Supplementary Data for *In silico* and *in vitro* evaluation of imatinib as an inhibitor for SARS-CoV-2

Authors: Nirmitee Mulgaonkar^{1, #}, Haoqi Wang^{1, #}, Samavath Mallawarachchi¹, Daniel Ruzek², Byron Martina³, and Sandun Fernando^{1,*}.

Affiliations

¹Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX, USA.

²Veterinary Research Institute, Brno, and Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.

³Artemis One Health Research Institute, Delft, The Netherlands.

[#]These authors contributed equally.

*Corresponding author

Dr. Sandun Fernando: sfernando@tamu.edu

This PDF file includes:

Tables S1 and S2 Figures S1 and S2 References

Compound ID/ Name/ ZINC ID	2D structure	Applications and mechanism of action	References
ZINCFDA754/ imatinib/ ZINC0000196326 18		Leukemia treatment by inhibition of Bcr- Abl tyrosine kinase.	[1]
Antiviral2038 / Z787722876 / ZINC50038784		No reported bioactivity. Antiviral properties based on Enamine predictions.	
Antiviral2981/ Z1452532074/ ZINC170674881		Has a molinspiration bioactivity score of 0.35 as GPCR ligand	[1]
Antiviral825/ Z1277226201/ ZINC104169890	N O HN+*	Has good molinspiration bioactivity scores as GPCR ligand (0.43), Ion channel modulator (0.38), kinase inhibitor (0.27) and enzyme inhibitor (0.2)	[1]

Table S1. Information of compounds screened from *in silico* studies.

ZINCFDA130/ ergotamine/ ZINC0000529557 54		Migraine treatment via acting as an agonist to 5-HT1A, 5-HT1B, 5- HT1D, and 5-HT1F receptors	[2]
ZINCFDA2083/ glecaprevir/ ZINC164528615	F N H F	Hepatitis C treatment by NS3/4 protease inhibition	[3]
ZINCFDA515/ ponatinib/ ZINC0000367012 90		Leukemia treatment by inhibition of Bcr- Abl tyrosine kinase	[4]

	Without NAG		With NAG at Asn343	
Compounds	Glide docking	Glide energy	Glide docking score	Glide energy
	score (kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
Antiviral825	-3.951	-26.131	-3.356	-28.943
Antiviral2038	-4.161	-30.52	-4.188	-34.03
Antiviral2981	-4.179	-28.595	-3.589	-29.072
ZINCFDA130				
(ergotamine)	-5.658	-40.58	-5.078	-50.459
ZINCFDA515				
(ponatinib)	-4.261	-42.646	-4.263	-41.717
ZINCFDA754				
(imatinib)	-3.983	-38.676	-3.933	-41.212
ZINCFDA2083				
(glecaprevir)	-4.672	-40.94	-5.1	-57.671

 Table S2. Docking validation using Glide.

A. Imatinib

B. Antiviral2038

C. Antiviral2981

D. Antiviral825

E. Ergotamine

F. Glecaprevir

G. Ponatinib

Figure S1. A-G. Interactions diagrams of the seven selected compounds with the spike RBD protein.

Figure S2. Plot of MM-GBSA binding free energy (kcal/mol) versus time (ns) for all proteinligand complexes.

References:

- 1. Sisk, J.M., M.B. Frieman, and C.E. Machamer, *Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors.* The Journal of general virology, 2018. **99**(5): p. 619.
- Silberstein, S.D., *The pharmacology of ergotamine and dihydroergotamine*. Headache, 1997. 37
 Suppl 1: p. S15-25.
- 3. Gane, E., et al., *Glecaprevir and pibrentasvir in patients with HCV and severe renal impairment*. New England Journal of Medicine, 2017. **377**(15): p. 1448-1455.
- 4. Goldman, J.M., *Ponatinib for chronic myeloid leukemia*. 2012, Mass Medical Soc.