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Abstract

Background: Over the past few decades, scientific research has been focused on developing peptide/protein-based
therapies to treat various diseases. With the several advantages over small molecules, including high specificity, high
penetration, ease of manufacturing, peptides have emerged as promising therapeutic molecules against many diseases.
However, one of the bottlenecks in peptide/protein-based therapy is their toxicity. Therefore, in the present study, we
developed in silico models for predicting toxicity of peptides and proteins.

Description: We obtained toxic peptides having 35 or fewer residues from various databases for developing prediction
models. Non-toxic or random peptides were obtained from SwissProt and TrEMBL. It was observed that certain residues like
Cys, His, Asn, and Pro are abundant as well as preferred at various positions in toxic peptides. We developed models based
on machine learning technique and quantitative matrix using various properties of peptides for predicting toxicity of
peptides. The performance of dipeptide-based model in terms of accuracy was 94.50% with MCC 0.88. In addition, various
motifs were extracted from the toxic peptides and this information was combined with dipeptide-based model for
developing a hybrid model. In order to evaluate the over-optimization of the best model based on dipeptide composition,
we evaluated its performance on independent datasets and achieved accuracy around 90%. Based on above study, a web
server, ToxinPred has been developed, which would be helpful in predicting (i) toxicity or non-toxicity of peptides, (ii)
minimum mutations in peptides for increasing or decreasing their toxicity, and (iii) toxic regions in proteins.

Conclusion: ToxinPred is a unique in silico method of its kind, which will be useful in predicting toxicity of peptides/
proteins. In addition, it will be useful in designing least toxic peptides and discovering toxic regions in proteins. We hope
that the development of ToxinPred will provide momentum to peptide/protein-based drug discovery (http://crdd.osdd.net/
raghava/toxinpred/).
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Introduction

The last decade has seen an unprecedented revival of interest in

therapeutic peptides as potential drug candidates [1]. A plethora of

research articles has been published every year demonstrating

discovery of variety of novel therapeutic peptides e.g. tumor

homing peptides [2], cell penetrating peptides [3], anti-microbial

peptides [4], anticancer peptides [5,6,7], etc. and applications of

these peptides in various diseases like cancer, diabetes, cardiovas-

cular diseases, etc. As a result of these efforts, rate of therapeutic

peptides entering into clinical trials has improved significantly over

the decade [1]. However, despite the discovery of hundreds of

such therapeutic peptides, only few peptide-based drugs have

made it to the market.

Peptides have numerous advantages over small molecules that

include high biological activity, high specificity, low production

cost, and high penetration [1,5]. However, toxicity, immunoge-

nicity and stability remain the main concerns in the development

of peptide-based drugs. Stability of peptides can be enhanced by

various ways [8], including incorporation of D-amino acids

(making peptides protease resistant), changing the backbone

chemistry, cyclization, and incorporation of a-aminoxy amino

acids [9]. Similarly, there are numerous in silico tools, which can

predict the immunogenicity of the peptides [10,11,12,13,14], but

there is hardly any way/method to predict the toxicity of peptides.

Computational methods for predicting toxicity of peptides not only

save time and money, but also facilitate the designing of better

therapeutic peptides with low toxicity while retaining the

functionalities.
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Keeping these facts in mind, in this study, for the first time, an

attempt has been made to develop an in silico method for

predicting toxicity of peptides. Toxic peptides have been collected

from various databases/studies including ATDB [15], DBETH

[16], BTXpred [17], NTXpred [18], Arachno-Server [19],

Conoserver [20]. In silico models have been developed using the

machine-learning technique support vector machine (SVM), for

discriminating toxic peptides from non-toxic peptides. In addition,

various motifs from toxic peptides were discovered and used for

toxicity prediction.

Materials and Methods

Dataset Creation
We extracted small toxins (proteins/peptides) from different

databases and studies that include ATDB [15], Arachno-Server

[19], Conoserver [20], DBETH [16], BTXpred [17], NTXpred

[18], and SwissProt [21]. We removed all proteins/peptides

having more than 35 residues or any non-natural amino acid. As a

result, 1805 unique toxic proteins/peptides were obtained. By

employing the similar criteria, toxic proteins/peptides were also

searched in SwissProt database using keyword KW800 (keyword

800 stands for toxin as molecular functions). A total of 803 toxic

proteins, having length less than 35 amino acids were obtained. It

is possible that many toxic peptides obtained from various

databases could also be present in SwissProt. Therefore, identical

toxic proteins/peptides were removed and finally we got 303

unique toxic proteins/peptides from SwissProt. These proteins/

peptides were considered as toxic peptides or positive examples.

Though it is possible to extract well-annotated or experimentally

validated toxic peptides, but it is difficult to obtained non-toxic

peptides. Therefore, to create a negative dataset, we have searched

protein/peptide sequences in UniProt using keywords NOT

KW800 NOT KW20 (keyword 800 and 20 stand for toxin and

allergen as molecular functions). Proteins/peptide sequences

having length less than 35 amino acids were extracted. After

removing sequences with non-natural amino acids, two types of

negative datasets were created; first dataset consists of 3893

sequences from SwissProt (NOT KW800 NOT KW20) and

second dataset consists of 13541 sequences from TrEMBL

(keyword NOT KW800 AND KW33090) [21]. While searching

non-toxins in TrEMBL, additional keyword plant proteins were

applied as search criteria as most of the plants are edible and

therefore, the probability of plant proteins/peptides to be toxic is

very low. Above toxic and non-toxic peptides/proteins were used

to generate various datasets for training, testing and evaluating our

models developed for predicting toxicity of peptides (Figure 1).

Following is the brief description of these datasets:

Main and alternative datasets. The main dataset used for

training and testing of SVM models was generated from

experimentally validated toxic peptides (obtained from various

databases) and well-annotated non-toxin peptides/proteins ob-

tained from SwissProt. It includes 1805 toxic peptides as positive

examples and 3593 non-toxic peptides as negative examples. In

addition, we also generated an alternate dataset, which is similar to

the main dataset except negative examples. It consists of 1805

toxic-peptides/proteins as positive examples and 12541 non-toxin

peptides/proteins obtained from TrEMBL (instead of SwissProt).

Independent datasets. In order to evaluate biases in the

performance of developed models, we created different indepen-

dent datasets. First independent dataset comprises of 303 toxic

proteins/peptides (called positive examples) and 300 non-toxic

peptides/proteins or negative examples extracted from SwissProt.

None of the negative or positive examples was included in the

main dataset. This dataset is referred as main independent dataset

and used for evaluating models developed on the main dataset. In

order to evaluate the performance of models developed on

alternate dataset, we developed another independent dataset

referred as alternate independent dataset. This dataset consists of

303 positive examples extracted from SwissProt and 1000 negative

examples extracted from TrEMBL, which were not included in

the alternate dataset.

Models Developed using Support Vector Machine
There are a number of machine learning techniques used for

building prediction models. In this study, support vector machine

Figure 1. Overview of datasets’ creation.
doi:10.1371/journal.pone.0073957.g001
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(SVM) has been used for building models [22]. We developed

SVM based models using a freely available software SVMlight(ver-

sion 6.02).

Amino Acid Composition
The amino acid composition is defined as the fraction of each

amino acid in a peptide and it can be calculated by the following

equation:

Comp (i) ~
Ri

N
| 100

Where Comp (i ) is the percent composition of amino acid (i ); Ri

is the numbers of residues of type i, and N is the total number of

residues in the peptide.

Dipeptide Composition
The dipeptide composition is advantageous over simple amino

acid composition as it provides a composition of a pair of residues

(e.g. Gly-Gly, Gly-Leu, etc.) present in the peptide. Dipeptide

composition can be calculated using the following equation:

Fraction of Dipeptide (i)

~

Total number of Dipeptide (i)

Total number of all possible dipeptides

Where dipeptide (i) is one out of 400 dipeptides.

Binary Profile of Patterns
The binary profile is a commonly used feature for developing

prediction models, and it has been used previously in many

methods [23,24]. The binary profile encapsulates information of

both composition as well as order of amino acids in peptides.

Binary profiles of N- and C-termini of peptides were generated as

described previously [25].

Two Sample Logos
Two sample logos were generated using online two-sample logo

software [26]. The sequence logo provides the position specific

preference of amino acids in peptides.

Motif Identification
We used Multiple Em for Motif Elicitation (MEME, version

4.9.0) program [27] for the identification of prominent motifs in

the toxic peptides. We have identified a number of motifs, and

these motifs were used further to assign unknown sequences as

toxic or non-toxic by scanning of these motifs. For this purpose, we

have used another application of MEME suite called Motif

Alignment & Search Tool (MAST). E-value is very crucial in the

MAST output, so efficacy of this method was calculated at

different E-values (10–1027).

Figure 2. Comparison of average amino acid composition between various classes of therapeutic peptides.
doi:10.1371/journal.pone.0073957.g002

Figure 3. Comparison of average amino acid composition of
preferred residues between toxic and non-toxic peptides.
doi:10.1371/journal.pone.0073957.g003
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Figure 4. Sequence logos of (A) first ten residues of N-terminus and (B) last ten residues of C-terminus of toxic peptides, where size
of residue is proportional to its propensity (main dataset).
doi:10.1371/journal.pone.0073957.g004

Table 1. The performance of SVM-based models developed on main dataset using various types of composition like residue,
dipeptide, terminal residues composition.

Features Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

AAC t:2 g:0.005 c:5 j:1 20.4 92.91 94.43 93.92 0.87 0.97

C5AAC t:2 g:0.001 c:0.5 j:3 20.3 83.74 83.67 83.69 0.65 0.88

C10AAC t:2 g:0.005 c:10 j:3 20.3 88.66 91.73 90.69 0.80 0.94

N5AAC t:2 g:0.001 c:0.5 j:4 20.1 81.76 81.47 81.55 0.59 0.88

N10AAC t:2 g:0.005 c:1 j:3 20.4 90.41 86.94 88.11 0.75 0.94

DPC t:2 g:0.001 c:5 j:1 20.4 93.80 94.85 94.50 0.88 0.98

AAC, amino acid composition; DPC, dipeptide composition; C5AAC, amino acid composition of last five C-terminal residues; C10AAC, amino acid composition of last ten
C-terminal residues; N5AAC, amino acid composition of first five N-terminal residues; N10AAC, amino acid composition of first ten N-terminal residues; MCC, Matthew’s
correlation coefficient; AUC, area under the curve.
doi:10.1371/journal.pone.0073957.t001
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Hybrid Approach
Hybrid approach combines the motif information with SVM

output for biologically more reliable prediction of toxic peptides.

In this approach, first, various motifs are searched in the query

peptides, and if any of the motifs of toxic peptide is present, it’s

SVM score is increased by the value of 5. This final score is used

for the prediction, which in this case, will always be predicted as

toxic peptide irrespective of SVM prediction. In this way, hybrid

approach adds an extra advantage in the prediction.

Quantitative Matrix
QMs have been used successfully in the past to predict MHC

binders [28] and TAP binders [29]. In this study, we have also

generated QMs for both datasets (main and alternate datasets).

QM was generated on the basis of relative frequency of each

amino acid at every position (ranging from position 1 to position

35). This matrix represents the contribution of each residue (A to

Y) at every position (from 1 to 35), resulting into a matrix of

dimension 20635. Rows represent the residues and columns

represent the position information. QMs were generated for

positive and negative peptides for both datasets (main and

alternate dataset). Resultant matrix was obtained by subtracting

negative QM from the positive QM in each dataset. Then, this

resultant QM was used for further analysis as this matrix

represents the relative contribution of each residue at every

position relatively in positive and negative peptides, in each

dataset. In a similar way, QM was generated for dipeptide motifs

where each row represents the dipeptide and each column

represents the position of that dipeptide, resulting into a matrix

of dimension 400634 (this information has been provided at

‘‘Matrices’’ module of ToxinPred webserver). Query peptides were

scanned on this resultant QM to get the resultant score

(cumulative score) and to see what is the frequency of every

residue of query peptide at the corresponding position.

Evaluating the Performance of Models
We have evaluated the performance of different models using

cross validation techniques, which involved random division of

dataset into n number of sets. The training and testing were carried

out for n times, each time one set was used for testing and

remaining (n-1) sets were used for training. We used five (n = 5) and

ten (n = 10) fold cross validation techniques. Various standard

parameters like Sensitivity, Specificity, Accuracy, and Matthew’s

correlation coefficient (MCC) were used for assessing the

performance of models. These parameters can be computed as

described in previous studies [25,30]. In addition, to validate the

SVM model, the performance of SVM models were also evaluated

on independent datasets.

Results

Amino Acid Composition Analysis
In order to understand the nature of toxic peptides, first, percent

average amino acid composition of toxic peptides and non-toxic

peptides were calculated and compared. The result of this analysis

is shown in Figure 2. As demonstrated, certain residues like Cys,

His, Asn, and Pro were found to be dominated in toxic peptides

compared to non-toxic peptides. On the other hand, Val, Thr,

Arg, Gln, Met, Leu, Lys, Ile, Phe, and Ala were dominant in non-

toxic peptides. Next, we wanted to know how toxic peptides are

different from the other classes of therapeutic peptides, therefore

to address this, percent average amino acid composition of various

Table 2. The performance of binary profile-based models developed on main dataset.

Feature Parameters Threshold Sensitivity Specificity Accuracy MCC AUC

CT5 t:2 g:0.5 c:1 j:1 20.5 84.67 86.8 86.09 0.70 0.90

CT10 t:2 g:0.1 c:5 j:1 20.3 91.50 91.81 91.70 0.82 0.96

NT5 t:2 g:0.5 c:5 j:2 20.4 84.32 87.79 86.78 0.70 0.91

NT10 t:2 g:0.1 c:5 j:5 20.3 91.13 91.89 91.63 0.82 0.96

MCC, Matthew’s correlation coefficient; AUC, area under the curve.
doi:10.1371/journal.pone.0073957.t002

Table 3. The performance of motif-based model developed
on main dataset.

E-value PCP %Coverage

10 40.56 93.54

1 48.27 90.08

0.1 59.11 86.28

0.01 69.31 82.31

1E-02 78.07 78.29

1E-04 85.16 74.83

1E-05 89.15 71.77

1E-06 92.12 68.25

1E-07 93.40 64.17

PCP; probability of correct prediction.
doi:10.1371/journal.pone.0073957.t003

Table 4. The performance of model developed using motifs
and dipeptide composition on main dataset.

E-value Sensitivity Specificity Accuracy MCC AUC

10 99.39 97.91 98.41 0.96 0.99

1 98.89 97.91 98.24 0.96 0.99

0.1 98.39 97.91 98.07 0.96 0.99

0.01 97.78 97.91 97.87 0.95 0.99

0.001 97.17 97.91 97.67 0.95 0.99

0.0001 96.84 97.91 97.55 0.95 0.99

0.00001 96.62 97.91 97.48 0.94 0.99

0.000001 96.29 97.91 97.37 0.94 0.99

0.0000001 95.84 97.91 97.22 0.94 0.99

MCC, Matthew’s correlation coefficient; AUC, area under the curve.
doi:10.1371/journal.pone.0073957.t004
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other classes of therapeutic peptides (cell penetrating peptides,

tumor homing peptides, anti-viral peptides, anti-bacterial peptides,

anti-cancer peptides) were calculated and compared with toxic

peptides. The result of this comparison is shown in Figure 2. It was

observed that the composition of Cys was exceptionally high, and

composition of Asn and Pro was slightly higher in toxic peptides in

comparison to other peptides. Similarly, composition of Arg, Leu,

Lys, and Ile in toxic peptides was significantly low as compared to

other classes.

In addition, we also looked at the cumulative difference between

the average composition of residues dominating in both toxic and

non-toxic peptides (Figure 3). We categorized the significant

residues (p,0.05) in two groups: (i) positive dominating (Cys, His,

Asn and Pro), which are abundant in toxic peptides, and (ii)

negative dominating (Ala, Phe, Ile and Val), which are abundant

in non-toxic peptides. As shown in Figure 3, there is a significant

difference in the average composition of positive and negative

dominant residues between toxic and non-toxic peptides.

Residue Preference
Next, we wanted to analyze the residue preference at various

positions at both the termini in toxic and non-toxic peptides.

Therefore, two-sample logos were made from main dataset using

the two-sample logo software [26]. The results of two-sample logos

of N- and C-terminal of main dataset and alternate dataset were

shown in Figure 4 and Figure S1 in file S1 respectively. Similar to

amino acid composition, Cys was preferred at almost all positions

at both C- and N-terminal in toxic peptides. In addition, Pro, Gly,

Arg and Ser were also found to be preferred at few positions at N-

terminus while Val, Asn and His were preferred at few positions at

C-terminus in toxic peptides. In contrast, Met, Leu, Phe, and Ile

were preferred at various positions at N-terminus, while Leu, Gly,

and Lys were preferred at various positions at C-terminus of non-

toxic peptides. Overall Leu was found to be dominant in non-toxic

peptides at most of the positions at both N- and C-terminal of

peptides.

Amino Acid Composition-based SVM Model
Preliminary composition analysis has revealed that certain types

of residues are abundant in toxic peptides. Thus, it is possible to

discriminate toxic peptides from non-toxic peptides based on

amino acid composition. Therefore, we developed an SVM model

using amino acid composition as input feature. Composition based

SVM model achieved maximum accuracy of 93.92% with MCC

and AUC values 0.87 and 0.97, respectively on main dataset

(Table 1). Similarly, composition based SVM model on alternative

dataset achieved accuracy of 96.70% with MCC and AUC values

0.86 and 0.99 respectively (Table S1 in file S1). In addition models

were build using spilt amino acid composition, there performance

has are summarized in Table 1 and Table S1 in file S1. The

models based on split amino acid composition (C5AAC, C10AAC,

N10AAC, and N10AAC) did not perform better than the whole

composition-based models (Table 1 and Table S1 in file S1).

Model based on composition of 10 C-terminal amino acid

(C10AAC, main dataset) achieved maximum accuracy of

90.69% with MCC and AUC values 0.80 and 0.94 respectively.

Models Based on Dipeptide Composition
Dipeptide composition is considered better feature as compared

to amino acid composition as dipeptide composition encapsulates

the information of both amino acid fraction and the local order of

amino acids. Thus, we also developed SVM models based on

dipeptide composition. The performance of dipeptide composi-

tion-based model was better than whole composition-based model

developed on both main and alternate datasets (Table 1 and Table

S1in file S1). Dipeptide composition-based model developed on

main dataset achieved maximum accuracy of 94.50% with MCC

Figure 5. Maximum and minimum scoring residues at every position as observed in quantitative matrix (main dataset).
doi:10.1371/journal.pone.0073957.g005
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and AUC values of 0.88 and 0.98 respectively (Table 1). Similarly,

on alternate dataset accuracy was 98.64% with MCC 0.94 (Table

S1 in file S1).

Binary Profile-based SVM Model
Since it was found that certain residues, including Cys, Pro, Arg,

Ser, Val, Asn and Gly are preferred at various positions at both the

termini of the peptides, binary profiles were generated to

incorporate amino acid order information in the model. We have

used the following three approaches:
N-terminal approach. In this approach, we have generated

binary profiles of dimension 5620 and 10620 respectively by

extracting 5 and 10 N-terminus residues from each peptide in both

the datasets. These profiles were then used as input features to

develop SVM model. Comparison of the performances of binary-

based SVMmodels developed on main dataset is shown in Table 2.

The performance of the model developed on NT10 dataset was

better than that of the model developed on NT5 dataset. NT10

based model achieved maximum accuracy of 91.63% with MCC

and AUC values 0.82 and 0.96 respectively (Table 2). However,

this trend is reversed for models developed on alternate dataset.

For alternate dataset, NT10 based models performed poorer than

NT5 based model (Table S2 in file S1).
C-terminal approach. Similar to N-terminal approach,

models based on binary profiles were developed using CT5 and

CT10 datasets. For main dataset, the performance of CT5 and

CT10 based models was almost similar to N-terminal approach

(Table 2). The CT10 based model performed better than CT5

based model. However, for alternate dataset, both models (CT5

and CT10) performed with almost equal accuracy (Table S2 in file

S1).

Motif-based Prediction
Motif information has been used previously in many studies to

classify two different classes of peptides. We also applied the

similar strategy and found out 20 prominent motifs present in the

toxic peptides at E-value of 10. This motif information was used

further in MAST for the prediction of toxic peptides at different E-

value ranging from 10 to 1027. Probability of correct predictions

(PCP) was 93.40% at E-value of 1027 as shown in Table 3. Similar

results were obtained for alternate dataset (Table S3 in file S1).

Although, PCP was satisfying, but percent coverage is bit less, so

we integrated this method with dipeptide composition-based SVM

method to improve the performance of the model.

Hybrid Prediction Model
Since MEME/MAST method is very efficient in predicting

toxic peptides, but with very little coverage (Table 3 and Table S3

in file S1). Therefore, we have developed a hybrid method by

combining MEME/MAST method with the dipeptide-based

SVM model in order to improve the performance of the model.

The performance of hybrid model is shown in Table 4. Hybrid

model achieved maximum accuracy (at E-value 10) of 98.41%

with MCC and AUC values 0.96 and 0.99 respectively (Table 4).

Hybrid model developed on alternate dataset performed similar to

the model developed on main dataset (Table S4 in file S1).

Quantitative Matrix–based Prediction of Toxic Peptides
The quantitative matrices were used for prediction of toxic

peptides. From five fold cross validation, accuracy values 88.00%,

95.81%, 89.65% and 95.78% were achieved for monopeptide

main dataset (Single_main), monopeptide alternate dataset

(Single_alternate), dipeptide main dataset (Dipep_main), dipeptide

alternate dataset (Dipep_alternate) matrices, respectively and the

corresponding MCC values were 0.73, 0.81, 0.77, 0.81, respec-

tively (Table 5). Though the performance of the QM–based

method was poorer than that of the SVM based model, but it has

more biological significance as it gives information about each

amino acid contribution at all positions. Also to get more insights

into the relative contribution of residues at each position (1 to 35),

graphical representation (Figure 5 and Figure S2 in file S1)

demonstrated the highest and lowest scoring residues at every

position in single and dipeptide matrices for main and alternate

datasets, respectively. Here, the minimum and maximum scoring

residues have been used to show the range of scores at every

position.

ROC Plots
ROC curves were generated for threshold-independent evalu-

ation of our models. ROC curves with area under the curves

(AUC) were generated using ROCR statistical package. As shown

in Figure 6, hybrid method performed better than the whole

composition and dipeptide composition based methods (Figure 6).

Performance on Independent Datasets
It has been shown in the past that there are chances of over-

optimization in cross-validation techniques. In order to evaluate

the unbiased performance of dipeptide-based model, we tested the

performance on main independent dataset and achieved accuracy

of 75.79% with MCC 0.52. Similarly, on alternate independent

dataset, model achieved accuracy of 87.87% with MCC value

0.67. Surprisingly, the performance of models decreased signifi-

cantly on independent datasets. It might be due to two reasons,

either model got over-optimized and achieved high performance

during cross-validation or it might be due to the fact that

independent datasets are different from the training datasets. Our

independent datasets consist of toxic proteins/peptides extracted

from SwissProt, and it is possible that these proteins/peptides have

different properties.

In order to address the above problem, we created independent

datasets using an alternate strategy. We first, mixed toxic peptides

Table 5. The performance of quantitative matix based method on various datasets.

Matrix Threshold Sensitivity Specificity Accuracy MCC AUC

Single_main 20 80.46 92.09 88.00 0.73 0.92

Single_alternate 20 75.43 98.98 95.81 0.81 0.97

Dipep_main 5 74.10 98.07 89.65 0.77 0.95

Dipep_alternate 5 73.29 99.28 95.78 0.81 0.98

MCC, Matthew’s correlation coefficient; AUC, area under the curve.
doi:10.1371/journal.pone.0073957.t005
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obtained from SwissProt and other databases and then randomly

extracted 303 peptides for developing an independent dataset. The

remaining toxic peptides were used for building main and

alternate datasets. We again trained and tested our dipeptide-

based models on modified main and alternate datasets. The

performances of these models on modified datasets were nearly the

same. We tested dipeptide-based model on the new main

independent dataset and achieved accuracy 90.55 with MCC

0.81. Similarly, we evaluated the performance of dipeptide-based

model on new alternate independent dataset and achieved

accuracy 96.01 with MCC 0.89. These results suggest that

performance of dipeptide-based model is reasonably good on

independent datasets and nature of toxic peptides obtained from

SwissProt and other databases is different.

Implementation and Utility of ToxinPred
In order to serve the scientific community, we have implement-

ed our best models (dipeptide and hybrid) in a user-friendly web

server ‘ToxinPred’ (Figure 7). ToxinPred provides the facility for

both the prediction and designing of toxic and non-toxic peptides.

The description of various tools is as follows:

(1) Design peptide. This server allows users to design

peptides of desired toxicity. In this module, server first generates

mutant peptides from submitted peptide using all possible single

mutations, secondly it predict toxicity (SVM score proportional to

toxicity) for each mutants. Finally, user can select the best mutant

peptide and may submit the best mutant for generating its mutant

with their toxicity score. This module will assist users in designing

and discovering peptides of desire toxicity.

(2) Batch submission. One of the challenges in the field of

drug discovery is virtual screening of drugs. This module allows

Figure 6. ROC curves of support vector machine models based on (A) amino acid composition, (B), dipeptide composition, and (C)
hybrid approach.
doi:10.1371/journal.pone.0073957.g006
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users to perform virtual screening of peptides for discovering the

best peptide with desired toxicity. One may submit multiple

peptides to ToxinPred server, and it will predict toxicity of each

peptide.

(3) Protein scanning. This module is useful to identify toxic

regions in a protein sequence. This module first generates all

possible overlapping peptides and subsequently, server predicts

toxicity of each overlapping peptides. Thus, user can easily identify

highly toxic regions in a protein. User can obtain results in both

tabular and graphical format. User may remove or alter the

protein sequence in the required manner with minimum

mutations in order to reduce/enhance the toxicity of their

peptides/proteins.

(4) QMS calculator. This tool allows users to optimize the

peptide to get maximum/minimum/desired toxicity based upon

the QM-based position specific scores. It will help the users to

tweak any residue from the predecessor peptide to attain the

analog with desired property (highest/lowest toxicity). User can

identify residues that may reduce/enhance the toxicity drastically

using our server.

(5) Motif scanning. We discovered a list of motifs from toxic

peptides using MEME/MAST software. These motifs are

available on ToxinPred and server allows users to search these

motifs in their protein sequences. In simple words, our server

allows users to scan/discover toxic motifs in their proteins or

peptides.

Discussion

The aim of the present study is to develop an in silico method to

predict toxicity of therapeutic peptides/proteins. The prediction of

toxicity of therapeutic peptides/proteins before their synthesis is

very important for saving both time and money consumed in

developing peptide/protein-based drugs. Our main dataset

contain 1805 known toxic peptides collected from various

databases and 3893 non-toxic peptides collected from SwissProt.

Since SwissProt has well annotated entries, these peptides could be

true representatives of non-toxic peptides. Alternative dataset was

generated in this study for creating realistic conditions where non-

toxic peptides are many fold more than toxic peptides. Thus in

alternate dataset, we have used 13,541 non-toxic peptides

obtained from TrEMBL database.

Preliminary analysis of toxic peptides (by calculating percent

amino acid composition and two sample logos) revealed that Cys is

present in a high proportion as well as preferred at almost all

positions in toxic peptides. In addition, composition of Pro, Asp

and His was found to be higher in toxic peptides in comparison to

non-toxic peptides. This is the reason our composition based SVM

models discriminate toxic and non-toxic peptides with high

precession [25,30]. Dipeptide is another important feature and

has been found to perform better than composition-based model

in many previous studies. In this study also dipeptide-based model

perform better than models based on simple amino acid

composition in predicting toxicity of peptides. In order to

Figure 7. Schematic representation of ToxinPred webserver.
doi:10.1371/journal.pone.0073957.g007
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incorporate information regarding composition as well as order of

amino acid, we have generated binary profiles and developed

SVM models using these profiles as input features. Unfortunately,

our SVM models based on binary profiles could not perform

better than the composition-based models. In two sequence logos,

Cys is the only predominant residue present at most of the

positions, and this could be the most probable reason of the poor

performance of binary profiles-based SVM model.

In this study, all datasets used for developing models are

unbalanced, where number of non-toxic peptides is many folds

than the toxic peptides (nearly two times in case of main dataset

and seven times in case of alternate dataset). Thus we also

developed models on balanced datasets. To develop main

balanced dataset, we randomly picked up equal number of

(1805) non-toxic peptides. We evaluated the performance of

dipeptide-based model on this dataset using cross validation

technique and achieved accuracy of 93.88% with 0.88 MCC. The

performances of our models on balanced as well as on unbalanced

datasets were nearly the same.

In addition, we also developed motif-based method using

MEME/MAST [27] module. We developed this model consid-

ering that few patterns/motifs might be associated with toxicity of

peptides. Therefore, first, various motifs were fished out from toxic

peptides using MEME and then MAST module was used to scan

these motifs in peptides. This approach has been used successfully

in the past [25] and in the present study also, the motif-based

model performed reasonably well. Finally, a hybrid model using

both dipeptide composition and motif information was developed

to improve the performance of the model. Motif information has

further improved the performance of the hybrid model. However,

one of the limitations of this hybrid model is that motif extraction

and searching was not carried out by five-fold cross validation

rather than motifs were extracted from all toxic peptides. In order

to assist users, we have developed a user-friendly web server,

ToxinPred, based on the best models (dipeptide and hybrid).
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