSH2 missense
substitutions, Chao et al. optimized the MAPP algorithm and compared its performance to
PolyPhen and SIFT. In optimizing MAPP, the authors allowed for variable depth of PMSA
along the length of each protein based on the frequency of gaps in local segments of the
alignment, and optimized the MAPP impact score that best partitioned neutral from
pathogenic substitutions, which are more conventional optimizations to carry out with a
score-based classifier. A cutoff score of 4.5 determined from a receiver-operator
characteristic curve was used to distinguish predictions of pathogenic versus neutral.
Perhaps because of these optimizations, MAPP significantly outperformed both SIFT and
PolyPhen, yielding both sensitivity and specificity of >90%. The specificity of SIFT and
PolyPhen were similar (81%), but the sensitivity of SIFT was much better than that of
PolyPhen (82% vs. 58%). Notably, alignments were created by SIFT and results may have
been better had it been run with optimized, curated PMSAs. MAPP-MMR results are now
available online (http://mappmmr.blueankh.com/Impact.php). However, as of June 2008,
variants with scores between 3 and 5 are designated as “borderline”.

Machine learning algorithms (e.g., Artificial Neural Network [ANN], SVM) are promising
tools to improve predictions, but they have not yet been adequately validated. Chan et al
found ANN and SVM that combined sequence alignment data with structural parameters
improved prediction accuracy when the PMSAs were shallow, but did not improve
prediction accuracy when the PMSAs were deep enough to meet their 3 substitutions per
position criterion [Chan et al, 2007]. In a study of BRCA1 variants, supervised learners
outperformed Align-GVGD and SIFT. However, the sequence variants used were only
classified by functional assay, so these results should be repeated with more robust data sets
before they are widely accepted [Karchin et al., 2007].

Tavtigian et al. Page 10

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://mappmmr.blueankh.com/Impact.php


The Chan et al. and Chao et al. studies provide a solid starting point for comparing and
systematically improving missense classification algorithms under conditions similar to
those under which they would have to operate if used for clinical classification. In particular,
it is encouraging that the 23 MLH1 missense substitutions and 5 MSH2 missense
substitutions considered in common between the two studies carried the same classification
in both studies and only two (MLH1 Y646C and MLH1 A681T) yielded contradictory
results in our 4-study comparison (v.s.), consistent with the aspiration that the overall
accuracy of classification of substitutions used for comparison studies should be better than
90%.

APPLICATION TO CLINICAL CLASSIFICATION
Few groups have explicitly used results from in silico analysis of missense substitutions for
clinically relevant classification. There are two basic reasons for this: (1) the in silico
analyses by themselves do not deliver strong enough likelihood ratios or predictive values to
serve as stand-alone classifiers, and (2) integrated missense classification methods that can
combine across several disparate data types to achieve final classification have not become
widely available [Goldgar et al., 2008].

The clearest progress towards use of in silico analysis of missense substitutions for clinical
classification is evident across a series of BRCA1 and BRCA2 missense substitution
analysis papers coordinated by members of the BIC [Goldgar et al., 2004; Tavtigian et al.,
2006; Chenevix-Trench et al., 2006; Lovelock et al., 2006; Spurdle et al., 2008]. These
papers describe an integrated classification method that could incorporate the results from in
silico classifiers if those results were formatted as a likelihood ratio. These methods should
be validated using other data sets.

Recently, we developed a new classifier based on the Align-GVGD algorithm [Tavtigian et
al., 2008]. Rather than attempting a binary classification, the output from Align-GVGD is
now an ordered series of grades ranging from C65 (most likely deleterious) to C0 (most
likely neutral). The grades were calibrated against family histories data from a dataset
derived from 70,000 subjects tested fro BRCA mutations at Myriad Genetics [Easton et al.,
2007]. The results of the calibration were formatted as posterior probabilities that can now
serve as empirically determined prior probabilities in future analyses of individual
substitutions. The probabilities range from 0.81 in favor of pathogenic for the grade C65 to
0.01 for the grade C0 [Tavtigian et al., 2008]. Since the prior probability of a missense
variant in the dataset as a whole being pathogenic was about 0.13, we can calculate that the
likelihood ratio for C65 was 28.5:1. The criterion for the grade C65 is very strict; almost all
variants here occur at evolutionarily invariant positions. It is therefore reassuring that the LR
determined for C65 substitutions from informative BRCA1 and BRCA2 PMSAs is very
close to the LR for substitutions falling at invariant positions determined by Chan et al
(30:1) using similarly informative PMSAs [Chan et al., 2007; Tavtigian et al., 2008].

Working with missense substitutions in mismatch repair genes, Barnetson et al. presented a
qualitative, point-based, integrative analysis of missense substitutions [Barnetson et al.,
2008]. Their analysis included assessment of sequence variation in PMSAs, prepared with
ClustalW, that contained 4–5 orthologous sequences from human to yeast. The analysis also
included assessment of the missense substitutions by PolyPhen and SIFT (with SIFT
creating the alignment). Of 23 initially unclassified MLH1 or MSH2 missense substitutions
considered, Barnetson et al classified 11 as “benign” and 2 as “pathogenic”. We note,
however, that the classifications of 3 of these substitutions (MLH1 K618A, MLH1 A681T,
MSH2 G322D) conflict with either functional assay results or classifications given in
contemporaneous publications or the Groningen MMR database [Chan et al., 2007; Chao et
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al., 2008, <http://www.mmrmissense.org/default.aspx> as of 15 May 2008]. Validation of
such results is critical. The point based method will be difficult to apply to other genes, and
assessment of sequence conservation and the SIFT analysis would be easier if the
alignments used were available in the publication record.

CALIBRATION
The likelihood ratio-based integrated assessment of variants in BRCA1 and BRCA2
provided a comfortable context in which to introduce in silico assessment of missense
substitutions because the format accepts the input from any individual method with a
weighting that is experimentally determined. Very effective individual methods will have
very high or very low LRs and therefore will have strong effects on the prediction, and
modestly effective methods will have LRs closer to 1.0 and exert modest influence. At this
time, the LRs from in silico classifiers appear to range from ~2.5 (i.e., PV of 72%, seen in a
number of methods) to ~25–30 (PV of 96–97%, substitution at an evolutionarily invariant
amino acid).

The method by which the newly-defined Align-GVGD grades were calibrated against
BRCA1 and BRCA2 mutation screening data is sufficiently general that other classifier
algorithms could be calibrated against the same data set in the same way so long as the
output of the classifier is either binary or expressed in a limited number (3–5) of ordered
categories [Tavtigian et al., 2008]. However, whether expressed as likelihood ratios or
probabilities, the quantitative results generated from specific BRCA1 and BRCA2 PMSAs
cannot be assumed to transfer directly to other genes and other PMSAs. Accordingly, one
way forward might involve the following steps:

1. Selection of a defined set of cancer susceptibility genes (BRCA1, BRCA2, MLH1,
MSH2, CDKN2A, and perhaps others) to serve as a calibration step.

2. Creation of a set of reference sequence alignments that will be available online.
Creation of the alignments should include both investigators who are specialized in
analysis of each specific gene and investigators who have experience in gene model
assembly so that model organism genomic sequences can be used appropriately.
Different classifier algorithms that incorporate PMSAs may optimize at different
depths of alignment. Therefore, an effort should be made use each algorithm near
its optimum depth of alignment.

3. Use of the existing BRCA1 and BRCA2 mutation screening dataset, and in
particularly the summary family history data contained therein, to calibrate an
expanded set of classifier algorithms.

4. Creation of a sizeable set of variants in these genes that have been classified Class
1–2 and Class 4–5 [Plon et al., 2008] by specialists in each gene.

5. Use of this set of classified substitutions to calculate sensitivity, specificity, and
predictive values of an expanded set of classifier algorithms and also obtain some
measurements of sensitivity and specificity for concordant and discordant
classification from a defined set of classifiers. Once large numbers of substitutions
have been analyzed under well curated conditions, patterns of classification errors
might emerge that provide clues to methodological shortcomings.

CONCLUSIONS
Since a number of promising in silico missense substitution analysis methods are dependent
on PMSAs, creation of high quality PMSAs should be a priority. In particular, individual
available sequences should be regarded as hypotheses, and conflicts visible in initial PMSAs
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may need to be resolved through scrutiny of experimentally determined primary sequence
data (genomic, cDNA, other). A curation process that compares more types of data will
resolve discrepancies and result in more valid alignments. Different classifier algorithms
that incorporate PMSAs may optimize at different depths of alignment, and different genes
clearly optimize at different depths of alignment. Therefore, careful study of each algorithm
and gene will be needed to clarify optimum depth of alignment.

Training of missense classifiers that are based on machine learning algorithms and
performance comparisons between existing algorithms both require large data sets of
accurately classified missense substitutions. Existing large data sets, such as the annotations
contained in SWISS-PROT, have high enough error rates to compromise either of these
activities. Thus an important activity for the near future should be to expand the sets of
securely classified substitutions in the high-risk susceptibility genes and then use the
resulting data sets in new rounds of algorithm training and/or benchmarking.

Moving from the development and testing of missense substitution analysis algorithms to
actually using them in a clinical genetics context involves crossing a psychological barrier as
much as crossing a methodological barrier. The predictive values of 75–90+% obtained by
some in silico classification algorithms compare favorably with many medical tests that are
in current use [Chan et al., 2007; Plon et al., 2008]. Although important clinical decisions
regarding variant interpretation should not be made based on a single test of 80% accuracy,
in the context of other evidence (e.g., association of a genetic variant with disease in a
family) these methods can be an important tool in medical decision-making. At this time, it
appears that in some cases the accuracy is limited by the available evolutionary, mutation, or
structural databases and in some cases by the limitations of each individual method.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by grants from the National Institutes of Health (CA 96536, MSG) and the Lake
Champlain Cancer Research Organization (MSG).

References
Abkevich V, Zharkikh A, Deffenbaugh A, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A,

Tavtigian SV. Analysis of missense variation in human BRCA1 in the context of interspecific
sequence variation. J Med Gen. 2004; 41:492–507.

Balasubramanian S, Xia Y, Freinkman E, Gerstein M. Sequence variation in G-protein-coupled
receptors: analysis of single nucleotide polymorphisms. Nucleic Acids Res. 2005; 33:1710–1721.
[PubMed: 15784611]

Barnetson RA, Cartwright N, van Vliet A, Haq N, Drew K, Farrington S, Williams N, Warner J,
Campbell H, Porteous ME, Dunlop MG. Classification of ambiguous mutations in DNA mismatch
repair genes identified in a population-based study of colorectal cancer. Hum Mutat. 2008; 29:367–
374. [PubMed: 18033691]

Capriotti E, Arbiza L, Casadio R, Dopazo J, Dopazo H, Marti-Renom MA. Use of estimated
evolutionary strength at the codon level improves the prediction of disease-related protein mutations
in humans. Hum Mutat. 2008; 29:198–204. [PubMed: 17935148]

Care MA, Needham CJ, Bulpitt AJ, Westhead DR. Deleterious SNP prediction: be mindful of your
training data! Bioinformatics. 2007; 23:664–672. [PubMed: 17234639]

Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, Raevaara T, Ollila S, Nystrom M,
Grimm AJ, Christodoulou J, Oetting WS, Greenblatt MS. Interpreting missense variants: comparing

Tavtigian et al. Page 13

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase
(TYR). Hum Mutat. 2007; 28:683–693. [PubMed: 17370310]

Chao EC, Velasquez JL, Witherspoon MSL, Rozek LS, Peel D, Ng P, Gruber SB, Watson P, Rennert
G, Anton-Culver H, Lynch H, Lipkin SM. Accurate classification of MLH1/MSH2 missense
variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR).
Human Mutation. 2008; 29:852–860. [PubMed: 18383312]

Chenevix-Trench G, Healey S, Lakhani S, Waring P, Cummings M, Brinkworth R, Deffenbaugh AM,
Burbidge LA, Pruss D, Judkins T, Scholl T, Bekessy A, Marsh A, Lovelock P, Wong M, Tesoriero
A, Renard H, Southey M, Hopper JL, Yannoukakos K, Brown M, Easton D, Tavtigian SV, Goldgar
D, Spurdle AB. Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence
variants of unknown clinical significance. Cancer Res. 2006; 66:2019–2027. [PubMed: 16489001]

Cooper GM, Brudno M, NISC, Green ED, Batzoglou S, Sidow A. Quantitative estimates of sequence
divergence for comparative analyses of mammalian genomes. Genome Res. 2003; 13:813–820.
[PubMed: 12727901]

Dayhoff, MO.; Schwartz, RM.; Orcutt, BC. A model of evolutionary change in proteins. In: Dayhoff,
MO., editor. Atlas of Protein Sequence and Structure. Vol. 5. Washington DC: National
Biochemical Research Foundation; 1978. p. 345-352.

Deffenbaugh AM, Frank TS, Hoffman M, Cannon-Albright L, Neuhausen SL. Characterization of
common BRCA1 and BRCA2 variants. Genet Test. 2002; 6:119–121. [PubMed: 12215251]

Easton DF, Deffenbaugh AM, Pruss D, Frye C, Wenstrup RJ, Allen-Brady K, Tavtigian SV, Monteiro
AN, Iversen ES, Couch FJ, Goldgar DE. A Systematic Genetic Assessment of 1,433 Sequence
Variants of Unknown Clinical Significance in the BRCA1 and BRCA2 Breast Cancer-
Predisposition Genes. Am J Hum Genet. 2007; 81:873–883. [PubMed: 17924331]

Ferrer-Costa C, Orozco M, de la Cruz X. Characterization of disease-associated single amino acid
polymorphisms in terms of sequence and structure properties. J Mol Biol. 2002; 315:771–786.
[PubMed: 11812146]

Ferrer-Costa C, Orozco M, de la Cruz X. Sequence-based prediction of pathological mutations.
Proteins. 2004; 57:811–819. [PubMed: 15390262]

Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool
for the annotation of pathological mutations on proteins. Bioinformatics. 2005; 21:3176–3178.
[PubMed: 15879453]

Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, Greenblatt MS. IARC Unclassified
Genetic Variants Working Group. Integration of various data sources for classifying uncertain
variants into a single model. Hum Mutat. 2008:29.

Goldgar DE, Easton DF, Deffenbaugh AM, Monteiro AN, Tavtigian SV, Couch FJ. Integrated
evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and
BRCA2. Am J Hum Genet. 2004; 75:535–544. [PubMed: 15290653]

Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;
185:862–864. [PubMed: 4843792]

Greenblatt MS, Beaudet JG, Gump JR, Godin KS, Trombley L, Koh J, Bond JP. Detailed
computational study of p53 and p16: using evolutionary sequence analysis and disease-associated
mutations to predict the functional consequences of allelic variants. Oncogene. 2003; 22:1150–
1163. [PubMed: 12606942]

Henikoff S, Henikoff J. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci
USA. 1992; 89:10915–10919. [PubMed: 1438297]

Hofstra RW, Spurdle AB, Eccles D, Foulkes WD, de Wind N, Hoogerbrugge N, Hogervorst FBL.
IARC Unclassified Genetic Variants Working Group. Tumor characteristics as an analytic tool for
classifying genetic variants of uncertain clinical significance. Hum Mutat. 2008:29.

Judkins T, Hendrickson BC, Deffenbaugh AM, Eliason K, Leclair B, Norton MJ, Ward BE, Pruss D,
Scholl T. Application of embryonic lethal or other obvious phenotypes to characterize the clinical
significance of genetic variants found in trans with known deleterious mutations. Cancer Res.
2005; 65:10096–10103. [PubMed: 16267036]

Jukes TH, King JL. Deleterious mutations and neutral substitutions. Nature. 1971; 231:114–115.
[PubMed: 4930087]

Tavtigian et al. Page 14

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Karchin R, Monteiro AN, Tavtigian SV, Carvalho MA, Sali A. Functional Impact of Missense
Variants in BRCA1 Predicted by Supervised Learning. PLoS Comput Biol. 2007; 3:e26. [PubMed:
17305420]

Kryukov GV, Pennacchio LA, Sunyaev SR. Most rare missense alleles are deleterious in humans:
implications for complex disease and association studies. Am J Hum Genet. 2007; 80:727–739.
[PubMed: 17357078]

Lovelock PK, Healey S, Au W, Sum EY, Tesoriero A, Wong EM, Hinson S, Brinkworth R, Bekessy
A, Diez O, Izatt L, Solomon E, Jenkins M, Renard H, Hopper J, Waring P, Tavtigian SV, Goldgar
D, Lindeman GJ, Visvader JE, Couch FJ, Henderson BR, Southey M, Chenevix-Trench G,
Spurdle AB, Brown MA. Genetic, functional, and histopathological evaluation of two C-terminal
BRCA1 missense variants. J Med Genet. 2006; 43:74–83. [PubMed: 15923272]

Loytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and
evolutionary analysis. Science. 2008; 320:1632–1635. [PubMed: 18566285]

Lunter G, Hein J. A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics.
2004; 20 (Suppl 1):I216–I223. [PubMed: 15262802]

Martin W, Roettger M, Lockhart PJ. A reality check for alignments and trees. Trends Genet. 2007;
23:478–480. [PubMed: 17825944]

Miller MP, Kumar S. Understanding human disease mutations through the use of interspecific genetic
variation. Hum Mol Genet. 2001; 10:2319–2328. [PubMed: 11689479]

Mirkovic N, Marti-Renom MA, Weber BL, Sali A, Monteiro AN. Structure-based assessment of
missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition.
Cancer Res. 2004; 64:3790–3797. [PubMed: 15172985]

Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11:863–874.
[PubMed: 11337480]

Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids
Res. 2003; 31:3812–3814. [PubMed: 12824425]

Pey AL, Stricher F, Serrano L, Martinez A. Predicted effects of missense mutations on native-state
stability account for phenotypic outcome in phenylketonuria, a paradigm of misfolding diseases.
Am J Hum Genet. 2007; 81:1006–1024. [PubMed: 17924342]

Plon SE, Eccles DM, Easton DF, Foulkes W, Genuardi M, Greenblatt MS, Hogervorst FBL,
Hoogerbrugge N, Spurdle AB, Tavtigian S. IARC Unclassified Genetic Variants Working Group.
Sequence variant classification and reporting: recommendations for improving the interpretation of
cancer susceptibility genetic test results. Hum Mutat. 2008:29.

Raevaara TE, Korhonen MK, Lohi H, Hampel H, Lynch E, Lonnqvist KE, Holinski-Feder E, Sutter C,
McKinnon W, Duraisamy S, Gerdes AM, Peltomaki P, Kohonen-Ccorish M, Mangold E, Macrae
F, Greenblatt M, de la Chapelle A, Nystrom M. Functional significance and clinical phenotype of
nontruncating mismatch repair variants of MLH1. Gastroenterology. 2005; 129:537–549.
[PubMed: 16083711]

Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids
Res. 2002; 30:3894–3900. [PubMed: 12202775]

Spurdle AB, Lakhani SR, Healey S, Parry S, Da Silva LM, Brinkworth R, Hopper JL, Brown MA,
Babikyan D, Chenevix-Trench G, Tavtigian SV, Goldgar DE. Clinical classification of BRCA1
and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis--a
report from the kConFab Investigators. J Clin Oncol. 2008; 26:1657–1663. [PubMed: 18375895]

Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions mediates
impairment of protein function and disease severity. Genome Res. 2005; 15:978–986. [PubMed:
15965030]

Sunyaev S, Ramensky V, Koch I, Lathe Wr, Kondrashov AS, Bork P. Prediction of deleterious human
alleles. Hum Mol Genet. 2001; 10:591–597. [PubMed: 11230178]

Tavtigian S, Byrnes GB, Goldgar DE, Thomas A. Classification of rare missense substitutions, using
risk surfaces, with genetic- and molecular-epidemiology applications. Hum Mutat. 2008:29.

Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A,
Thomas A. Comprehensive statistical study of 452 BRCA1 missense substitutions with

Tavtigian et al. Page 15

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



classification of eight recurrent substitutions as neutral. J Med Genet. 2006; 43:295–305.
[PubMed: 16014699]

Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A,
Narechania A. PANTHER: a library of protein families and subfamilies indexed by function.
Genome Res. 2003; 13:2129–2141. [PubMed: 12952881]

Thomas PD, Kejariwal A. Coding single-nucleotide polymorphisms associated with complex vs.
Mendelian disease: evolutionary evidence for differences in molecular effects. Proc Natl Acad Sci
U S A. 2004; 101:15398–15403. [PubMed: 15492219]

Tokuriki N, Stricher F, Schymkowitz J, Serrano L, Tawfik DS. The stability effects of protein
mutations appear to be universally distributed. J Mol Biol. 2007; 369:1318–1332. [PubMed:
17482644]

Vitkup D, Sander C, Church GM. The amino-acid mutational spectrum of human genetic disease.
Genome Biol. 2003; 4:R72. [PubMed: 14611658]

Walker DR, Bond JP, Tarone RE, Harris CC, Makalowski W, Boguski MS, Greenblatt MS.
Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein
structural and functional features. Oncogene. 1999; 18:211–218. [PubMed: 9926936]

Wang Z, Moult J. SNPs, protein structure, and disease. Hum Mutat. 2001; 17:263–270. [PubMed:
11295823]

Wong KM, Suchard MA, Huelsenbeck JP. Alignment uncertainty and genomic analysis. Science.
2008; 319:473–476. [PubMed: 18218900]

Yue P, Li Z, Moult J. Loss of protein structure stability as a major causative factor in monogenic
disease. J Mol Biol. 2005; 353:459–473. [PubMed: 16169011]

Yue P, Melamud E, Moult J. SNPs3D: candidate gene and SNP selection for association studies. BMC
Bioinformatics. 2006; 7:166. [PubMed: 16551372]

Zuckerkandl E, Pauling L. Molecules as documents of evolutionary history. J Theor Biol. 1965;
8:357–366. [PubMed: 5876245]

APPENDIX. Members of the IARC Working Group on Unclassified Genetic
Variants

Paolo Boffetta, IARC, France; Fergus Couch, Mayo Clinic, USA; Niels de Wind, Leiden
University, the Netherlands; Diana Eccles, University of Southampton, UK; Douglas
Easton, Cambridge University, UK; William Foulkes, McGill University, Canada; Maurizio
Genuardi, University of Florence, Italy; David Goldgar, University of Utah, USA; Marc
Greenblatt, University of Vermont, USA; Robert Hofstra, University Medical Center
Groningen, the Netherlands; Frans Hogervorst, Netherlands Cancer Institute, the
Netherlands; Nicoline Hoogerbrugge, University Medical Center Neimejen, the
Netherlands; Sharon Plon, Baylor University, USA; Paolo Radice, Istituto Nazionale
Tumori, Italy; Lene Rasmussen, Roskilde University, Denmark; Olga Sinilnikova, Hospices
Civils de Lyon, France; Amanda Spurdle, Queensland Institute of Medical Research,
Australia; Sean Tavtigian, IARC, France.

Tavtigian et al. Page 16

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A. A section of MLH1 alignment, from human residue K140, excerpted from Chan et al.
2007. Note that the alignment contains an apparent gap in the pufferfish sequence. The
mutant residue from 3 human missense substitutions, p. L155R, p. R182G,. and p.V185G,
are positioned above the alignment. B. The corresponding section of a newly prepared
MLH1 alignment in which the apparent gap in the pufferfish sequence has been repaired via
an analysis of the underlying nucleotide sequences from the T. nigroviridis and F. rubripes
genomic sequences. Note that: (1) at the right boundary of the gap in panel A, the first 4
residues, TQIL, were misaligned and actually belonged at the left edge of the gap; (2) the
next two residues, DE, were probably a sequence assembly artifact; and (3) in silico
assessments of the 2 human missense substitutions p.L155R and p.R182G may differ
depending on which alignment is used because of the changes introduced by repairing the
artifactual gap.
Note also a difference in character between the two alignments. Alignment A is
phylogenetically rather deep, containing sequences from long branch-length animals such as
C. elegans as well as fungal and other non-animal sequences. Alignment B is
phylogenetically less deep (though still deeper than those that have been used for BRCA1
and BRCA2) and tries to exploit sequences from non-vertebrate deuterostomates plus starlet
anemone, organisms whose overall gene repertoire is more similar to that of vertebrates than
are the genomes of protostomate animals or non-animal eukaryotes. Either way, recognizing
the presence of a structural error in the T. nigroviridis sequence illustrates that an initial
alignment can be used as a hypothesis test on the individual sequences it contains, providing
clues to areas where sequence corrections may improve the alignment.

Tavtigian et al. Page 17

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tavtigian et al. Page 18

Ta
bl

e 
1

T
oo

ls
 f

or
 in

 s
ili

co
 a

na
ly

si
s 

of
 m

is
se

ns
e 

su
bs

tit
ut

io
ns

P
ro

gr
am

 n
am

e
U

R
L

 a
nd

 k
ey

 r
ef

er
en

ce
O

pe
ra

ti
ng

 p
ri

nc
ip

le
O

ut
pu

t
U

se
 n

ot
es

A
lig

n-
G

V
G

D
W

eb
 s

er
ve

r:
ht

tp
://

ag
vg

d.
ia

rc
.f

r/
[T

av
tig

ia
n 

et
 a

l.,
 2

00
6]

C
om

bi
ne

s 
an

 a
lig

nm
en

t w
ith

 a
m

in
o 

ac
id

ph
ys

ic
o-

ch
em

ic
al

 c
ha

ra
ct

er
is

tic
s 

to
 c

al
cu

la
te

th
e 

ra
ng

e 
of

 v
ar

ia
tio

n 
pr

es
en

t a
t e

ac
h 

po
si

tio
n

in
 th

e 
al

ig
nm

en
t (

G
V

) 
an

d 
th

e 
di

st
an

ce
 o

f
m

is
se

ns
e 

su
bs

tit
ut

io
ns

 f
ro

m
 th

at
 r

an
ge

 o
f

va
ri

at
io

n 
(G

D
).

T
w

o 
di

st
an

ce
 m

ea
su

re
m

en
ts

 a
nd

 a
 g

ra
de

:
G

V
 –

 r
an

ge
 o

f 
va

ri
at

io
n

G
D

 –
 d

is
ta

nc
e 

of
 a

 m
is

se
ns

e 
su

bs
tit

ut
io

n 
fr

om
th

e 
ed

ge
 o

f 
th

e 
ra

ng
e 

of
 v

ar
ia

tio
n.

G
ra

de
s 

– 
C

0 
to

 C
65

 –
 p

ro
vi

de
 a

n 
em

pi
ri

ca
l

m
ap

pi
ng

 f
ro

m
 G

V
-G

D
 to

 g
en

et
ic

 r
is

k.

W
eb

si
te

 h
as

 a
 s

m
al

l l
ib

ra
ry

 o
f 

cu
ra

te
d

se
qu

en
ce

 a
lig

nm
en

ts
. U

se
rs

 m
us

t s
up

pl
y

FA
ST

A
 f

or
m

at
 a

lig
nm

en
ts

 f
or

 g
en

es
 n

ot
in

cl
ud

ed
 in

 th
e 

lib
ra

ry
.

T
ru

e 
ga

ps
 a

re
 c

od
ed

 “
−

”
M

is
si

ng
 r

es
id

ue
s 

ar
e 

co
de

d 
“X

”

M
A

PP
Pr

og
ra

m
 to

 d
ow

nl
oa

d:
ht

tp
://

m
en

de
l.s

ta
nf

or
d.

ed
u/

Si
do

w
L

ab
/d

ow
nl

oa
ds

/
M

A
PP

/in
de

x.
ht

m
l

[S
to

ne
 a

nd
 S

id
ow

, 2
00

5]

C
om

bi
ne

s 
an

 a
lig

nm
en

t w
ith

 a
m

in
o 

ac
id

ph
ys

ic
o-

ch
em

ic
al

 c
ha

ra
ct

er
is

tic
s 

to
 c

al
cu

la
te

th
e 

ph
ys

ic
o-

ch
em

ic
al

 c
en

tr
oi

d 
of

 e
ac

h 
po

si
tio

n
an

d 
th

e 
va

ri
an

ce
 b

et
w

ee
n 

ea
ch

 o
f 

th
e 

20
 a

m
in

o
ac

id
s 

an
d 

th
at

 c
en

tr
oi

d.
 T

hi
s 

is
 th

e 
M

A
PP

im
pa

ct
 s

co
re

.

A
 m

an
y-

co
lu

m
n 

ta
bl

e 
th

at
 g

iv
es

: t
he

 p
hy

si
co

-
ch

em
ic

al
 c

ha
ra

ct
er

is
tic

s 
of

 e
ac

h 
po

si
tio

n;
 th

e
M

A
PP

 im
pa

ct
 s

co
re

, w
hi

ch
 is

 a
 c

on
tin

uo
us

va
ri

ab
le

, f
or

 a
ll 

20
 a

m
in

o 
ac

id
s 

at
 e

ac
h

po
si

tio
n;

 a
nd

 a
 li

st
in

g 
of

 w
hi

ch
 a

m
in

o 
ac

id
s

sh
ou

ld
 b

e 
de

le
te

ri
ou

s 
an

d 
w

hi
ch

 s
ho

ul
d 

be
ne

ut
ra

l.

U
se

rs
 m

us
t s

up
pl

y 
FA

ST
A

 f
or

m
at

 a
lig

nm
en

ts
an

d 
a 

ph
yl

og
en

et
ic

 tr
ee

 d
es

cr
ib

in
g 

th
e

re
la

tio
ns

hi
ps

 b
et

w
ee

n 
th

e 
se

qu
en

ce
s 

sa
m

pl
ed

.
T

ru
e 

al
ig

nm
en

t g
ap

s 
ar

e 
co

de
d 

“−
”

C
an

 b
e 

op
tim

iz
ed

 f
or

 in
di

vi
du

al
 g

en
es

 [
C

ha
o

et
 a

l.,
 2

00
8]

, a
nd

 u
se

rs
 c

an
 o

pt
im

iz
e 

M
A

PP
im

pa
ct

 s
co

re
 th

re
sh

ol
ds

 f
or

 c
la

ss
if

ic
at

io
n.

PA
N

T
H

E
R

W
eb

 s
er

ve
r:

ht
tp

://
w

w
w

.p
an

th
er

db
.o

rg
/

to
ol

s/
cs

np
Sc

or
eF

or
m

.js
p

[T
ho

m
as

 a
nd

 K
ej

ar
iw

al
,

20
04

]

T
he

 o
ve

ra
ll 

se
rv

er
 u

se
s 

se
qu

en
ce

 a
lig

nm
en

ts
 to

cl
as

si
fy

 g
en

es
 b

y 
de

du
ce

d 
fu

nc
tio

n.
O

ne
 s

er
vi

ce
 p

ro
vi

de
d 

us
es

 p
re

- 
bu

ilt
al

ig
nm

en
ts

 to
 c

al
cu

la
te

 a
 H

id
de

n 
M

ar
ko

v
M

od
el

 b
as

ed
 p

os
iti

on
 s

pe
ci

fi
c 

sc
or

in
g 

m
at

ri
x,

th
e 

su
bP

SE
C

 s
co

re
.

A
 7

 c
ol

um
n 

ta
bl

e 
th

at
 in

cl
ud

es
: s

ub
PS

E
C

 s
co

re
,

a 
po

si
tio

n 
sp

ec
if

ic
 s

co
ri

ng
 m

at
ri

x 
sc

or
e;

 T
he

es
tim

at
ed

 p
ro

ba
bi

lit
y 

th
at

 a
 s

ub
st

itu
tio

n 
is

de
le

te
ri

ou
s;

 a
nd

 N
IC

, t
he

 b
al

an
ce

 o
f 

pr
io

r
kn

ow
le

dg
e 

ve
rs

us
 ta

rg
et

 g
en

e 
al

ig
nm

en
t d

at
a

us
ed

 to
 c

al
cu

la
te

 th
e 

su
bP

SE
C

 s
co

re
.

U
se

rs
 p

ro
vi

de
 th

ei
r 

ta
rg

et
 s

eq
ue

nc
e 

an
d 

a 
lis

t
of

 m
is

se
ns

e 
su

bs
tit

ut
io

ns
. W

ill
 g

en
er

al
ly

 o
nl

y
ou

tp
ut

 r
es

ul
ts

 f
or

 w
el

l-
co

ns
er

ve
d 

se
gm

en
ts

 o
f

ta
rg

et
 p

ro
te

in
s,

 a
nd

 th
e 

us
er

 n
ot

es
 p

oi
nt

 o
ut

th
at

 m
os

t s
ub

st
itu

tio
ns

 f
al

lin
g 

at
 p

oo
rl

y
co

ns
er

ve
d 

se
gm

en
ts

 o
f 

th
e 

ta
rg

et
 p

ro
te

in
 w

ill
be

 n
eu

tr
al

.

Pm
ut

W
eb

 s
er

ve
r:

ht
tp

://
m

m
b2

.p
cb

.u
b.

es
:8

08
0/

PM
ut

/
[F

er
re

r-
C

os
ta

 e
t a

l.,
 2

00
5]

U
se

s 
a 

fe
ed

-f
or

w
ar

d 
ne

ur
al

 n
et

w
or

k 
an

d 
da

ta
fr

om
 1

9 
pa

ra
m

et
er

s 
(a

lig
nm

en
t o

nl
y)

 o
r 

23
pa

ra
m

et
er

s 
(a

lig
nm

en
t +

 c
ry

st
al

 s
tr

uc
tu

re
) 

to
an

al
yz

e 
su

bs
tit

ut
io

ns
.

A
na

ly
ze

s 
19

 p
os

si
bl

e 
m

is
se

ns
e 

su
bs

tit
ut

io
ns

ag
ai

ns
t t

he
 w

ild
-t

yp
e.

G
iv

es
 th

e 
ne

ur
al

 n
et

 o
ut

pu
t s

co
re

, r
an

gi
ng

 f
ro

m
0 

to
 1

; a
 r

el
ia

bi
lit

y 
sc

or
e 

w
hi

ch
 is

 s
m

al
l f

or
va

ri
an

ts
 w

ith
 N

N
 s

co
re

s 
ne

ar
 0

.5
; a

nd
 a

 b
in

ar
y

pr
ed

ic
tio

n 
of

 “
ne

ut
ra

l”
 v

s 
“p

at
ho

lo
gi

ca
l”

.

N
ee

d 
a 

PD
B

 s
tr

uc
tu

re
 I

D
 to

 r
un

 th
e 

ve
rs

io
n

th
at

 u
se

s 
cr

ys
ta

l s
tr

uc
tu

re
 d

at
a.

Fo
r 

th
e 

ve
rs

io
n 

th
at

 ta
ke

s 
a 

us
er

- 
su

pp
lie

d
al

ig
nm

en
t, 

tr
ue

 g
ap

s 
ar

e 
co

de
d 

“.
“;

 h
ow

ev
er

,
w

e 
ha

ve
 n

ev
er

 s
uc

ce
ed

ed
 to

 r
un

 th
is

 v
er

si
on

of
 th

e 
pr

og
ra

m
.

Po
ly

Ph
en

W
eb

 s
er

ve
r:

ht
tp

://
co

ot
.e

m
bl

.d
e/

Po
ly

Ph
en

/
[S

un
ya

ev
 e

t a
l.,

 2
00

1]

B
as

ed
 o

n 
a 

de
ci

si
on

 tr
ee

 th
at

 c
om

bi
ne

s 
a

nu
m

be
r 

of
 p

ro
te

in
 s

tr
uc

tu
ra

l a
ttr

ib
ut

es
 w

ith
 a

pr
e-

 b
ui

lt 
se

qu
en

ce
 a

lig
nm

en
t, 

ge
ne

ra
lly

in
cl

ud
in

g 
on

ly
 M

am
m

al
ia

n 
se

qu
en

ce
s.

C
al

cu
la

te
s 

a 
PS

IC
 s

co
re

, w
hi

ch
 is

 th
e 

di
ff

er
en

ce
in

 f
itn

es
s 

be
tw

ee
n 

w
ild

 ty
pe

 a
nd

 m
ut

an
t a

m
in

o
ac

id
, a

nd
 th

en
 c

on
ve

rt
s 

to
 a

 3
 c

at
eg

or
y

cl
as

si
fi

ca
tio

n:
 b

en
ig

n,
 p

os
si

bl
y 

da
m

ag
in

g,
pr

ob
ab

ly
 d

am
ag

in
g.

 S
up

pl
em

en
ta

ry
 o

ut
pu

t
sh

ow
s 

w
hi

ch
 d

at
a 

co
m

po
ne

nt
s 

w
er

e 
av

ai
la

bl
e.

U
se

r 
in

pu
ts

 a
 p

ro
te

in
 id

en
tif

ie
r 

or
 ta

rg
et

se
qu

en
ce

.
T

he
 w

eb
 p

or
ta

l a
cc

ep
ts

 o
nl

y 
on

e 
su

bs
tit

ut
io

n
at

 a
 ti

m
e.

 H
ow

ev
er

, s
of

tw
ar

e 
fo

r 
m

as
s

su
bm

is
si

on
 o

f 
su

bs
tit

ut
io

ns
 is

 a
va

ila
bl

e
on

lin
e.

SI
FT

W
eb

 s
er

ve
r:

ht
tp

://
bl

oc
ks

.f
hc

rc
.o

rg
/s

if
t/

SI
FT

.h
tm

l
[N

g 
an

d 
H

en
ik

of
f,

 2
00

3]

U
se

s 
se

qu
en

ce
 a

lig
nm

en
ts

 to
 c

re
at

e 
a 

D
ir

ic
hl

et
m

ix
tu

re
s-

ba
se

d 
sc

or
e 

m
at

ri
x 

fo
r 

ea
ch

 p
os

iti
on

in
 th

e 
al

ig
nm

en
t. 

T
he

 s
co

re
 f

or
 e

ac
h 

po
ss

ib
le

am
in

o 
ac

id
 s

ub
st

itu
tio

n 
is

 c
on

ve
rt

ed
 to

 a
no

rm
al

iz
ed

 p
ro

ba
bi

lit
y 

th
at

 th
e 

su
bs

tit
ut

io
n

w
ou

ld
 b

e 
ev

ol
ut

io
n-

 a
ri

ly
 to

le
ra

te
d,

 th
e 

SI
FT

sc
or

e.

W
ill

 o
ut

pu
t t

he
 S

IF
T

 s
co

re
 f

or
 e

ac
h 

in
di

vi
du

al
su

bs
tit

ut
io

n 
su

bm
itt

ed
 o

r 
al

l p
os

si
bl

e
su

bs
tit

ut
io

ns
. A

ls
o 

pr
ov

id
es

 th
e 

bi
na

ry
cl

as
si

fi
ca

tio
n 

to
le

ra
te

d/
pr

ed
ic

te
d 

to
 a

ff
ec

t
pr

ot
ei

n 
fu

nc
tio

n,
 p

lu
s 

th
e 

m
ed

ia
n 

se
qu

en
ce

co
ns

er
va

tio
n 

fr
om

 th
e 

al
ig

nm
en

t.

W
e 

re
co

m
m

en
d 

th
at

 u
se

rs
 c

re
at

e 
th

ei
r 

ow
n

al
ig

nm
en

ts
 r

at
he

r 
th

an
 u

si
ng

 th
e 

au
to

-b
ui

ld
fe

at
ur

e.
T

ru
e 

ga
ps

 a
re

 c
od

ed
 “

−
”

M
is

si
ng

 r
es

id
ue

s 
ar

e 
co

de
d 

“X
”.

T
he

 s
eq

ue
nc

e 
co

ns
er

va
tio

n 
sc

or
e 

pr
ov

id
es

 a
us

ef
ul

 e
st

im
at

e 
of

 w
he

th
er

 th
e 

al
ig

nm
en

t
co

nt
ai

ns
 s

uf
fi

ci
en

t v
ar

ia
tio

n 
to

 s
up

po
rt

cl
as

si
fi

ca
tio

n.

SN
Ps

3D
W

eb
 s

er
ve

r:
ht

tp
://

w
w

w
.s

np
s3

d.
or

g/
[Y

ue
 e

t a
l.,

 2
00

6]

U
se

s 
th

e 
Su

pp
or

t V
ec

to
r 

M
ac

hi
ne

 a
nd

 d
at

a
fr

om
 1

5 
pa

ra
m

et
er

s 
(s

tr
uc

tu
re

 b
as

ed
) 

or
 5

pa
ra

m
et

er
s 

(a
lig

nm
en

t b
as

ed
) 

to
 a

na
ly

ze

N
eg

at
iv

e 
sv

m
 p

ro
fi

le
s 

ar
e 

in
di

ca
tiv

e 
of

de
le

te
ri

ou
s 

an
d 

po
si

tiv
e 

pr
of

ile
s 

ar
e 

in
di

ca
tiv

e
of

 n
eu

tr
al

. S
co

re
s 

be
tw

ee
n 

−
0.

5 
an

d 
+

0.
5 

ha
ve

re
du

ce
d 

co
nf

id
en

ce
. A

 s
um

m
ar

y 
of

 th
e

Fa
ils

 to
 a

na
ly

ze
 a

n 
ap

pr
ec

ia
bl

e 
fr

ac
tio

n 
of

su
bs

tit
ut

io
ns

 e
nt

er
ed

. I
f 

a 
su

bs
tit

ut
io

n 
is

 o
n

th
e 

su
rf

ac
e 

of
 th

e 
pr

ot
ei

n,
 th

en
 th

e 
st

ru
ct

ur
al

an
al

ys
is

 w
ill

 a
lm

os
t a

lw
ay

s 
po

in
t t

ow
ar

ds

Hum Mutat. Author manuscript; available in PMC 2012 August 30.

http://agvgd.iarc.fr/
http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html
http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html
http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://www.pantherdb.org/tools/csnpScoreForm.jsp
http://mmb2.pcb.ub.es:8080/PMut/
http://mmb2.pcb.ub.es:8080/PMut/
http://coot.embl.de/PolyPhen/
http://coot.embl.de/PolyPhen/
http://blocks.fhcrc.org/sift/SIFT.html
http://blocks.fhcrc.org/sift/SIFT.html
http://www.snps3d.org/


N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tavtigian et al. Page 19

P
ro

gr
am

 n
am

e
U

R
L

 a
nd

 k
ey

 r
ef

er
en

ce
O

pe
ra

ti
ng

 p
ri

nc
ip

le
O

ut
pu

t
U

se
 n

ot
es

su
bs

tit
ut

io
ns

. T
he

 o
ut

pu
t s

co
re

 is
 c

al
le

d 
th

e
sv

m
 p

ro
fi

le
.

un
de

rl
yi

ng
 d

at
a 

is
 a

va
ila

bl
e 

fr
om

 b
ot

h
st

ru
ct

ur
al

 a
nd

 a
lig

nm
en

t-
ba

se
d 

an
al

ys
es

.
ne

ut
ra

l; 
in

 th
is

 c
as

e,
 th

e 
al

ig
nm

en
t-

ba
se

d
an

al
ys

is
 s

ho
ul

d 
be

 m
or

e 
re

lia
bl

e.

Hum Mutat. Author manuscript; available in PMC 2012 August 30.


