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Abstract

Background: Cell penetrating peptides have gained much recognition as a versatile transport vehicle for the

intracellular delivery of wide range of cargoes (i.e. oligonucelotides, small molecules, proteins, etc.), that otherwise

lack bioavailability, thus offering great potential as future therapeutics. Keeping in mind the therapeutic importance

of these peptides, we have developed in silico methods for the prediction of cell penetrating peptides, which can

be used for rapid screening of such peptides prior to their synthesis.

Methods: In the present study, support vector machine (SVM)-based models have been developed for

predicting and designing highly effective cell penetrating peptides. Various features like amino acid

composition, dipeptide composition, binary profile of patterns, and physicochemical properties have been used

as input features. The main dataset used in this study consists of 708 peptides. In addition, we have identified

various motifs in cell penetrating peptides, and used these motifs for developing a hybrid prediction model.

Performance of our method was evaluated on an independent dataset and also compared with that of the

existing methods.

Results: In cell penetrating peptides, certain residues (e.g. Arg, Lys, Pro, Trp, Leu, and Ala) are preferred at

specific locations. Thus, it was possible to discriminate cell-penetrating peptides from non-cell penetrating

peptides based on amino acid composition. All models were evaluated using five-fold cross-validation

technique. We have achieved a maximum accuracy of 97.40% using the hybrid model that combines motif

information and binary profile of the peptides. On independent dataset, we achieved maximum accuracy of

81.31% with MCC of 0.63.

Conclusion: The present study demonstrates that features like amino acid composition, binary profile of

patterns and motifs, can be used to train an SVM classifier that can predict cell penetrating peptides with higher

accuracy. The hybrid model described in this study achieved more accuracy than the previous methods and

thus may complement the existing methods. Based on the above study, a user- friendly web server CellPPD has

been developed to help the biologists, where a user can predict and design CPPs with much ease. CellPPD web

server is freely accessible at http://crdd.osdd.net/raghava/cellppd/.
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Background
Poor delivery and low bioavailability of therapeutic mole-

cules are the two main obstacles in the drug development

process. The plasma membrane is selectively permeable

and remains a major barrier for most of the therapeutic

molecules. In order to overcome this barrier, a number of

delivery systems have been developed over the years [1,2].

Despite the tremendous progress, the existing delivery

methods can result in high toxicity, immunogenicity and

low delivery yield. In the last decade, short peptides

known as cell penetrating peptides (CPPs) or protein

transduction domains (PTDs) have gained much recogni-

tion as an efficient delivery vehicle [3]. CPPs have remark-

able ability to transverse eukaryotic membranes without

significant membrane damage. In addition, CPPs can carry

a variety of cargoes like peptides [4,5], proteins [6], drugs

[7,8], nucleic acids [9,10], siRNAs [11,12], nanoparticles

[13,14], etc. across the cell membrane. Almost everything

can be transported into the cell, once conjugated to CPP

[15]. Thus, CPPs have a great therapeutic potential, es-

pecially in drug delivery. Although first CPP has been dis-

covered 25 years ago, their mechanism of uptake is still

not very clear. However, two routes of internalization

have been proposed that include direct penetration and

endocytic pathway [16].

Since the discovery of first CPP, i.e. Tat (transcription

activator of the human immunodeficiency virus type 1)

peptide, hundreds of CPPs have been discovered so far

with varied length and physicochemical properties [17].

Most of these peptides are short (up to 35 amino acids),

water soluble, partly hydrophobic, and/or polybasic in

nature with a net positive charge at physiological pH

[18]. In the past, few attempts have been made to

develop computational methods for CPP prediction

[19-22]. In 2008, Hansen et al. developed a method,

which involves a set of z-scales of 87 coded and non-

coded amino acids published by Sandberg and his group

[23]. z-scales require a lot of variables like molecular

weight, molecular orbital calculations, proton NMR

shift, etc. Finally, z-scores obtained are used to predict

the CPPs. This method gave 68% prediction efficiency,

which is very poor to distinguish CPPs from the non-

CPPs. In 2010, Dobchev et al. used quantitative structure-

activity relationship (QSAR) and artificial neural network

(ANN) models to predict CPPs. They achieved maximum

accuracy of 83%. In this method, sequences that are

difficult to predict were excluded. In a recent study,

Sanders et al. (2011) have used support vector machine

(SVM) models to predict CPPs on five different datasets.

They used various biochemical properties to develop SVM

models. One of the major limitations with the previous

methods is that datasets used for training were very small

(< 111) and none of the methods is available in the form

of web service for public use. In addition, most of the

previous methods have used unbalanced datasets, which

presents many problems for machine learning classifiers.

This point has also been highlighted earlier by Sanders

et al. in their study, where they have used both balanced

and unbalanced datasets for machine learning. In balanced

dataset, they achieved 95% accuracy and 75% accuracy

was achieved in unbalanced dataset. This poor perform-

ance of SVM with unbalanced dataset is due to the inher-

ent learning biases of unbalanced dataset, demonstrating

the need for balanced datasets for avoiding biases in ma-

chine learning.

In the present study, we have made a systematic at-

tempt to complement existing methods for predicting

CPPs with high accuracy. We have used large dataset

(708 CPPs) for training, testing and evaluating our

models. The dataset is derived from the CPPsite, which

is the first database of experimentally validated CPPs

[24]. We have used various features like amino acid

composition, dipeptide composition, binary profiles of

pattern, and physicochemical properties as input for de-

veloping SVM models. In addition, we have also identi-

fied various CPP specific motifs, which have been used

to develop a hybrid model. For the first time, a predic-

tion web tool has been developed to assist the scientific

community working in the area of CPPs.

Methods
Main datasets

We have extracted 843 experimentally validated CPPs

from the CPPsite database, which has been developed by

our group [24]. The peptides containing non-natural

amino acids (e.g. selenocysteine) or having D-amino

acids (D-conformation) were removed. Finally, we have

got 708 unique CPPs having natural amino acids. Three

different datasets (CPPsite-1, CPPsite-2 and CPPsite-3)

have been created from these peptides. Since very few

peptides have been experimentally validated as non-

CPPs (negative examples), equal number of peptides

(15–30 amino acids) were generated randomly from

SwissProt proteins, and considered them as non-CPPs.

This strategy for creating negative dataset has already

been used in previous studies [22,25].

First dataset (CPPsite-1) contains 708 CPPs (positive

examples) and 708 non-CPPs (negative examples). In

CPPsite-1, CPPs having wide range of uptake efficiency

(low and high) have been included, thus we have derived

another dataset CPPsite-2 from CPPsite-1. CPPsite-2 con-

tains 187 CPPs having high uptake efficiency and equal

number of non-CPPs. We have created third dataset

(CPPsite-3), which contains 187 CPPs having high uptake

efficacy as positive examples and equal number of CPPs

with low uptake efficiency were taken as negative exam-

ples. The model based on CPPsite-3 dataset can discrimin-

ate between high and low efficient CPPs.
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All datasets (CPPsite-1, CPPsite-2 and CPPsite-3) con-

sist of several CPPs with all possible Ala-scan mutants,

or different truncations. Ideally redundancy in the

datasets should be removed because it affects the per-

formance of prediction method. In past, our group has

removed the redundancy in various prediction methods

[25,26]. But in this study, we have not removed the re-

dundancy in CPP datasets because a single residue can

affect the uptake efficiency of CPPs, and this may also

lead to the loss of information about CPPs. In order to

check the performance of our model on redundant

dataset, we have used some benchmark datasets, which

are redundant.

Benchmark datasets

In order to compare our method with existing methods, we

have extracted datasets from literature that have been used

in previous studies. Sanders et al. (2011) have developed a

method for CPP prediction. In this study, they have used

111 experimentally validated CPPs and equal number of

non-CPPs (generated randomly from the chicken prote-

ome). We have named this dataset Sanders-2011a. Second

dataset from Sanders et al. (2011) named Sanders-2011b,

which contains 111 CPPs and 34 experimentally validated

non-CPPs. We have also generated a third dataset Sanders-

2011c consisting of 111 CPPs, and 111 non-CPPs randomly

sampled from 34 known non-CPPs. Dobchev et al. (2010)

have used 74 CPPs and 24 non-CPPs for developing

method for CPP prediction. These peptides were collected

from the literature. We have used this dataset in this study

and named Dobchev-2010. Similarly, we have created data-

sets Hansen-2008 (containing 66 CPPs & 19 non-CPPs)

[20] and Hallbrink-2005 (containing 53 CPPs & 16 non-

CPPs) from previous studies [19].

Independent dataset

In order to evaluate the performance of our method, we

have created an independent dataset of 99 novel CPPs,

which have not been included in the training, feature se-

lection and parameter optimization of the model. These

peptides have been collected manually from recent re-

search papers and patents.

Cross-validation technique

The validation of any prediction method is very essential

part. In the present study, five-fold cross-validation tech-

nique was used to evaluate the performance of all the

models. Here, sequences are randomly divided into five

sets, of which four sets are used for training and the

remaining fifth set for testing. The process is repeated

five times in such a way that each set is used once for

testing. Final performance is obtained by averaging the

performance of all the five sets. In this study, we have

also used jack-knife cross validation or Leave One Out

Validation (LOOV) technique for evaluating perform-

ance of our models. In this technique, one sample is

used for testing and remaining samples for training, this

process is repeated in such a manner that each sample is

used only once for testing.

Support vector machine

We have used a highly successful machine learning classi-

fier known as SVM for building prediction models. There-

fore, we implemented SVMlight Version 6.02 package of

SVM [27] and machine learning was carried out using vari-

ous kernels (e.g. linear, polynomial, radial basis function

and sigmoid tanh), where each input dot is converted

into nonlinear kernel function. Here, we used RBF kernel

of SVM at different parameter; g ∈ [10-4 - 10], c ∈ [1-15],

j ∈ [1-5] for optimizing the SVM performance to get the

best performance. SVM requires a set of fixed length of

input features for training, thus necessitating a strategy for

encapsulating the global information about proteins/

peptides of variable length in a fixed length format. The

fixed length format was obtained from protein/peptide se-

quences of variable length using amino acid composition,

dipeptide composition and binary profile of pattern. After

training, learned model can be used for the prediction of

unknown examples.

Amino acid composition

Peptide information can be encapsulated in a vector of

20 dimensions, using amino acid composition of the

peptide. The amino acid composition is the fraction of

each amino acid type within a peptide. The fractions of

all 20 natural amino acids were calculated by using the

following equation:

Comp ið Þ ¼
Ri

N
� 100

Where Comp (i) is the percent composition of amino

acid (i); Ri is number of residues of type i, and N is the

total number of residues in the peptide.

Dipeptide composition

The dipeptide composition provides composition of pair

of residues (e.g. Ala-Ala, Ala-Leu, etc.) present in pep-

tide, and used to transform the variable length of pep-

tides to fixed length feature vectors. It gives a fixed

pattern length of 400 (20 × 20), and encapsulates infor-

mation about the fraction of amino acids as well as their

local order. It is calculated using following equation:

Fraction of Dipeptide ið Þ

¼
Total number of Dipeptide ið Þ

Total number of all possible dipeptides

Where dipeptide (i) is one out of 400 dipeptides.
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Binary profile of patterns

Binary profiles were generated for each peptide, where

each amino acid is represented by a vector of dimensions

of 20 (e.g. Ala by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) as

described in supporting information (Additional file 1:

Figure S1). A pattern of window length W was repre-

sented by a vector of dimensions 20 ×W. We have created

binary profile for first 5 and 10 residues from N-terminus,

similarly for last 5 and 10 residues from C-terminus of

peptides in all datasets. The binary profile has been used

in a number of existing methods [28,29].

Physicochemical properties

Physicochemical properties like amphipathicity, hydro-

phobicity, charge, length, etc. have been previously

shown to be useful in the prediction of CPPs [20,22].

We have calculated these properties (amphipathicity,

hydrophobicity, charge, molecular weight, length, iso-

electric point, side chain bulk, steric bulk, net donated

hydrogen bonds, and number of polar and non-polar

residues) of amino acids to develop prediction models

for CPPs. We have taken numerical values of these phys-

icochemical properties from latest version of AA index

database [30].

Sequence logos

The sequence logos were generated using online WebLogo

software [31]. The sequence logo gives the position specific

frequency of amino acids in peptides. Each logo consists

of stacks of symbols, one stack for each position in the

sequence. The overall height of the stack indicates the

sequence conservation at that position, while the height of

symbols within the stack indicates the relative frequency of

each amino acid at that position.

MEME/MAST motifs

We have observed various common patterns/motifs in

CPPs. In order to identify motifs in CPPs, we have used

MEME/MAST program [32]. In the present study,

meme-4.7.0 version was used. We got the number of

motifs in CPPs using MEME, and these motifs have been

used further to scan peptides for the presence of CPP

specific motifs using program MAST. Hits obtained in

the MAST output were used to calculate the efficacy

and coverage of MEME/MAST method. E-value is very

crucial in the MAST output, so we took this into ac-

count and calculated the efficacy of this method at dif-

ferent E-values (10-10-7).

Hybrid approach

In hybrid approach, we have combined SVM output

with motif information obtained by MEME/MAST for

the better and biologically reliable prediction of CPPs. In

this approach, for a query peptide, first SVM model is

applied and it generates an SVM score. In parallel, the

query peptide is searched against the CPP motifs, if any

motif is found in the peptide; its SVM score is increased

by a value of 5, so that in any case, it would be predicted

as positive whatever is the original prediction.

Performance measure

The performance of various models developed in this

study was computed using threshold-dependent as well as

threshold-independent parameters. In threshold dependent

parameters we used sensitivity (Sn), specificity (Sp), overall

accuracy (Ac) and Matthew’s correlation coefficient (MCC)

using following equations.

Sensivity ¼
TP

TP þ FN
� 100

Specificity ¼
TN

TN þ FP
� 100

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
� 100

MCC ¼
TP x TNð Þ � FP x FNð Þ

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þ

Where TP and TN are correctly predicted positive and

negative examples, respectively. Similarly, FP and FN

are wrongly predicted positive and negative examples

respectively.

We created ROC (Receiver Operating Characteristic)

for all of the models in order to evaluate performance of

models using threshold-independent parameters. ROC

plots with area under curve (AUC) were created using

ROCR statistical package available in R [33].

Results
Amino acid composition analysis of CPPs

In order to understand whether certain types of amino

acids are dominated in CPPs, overall percent average

composition of amino acids in CPPs and non-CPPs has

been calculated and compared (Figure 1a). Analysis re-

vealed that Arg, Lys, and Trp were significantly abun-

dant in CPPs, while composition of Pro and Cys were

slightly higher in CPPs than non-CPPs (Figure 1a). Next,

we wanted to know whether certain types of residues are

dominated at N- and C- terminus. To address this, we

have computed percent average residue composition of

both N- and C- termini (spilt amino acid composition).

However, we did not observe significant difference in

split amino acid composition from the overall residue

composition in CPPs (Figure 1b and 1c).

Residues preference in CPPs

We next analyzed whether certain types of residues are

preferred at specific positions in CPPs. To understand
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Figure 1 Amino acid composition comparison. Comparison of percent average amino acid composition of (a) whole peptides, (b) N-terminal

residues, and (c) C-terminal residues between CPPs and non-CPPs.
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this, frequency of occurrence of all amino acids at both

the termini was examined. It was observed that particular

types of residues are preferred over others in CPPs at N-

and C-terminus. In order to demonstrate residue prefer-

ence at different position of CPPs, sequence logos [31]

were generated. The sequence logos of 10 N-terminal and

C-terminal residues of peptides are shown in Figure 2 and

3 respectively. It is clearly depicted in Figure 2 and 3 that

basic residues (Arg and Lys) are preferred at most of the

positions. However, certain residues like Leu, Ala, Ile, and

Trp (at N-terminus) and Leu, Ser, and Pro (at C-terminus)

are also preferred at various positions in CPPs.

Amino acid composition-based SVM model

It has been shown in the past that amino acid composition

can be used to classify the different classes of peptides and

to develop prediction tools using machine-learning tech-

niques [34,35]. In composition analysis, we have found

that certain types of residues are preferred over the others

in CPPs. Thus, it was possible to discriminate CPPs from

non-CPPs based on amino acid composition. Therefore,

we have developed an SVM model using amino acid com-

position as input feature. The performance of this model

is summarized in Table 1. For CPPsite-1, we have found a

maximum accuracy of 90.47% with MCC and ROC

values 0.81 and 0.96, respectively. In case of CPPsite-2,

we have achieved maximum accuracy of 90.37% with

MCC and ROC values 0.81 and 0.96, respectively. For

dataset CPPsite-3, we have achieved a maximum accur-

acy of 68.98% with MCC and ROC values 0.38 and 0.73,

respectively. This indicates that performance of this

model on CPPsite-3 dataset (which discriminates high

and low efficient CPPs) is relatively poor.

Dipeptide composition-based SVM model

Since the dipeptide encapsulates the global information of

the amino acid fraction and the local order of amino acids,

it is a better feature as compared to amino acid compos-

ition alone. Dipeptide composition has been used in earl-

ier studies to differentiate two different types of proteins

and peptides [36]. Thus, we have developed an SVM

model based on dipeptide composition. This model

performed more or less similar to composition–based

model. Results are shown in Table 2. In case of CPPsite-1,

we achieved a maximum accuracy of 90.04% with MCC

and ROC values of 0.80 and 0.95, respectively. For

CPPsite-2, maximum accuracy achieved was 92.78% with

MCC and ROC values of 0.86 and 0.97, respectively. For

CPPsite-3, maximum accuracy was 67.11% with MCC and

ROC values of 0.34 and 0.71, respectively.

Binary profile-based SVM model

In preliminary analysis, certain residues (Ala, Pro, Leu, Ile,

Trp, Ser) along with Arg and Lys are also preferred at vari-

ous positions at N- and C-terminus. To incorporate this

position specific information in the model, we have gener-

ated binary profile patterns of peptides. In binary pattern,

a vector of dimension 20 represents a residue, and for n

residues the input vector of dimension is (20 × n). We

have used the following three approaches:

N-terminal approach

In this approach, we have extracted 5 and 10 N-terminus

residues from each peptide in all three datasets, and

Figure 2 Sequence logo of first ten residues (N-terminus) of

CPPs. The figure depicts the sequence logo of first ten residues

(N-terminus) of CPPs, where size of residue is proportional to

its propensity.

Figure 3 Sequence logo of last ten residues (C-terminus) of

CPPs. The figure depicts the sequence logo of last ten residues

(C-terminus) of CPPs, where size of residue is proportional to

its propensity.

Table 1 Performance of composition-based SVM method

Dataset Sensitivity Specificity Accuracy MCC ROC

CPPsite-1 89.12 91.81 90.47 0.81 0.96

CPPsite-2 92.51 88.24 90.37 0.81 0.96

CPPsite-3 70.59 67.38 68.98 0.38 0.73

Table 2 Performance of dipeptide-based SVM method

Dataset Sensitivity Specificity Accuracy MCC ROC

CPPsite-1 88.14 91.95 90.04 0.80 0.95

CPPsite-2 90.91 94.65 92.78 0.86 0.97

CPPsite-3 72.73 61.50 67.11 0.34 0.71
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generated binary profile of dimension 5×20 and 10×20

respectively. These profiles were then used to develop

SVM model. Comparisons of performances of binary-

based SVM models are shown in Table 3. Model devel-

oped on CPPsite-2 dataset performed better than

models developed on other two datasets.

C-terminal approach

We have used the same strategy for the C-terminus as

used for the N-terminus. The performance of binary-

based SVM model using 5 and 10 C-terminal residues

was almost similar to N-terminal approach (Table 3).

N + C-terminal approach

In order to check, if using the N- and C-termini of the

peptides together will enhance the accuracy of the

method or not, we developed an N + C-terminus based

approach. In this approach, we have developed two

datasets, named N5-C5 and N10-C10. First 5 residues

from the N-terminal were joined with 5 residues from

C-terminal in N5-C5 dataset. Similarly in N10-C10, first 10

residues from N-terminal were joined with last 10 residues

from C-terminal. The comparative performances of binary-

based SVM model using N +C terminal residues are shown

in Table 3. For CPPsite-1, CPPsite-2 and CPPsite-3 datasets,

maximum accuracy of 88.81%, 93.51% and 66.84% was

achieved respectively. This model performed better in case

of CPPsite-2 dataset, than the models based on above two

approaches.

Physicochemical properties-based SVM model

For each dataset, we have calculated a set of physico-

chemical properties (described in material and methods)

of each peptide, which were previously shown to be use-

ful for prediction of CPPs [20]. SVM model using these

physicochemical properties has been developed. Per-

formance of this model was similar to composition-

based model. Results are summarized in Table 4. For

CPPsite-1, we have achieved maximum accuracy of

90.75% with MCC and ROC values of 0.82 and 0.95, re-

spectively. For CPPsite-2, maximum accuracy of 90.91%

with MCC and ROC values of 0.82 and 0.95 respectively,

was achieved. For CPPsite-3, maximum accuracy of

68.72% with MCC and ROC values, of 0.32 and 0.70 re-

spectively, was achieved.

Cross-validation techniques

We have evaluated our models using five-fold cross

validation and LOOCV techniques. As shown in

supporting information (Additional file 1: Tables S1-S4),

performance of models was nearly same when evaluated

using LOOCV or using five-fold cross-validation tech-

nique. Therefore, for the further studies on CPPs pre-

diction, we have used five-fold cross validation only,

because it is less expensive in terms of time and com-

puter usage as compared to the LOOCV.

MEME/MAST motif based method

In the previous studies, motif information has been used

for the prediction of other biological problems e.g. pre-

diction of sub-cellular localization of proteins [37]. We

have observed various motifs in CPP datasets. These

motifs were fished out using MEME software with E-

value of 10. Subsequently, this motif information has

been used for the prediction of CPPs. We have repeated

the motif-based method at different E-values form 10 to

10-7 for each dataset. Results of all the three datasets are

presented in Table 5. Here, it should be noticed that

probability of correct prediction is satisfying, but on the

other hand, percent coverage is not recommendable in

all the three datasets as shown in Table 5.

Hybrid prediction model

As we noticed, that MEME/MAST method has excellent

ability to predict CPPs, but with very little coverage

(Table 5). Therefore, we have developed a hybrid method

Table 3 Performance of binary profile-based SVM method

Method CPPsite-1 dataset CPPsite-2 dataset CPPsite-3 dataset

Sn Sp AC MCC ROC Sn Sp AC MCC ROC Sn Sp AC MCC ROC

N5 80.08 85.73 82.91 0.66 0.89 86.63 87.17 86.90 0.74 0.90 62.03 65.78 63.90 0.28 0.64

C5 84.60 82.20 83.40 0.67 0.91 91.44 82.35 86.90 0.74 0.95 64.17 67.38 65.78 0.32 0.66

N5-C5 83.19 88.98 86.09 0.72 0.96 91.98 82.35 87.17 0.75 0.95 66.84 66.84 66.84 0.34 0.69

N10 83.95 86.19 85.03 0.70 0.91 89.44 90.34 89.87 0.80 0.95 66.67 63.27 65.05 0.30 0.65

C10 86.55 83.22 84.95 0.70 0.93 87.04 91.10 88.96 0.78 0.95 66.05 61.90 64.08 0.28 0.68

N10-C10 90.60 86.89 88.81 0.78 0.95 93.21 93.84 93.51 0.87 0.96 66.67 64.63 65.70 0.31 0.68

Sn: sensitivity, Sp: specificity, AC: accuracy.

Table 4 Performance of physicochemical properties-based

SVM method

Dataset Sensitivity Specificity Accuracy MCC ROC

CPPsite-1 91.24 90.25 90.75 0.82 0.95

CPPsite-2 91.98 89.84 90.91 0.82 0.95

CPPsite-3 73.80 63.64 68.72 0.32 0.70
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by combining MEME/MAST method with the binary

pattern profile-based SVM model in order to take the

advantage of accuracy of MEME/MAST method. Hybrid

model achieved maximum accuracies (at E-value 10) of

92.85%, 97.40% and 78.96% for CPPsite-1, CPPsite-2 and

CPPsite-3 datasets respectively. Results of hybrid ap-

proach are shown in Table 6.

ROC plot

In order to have a threshold-independent evaluation of

our models, we have generated ROC curve for all the

models. ROCR statistical package was used for creating

ROC plots with area under curves (AUC). As shown in

Figure 4, composition-based method performed well

over the other methods. However, when we compared

composition-based method with the hybrid method, hy-

brid method performed well as compared to the

composition-based method at all the E-values (Figure 5).

Comparison with existing methods

In order to validate our method, performance of binary-

based method was evaluated on independent dataset and

we achieved 81.31% accuracy with 0.63 MCC. In addition,

we developed and evaluated our models on benchmark

datasets. A comparison of previously published predic-

tion methods with our approach is shown in Table 7

and supporting information (Additional file 1: Table

S5). These results clearly demonstrate that hybrid

model is more accurate than previous methods and may

complement the existing methods.

Implementation and designing of CPPs

Currently, no web service is available for the prediction

of CPPs till date. Thus, in order to serve scientific com-

munity, we have implemented our best methods (binary

N10-C10 and hybrid) in a user-friendly web server

‘CellPPD’ with many other useful tools for the users

(Figure 6). CellPPD web server not only provides facility

to predict peptides as CPPs or non-CPPs, but also it of-

fers opportunity to design analogues with better cell

penetrating abilities. The detailed information related

to designing of CPP analogues has been provided in

supporting information (Additional file 2). User may

submit the peptide sequence (no FASTA format re-

quired) in single letter code, and server will generate all

the possible mutants of given peptide with single muta-

tion in each mutant (depicted in red color). For each

mutant peptide, server will give an SVM score and pre-

diction status CPP or non-CPP according to the thresh-

old cut-off chosen by the user. As this server allows

users to select a threshold, we suggest the users to select

higher value if they are interested in high specificity

(high confidence). Therefore, this feature will be very

helpful for user in designing highly effective CPP ana-

logues. In addition, server also calculates important

physicochemical properties in an aesthetic table format

(Figure 6). In the same table, original peptide will also be

displayed and sorting option has been provided, which

can be used to sort the peptide analogues based on de-

sired properties and eventually to select the best peptide

Table 5 Performance of MEME/MAST-based SVM method

E-value CPPsite-1 CPPsite-2 CPPsite-3

PCP % Coverage PCP % Coverage PCP % Coverage

10 0.50 81.17 0.48 79.88 0.54 79.88

1 0.50 74.40 0.48 74.71 0.56 74.71

0.1 0.48 63.10 0.50 69.54 0.60 69.54

0.01 0.5 54.97 0.53 62.64 0.63 62.64

1E-02 0.56 50 0.57 56.32 0.64 56.32

1E-04 0.64 45.03 0.62 52.87 0.65 52.87

1E-05 0.74 42.92 0.70 51.14 0.66 51.14

1E-06 0.83 39.46 0.83 48.28 0.66 48.28

1E-07 0.90 36.45 0.88 45.98 0.68 45.98

PCP: Percentage of correct prediction.

Table 6 Performance of hybrid method

E-Value CPPsite-1 dataset CPPsite-2 dataset CPPsite-3 dataset

Sn Sp AC MCC ROC Sn Sp AC MCC ROC Sn Sp AC MCC ROC

10 91.90 93.88 92.85 0.86 0.97 98.15 96.58 97.40 0.95 0.99 80.86 76.87 78.96 0.58 0.86

1 91.41 93.88 92.60 0.85 0.97 96.91 96.58 96.75 0.93 0.99 79.01 76.87 77.99 0.56 0.84

0.1 91.25 93.88 92.51 0.85 0.97 95.68 96.58 96.10 0.92 0.99 76.54 76.87 76.70 0.53 0.83

0.01 90.76 93.88 92.26 0.85 0.97 95.06 96.58 95.78 0.92 0.99 74.07 76.87 75.40 0.51 0.81

1E-02 89.63 93.88 91.67 0.83 0.97 94.44 96.58 95.45 0.91 0.98 71.60 76.87 74.11 0.48 0.79

1E-04 88.65 93.88 91.17 0.83 0.97 94.44 96.58 95.45 0.91 0.98 53.09 76.87 64.40 0.31 0.68

1E-05 88.17 93.88 90.92 0.82 0.96 94.44 96.58 95.45 0.91 0.98 53.09 76.87 64.40 0.31 0.68

1E-06 88.01 93.88 92.83 0.82 0.96 94.44 96.58 95.45 0.91 0.98 53.09 76.87 64.40 0.31 0.68

1E-07 87.52 93.88 90.58 0.81 0.96 94.44 96.58 95.45 0.91 0.98 70.59 67.38 68.98 0.38 0.73

Sn: sensitivity, Sp: specificity, AC: accuracy.
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analogue. There is a provision to submit and design

multiple peptides at a time. For this, user has to submit

multiple sequences in FASTA format. Another inform-

ative tool is the scanning of protein for the detection of

putative CPPs. Here, user may submit the protein se-

quence, and server will generate overlapping peptides of

window length selected by the user, where all the pep-

tides will be clickable. This tool can help users to dig

out a protein sequence for possible CPPs. Graphical rep-

resentation of results is an interesting feature providing

an estimate of total CPPs containing regions in the pro-

tein. Motif scanning is another handy tool for the user

to find CPP motifs in a protein sequence. We have also

provided a list of 120 CPP motifs present in our

dataset of CPPs. In addition, few examples (prediction

test on well-known CPPs and their non-penetrating

non-CPP analogues) have been incorporated in

supporting information (Additional file 2) for accuracy

comparison of our method. CellPPD is freely accessible

at http://crdd.osdd.net/raghava/cellppd.

Discussion
Due to huge therapeutic applications of CPPs, especially

in drug delivery, identification of novel and highly effi-

cient CPPs is need of the hour. However, identification

of highly efficient CPPs is a very tedious task for biolo-

gists. One has to scan the whole protein in overlapping

window patterns, and every peptide has to be tested for

the possible cell penetrating activity, which is a very la-

borious and time consuming cycle. A computational

method, which can determine whether a peptide se-

quence can be a CPP or not, would definitely help biolo-

gists for rapid screening of CPPs before synthesis and

thus, accelerate the CPP-based research. The develop-

ment of an in silico method for CPP prediction is very

challenging due to three major reasons; (i) CPPs have lot

of variation in size (5 – 30 amino acids), and machine

learning software need fixed length patterns as input to

develop model, (ii) experimentally proven non-CPPs

(negative dataset) are not reported in literature, which

are very important for developing the in silico method,

and (iii) other major problem in CPP prediction is the

lack of dataset of peptides (CPPs and non-CPPs) tested

in similar experimental conditions (e.g. concentrations,

incubation time, cell lines, type of cargoes, etc.). In most

of the CPP-based research, uptake of peptides has been

Figure 5 The performance of SVM models developed using

composition and hybrid models on CPPsite-1 dataset (where

1-specificity represents the false positive rate and value in

bracket shows area under curve).

Figure 4 The performance of SVM models developed using

composition, dipeptide and physicochemical property profile

on CPPsite-1 dataset (where 1-specificity represents the false

positive rate and value in bracket shows area under curve).

Table 7 Comparison with previous methods

Benchmark
datasets

Previous
accuracy

Accuracy of models

Composition
based model

Dipeptide based
model

Hybrid
model

Sanders-2011a 95.94 96.40 98.65 97.75

Sanders-2011b 75.86 82.07 83.45 83.45

Sanders-2011c 88.73 88.74 89.64 90.09

Dobchev-2010 83.16 81.63 81.63 83.33

Hansen-2008 67.44 78.82 83.53 80.00

Hallbrink-2005 77.27 92.75 95.65 97.06
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tested on different cell lines with different experimental

conditions. It could be possible that few non-penetrating

analogues of previously known CPPs may act as CPP

when evaluated on alternative cell lines or in different

experimental conditions. Sanders et al. have also observed

a similar observation, where a previously known non-CPP

found to have some penetrating properties when tested on

different cell lines (i.e. avian cell line) [22]. Therefore, for

the better and more accurate prediction, larger dataset of

CPPs and non-CPPs tested in number of cell lines with

similar experimental conditions are required. However, in

the past, few attempts have been made to predict CPPs

[19-22], but all these methods used very small dataset and

none of these has provided web service. In the last decade,

a large amount of data on the use of CPPs as delivery

agents has accumulated and this enormous growth of CPP

data motivated us to develop an in silico method on a lar-

ger dataset of 708 experimentally validated CPPs. In order

to develop a robust computational method, which can dis-

criminate CPPs from non-CPPs with higher accuracy, we

have developed SVM models on three datasets (CPPsite-1,

CPPsite-2 and CPPsite-3) using many features like amino

acid composition, dipeptide composition, binary pattern

of profile and CPP motifs.

Performances of SVM models developed on dataset

CPPsite-1 and CPPsite-2 were significantly better than

models developed on CPPsite-3 dataset. This is due

the fact that in CPPsite-3, both positive and negative ex-

amples are CPPs; the only difference is that positive ex-

amples consist of CPPs with high uptake efficiency,

while negative examples consist of CPPs with low uptake

efficiency. Since peptides in both the classes are CPPs

and contain similar properties including amino acid

composition (Additional file 1: Figure S2), they are diffi-

cult to discriminate.

SVM models using amino acid and dipeptide com-

position as input features performed reasonably good

and achieved more or less similar accuracy. Recently,

Sanders et al. (2011) published a method, in which they

have used amino acid compositions and 41 other bio-

chemical properties, including amino acid frequency,

length, hydrophobicity, etc. as an input feature to de-

velop SVM model. We have shown that amino acid

composition alone can predict CPP with better accuracy

(Table 7). The dipeptide-based model achieved greater

accuracy (98%) for Sanders-2011a dataset, while the

increase in accuracy (95.94% to 96.40%) for whole amino

acid composition-based model for Sanders-2011a dataset is

Figure 6 Schematic presentation of CellPPD webserver with an example of SVM based prediction results.
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negligible and could be due to the random sampling of

negative examples. One of the limitations in composition-

based model is that it only computes the overall number of

residues in peptides and loses the amino acid order infor-

mation, which is equally important. It is well known that

the peptide’s function is strongly related to its sequence

order. Evidence suggests that conformation of CPPs plays a

crucial role in membrane interaction and insertion [38]. It

has been shown that CPP with helical conformation can

penetrate membrane more effectively than the peptides

with other conformations [38]. Many amphipathic CPPs

adopt helical conformation in which all the polar residues

grouped at one face and the nonpolar residues to the op-

posite face of the helix. This amphipathic helical distribu-

tion can also be associated to specific amino acids and

with a particular order. In addition, preliminary analysis

(Figures 2 and 3) has also shown that certain residues are

preferred at specific positions in CPPs. Therefore, in order

to include this information, we have developed SVM

models based on binary profile of patterns, which incorpo-

rates information of both composition and amino acid

order. In many previous studies, binary profiles patterns-

based SVM model performed better than composition-

based model [25,26]. In this study also, N10-C10 binary

profile-based SVM model achieved maximum accuracy

(93.51%) in CPPsite-2 dataset.

In addition, we have also developed motif-based

method using MEME/MAST, where MEME is used to

discover motifs and MAST is used to search these mo-

tifs in CPPs. We conducted our study keeping in mind

that the CPPs might share some patterns/motifs. This

approach has been used successfully in the past to differ-

entiate two different classes of peptides [37]. In the

present study also, the model developed on motif-based

approach has predicted CPPs with reasonable accuracy.

Finally, in order to improve performance of the model, a

hybrid model using both binary profile patterns and

motif information was developed. Motif information has

further increased the accuracy of CPP prediction. We

also compared our method with existing methods on

benchmark datasets. The performance of our method

was better than existing methods. Furthermore, in order

to help biologists, we have implemented our best models

in a user-friendly web server CellPPD.

Conclusions
There is a rapid growth in the field of CPP research in

response to the demand for novel drug delivery systems.

CellPPD is one such efficient method that can predict

highly efficient CPPs and help to find newer CPP ana-

logues more speedily and conveniently. We hope that es-

tablishment of such method will speed up the pace of

identifying improved and efficacious CPPs in future.

Additional files

Additional file 1: Figure S1. Generation of binary profile of pattern.

Figure S2. Percent average amino acid composition of peptides in

CPPsite-2 and CPPsite-3 datasets. Table S1. Performance of composition-

based SVM method. Table S2. Performance of dipeptide-based SVM

method. Table S3. Performance of physicochemical-based SVM method.

Table S4. Performance of binary profile-based SVM method. Table S5.

Performance on benchmark datasets.

Additional file 2: Designing of CPPs and case studies. Describes the

utility of CellPPD webserver in designing better cell penetrating

analogues and explains the accuracy comparison of CellPPD using few

examples (case studies).
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