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Abstract: Hypotrichosis is an uncommon type of alopecia (hair loss) characterized by coarse scalp
hair caused by the reduced or fully terminated activity of the Lipase-H (LIPH) enzyme. LIPH gene
mutations contribute to the development of irregular or non-functional proteins. Because several
cellular processes, including cell maturation and proliferation, are inhibited when this enzyme is
inactive, the hair follicles become structurally unreliable, undeveloped, and immature. This results in
brittle hair, as well as altered hair shaft development and structure. Because of these nsSNPs, the
protein’s structure and/or function may be altered. Given the difficulty in discovering functional
SNPs in genes associated with disease, it is possible to assess potential functional SNPs before
conducting broader population investigations. As a result, in our in silico analysis, we separated
potentially hazardous nsSNPs of the LIPH gene from benign representatives using a variety of
sequencing and architecture-based bioinformatics approaches. Using seven prediction algorithms, 9
out of a total of 215 nsSNPs were shown to be the most likely to cause harm. In order to distinguish
between potentially harmful and benign nsSNPs of the LIPH gene, in our in silico investigation, we
employed a range of sequence- and architecture-based bioinformatics techniques. Three nsSNPs
(W108R, C246S, and H248N) were chosen as potentially harmful. The present findings will likely
be helpful in future large population-based studies, as well as in drug discovery, particularly in the
creation of personalized medicine, since this study provides an initial thorough investigation of the
functional nsSNPs of LIPH.

Keywords: hair loss; Lipase-H; hypotrichosis; missense mutations; molecular dynamics simulation;
alopecia

1. Introduction

Originating from the ectoderm of the skin, hair is one of the crucial components of the
human body. It is a protective projection which, along with sebaceous organs or glands,
nails, and sweat glands, is considered to improve skin structure [1]. Hair present on the
dermis is a protein component that grows from follicles. Hypotrichosis is an uncommon
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type of hereditary alopecia that affects both males and females equally. This form of hair
loss begins in early childhood. Hypotrichosis (hair loss) is caused by either LIPH or LPAR6
gene mutations [2]. A representative of the lipases gene family, the LIPH gene (OMIM
607365) is situated on the human chromosome at location 3q27.2. GRCh38.p12 and 92
annotations, comprising 10 exons, are included in Homo sapiens Annotation Release 109;
this gene is approximately 46,396 bp long and is located at the molecular position 3: 185,
506, 262–185, 552, 588 on the reverse strand of chromosome 3.

This reverse gene transcribes from its mRNA 4001 bp cDNA; this produces a mem-
ber of the Lipase H family, a 451 amino acid protein (LIPH En-zyme). To create 2-acyl
lyso-phosphatidic acid (LPA) and fatty acids outside of a cell’s membrane, lipase H hy-
drolyzes phosphatidic acid (PA) [3]. Some phospholipids, such as phosphatidylserine
(PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) or triacylglycerol are
not hydrolyzed (TG). So far, the coding sequence of the LIPH gene has been found to
contain 295 distinct types of mutations, encompassing splice site mutations, deletions, and
insertions. The LIPH gene-related disorder is woolly hair, or hypotrichosis (OMIM 604379).
It is the hair condition that contributes to the growth of sparse hair in the scalp area of
the head (hypotrichosis). The rate of incidence of this disease is rare in other areas of the
body. Specific mutations in the LIPH gene are observed exclusively in particular racial
communities, such as those with Japanese or Pakistani ancestry, or among the Mari and
Chuvash populations in Russia, indicating the potential impact of founder effects [4,5].

LIPH gene mutations result in the development of an irregular protein or a protein
with no function whatsoever. When this enzyme is non-functional, certain cellular functions,
such as the maturation and proliferation of hair follicle cells, result in the non-formation of
LPA. Such hair follicles are structurally irregular, underdeveloped, and immature, resulting
in fragile hair and modified hair growth and structure. In individuals that have autosomal
recessive hypotrichosis, the lack of Lipase-H enzymes may also often contribute to skin
deformities. In this study, the nsSNPs (non-synonymous single nucleotide polymorphisms)
of the LIPH amino acid chain were examined. In addition to this, the effect of the sequence
variant on the LIPH protein has been recognized. Studies have also been conducted to
examine the impact of the mutation on the role and durability of the LIPH amino acid chain.

The objective of the present study is to detect and predict deadly nsSNPs within the
LIPH gene, along with their links to diseases and the ramifications of detrimental nsSNPs
on the behavior and structure of the protein. Several bioinformatics tools, including
SIFT [6], Polyphen2 [7], SNAP2, SNPs&GO [8], PhD-SNP [9], I-Mutant [10], and Mu-
Pro [11], were employed to predict the pathogenic nsSNPs in the LIPH gene. Additionally,
amino acid residue conservation was detected using ConSurf [12]. The structure was
predicted using SWISS-MODEL and which was then further refined using ModRefiner [13].
To run molecular dynamics simulations and to observe structural changes over time,
Schrodinger suite was employed. A thorough visualization study was carried out using
PyMol [14].

2. Results
2.1. Retrieval of nsSNPs of the LIPH Gene

A variety of bioinformatics applications and datasets, such as the ensemble gene
annotation tool and the dbSNP resource, were employed to identify effective SNPs, which
can be situated at multiple locations on the gene, within the LIPH gene. This research
examined the effects of nsSNPs on the structure and functionality of the Lipase-H amino
acid chain encoded by the LIPH gene. Additional SNPs were found in other protein portions
as well; while most of the identified SNPs were located within the intronic segment, our
study centered on the exonic segment’s clinically significant SNPs, as depicted in Figure 1.
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nated by Polyphen2 as only “possibly damaging” or “probably damaging” SNPs. REVEL 
results revealed that 136 cases of illness were caused by the remaining 158 nsSNPs. 
MetaLR showed 128 as damaging, and finally, Mutation Assessor identified only two 
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Figure 1. The distribution of different variants of the LIPH gene is based on their locus and type
of mutation: 3′ UTR exhibited the most variations, while 5′ UTR underwent the least number
of mutations.

2.2. Screening of nsSNPs of LIPH Gene

The sorting intolerant from tolerant algorithm was utilized on 307 nsSNPs to ascertain
the score for the tolerance index (TI) of the mutations. By aligning similar conserved amino
acid sequences, SIFT determines the TI score, which ranges from 0 to 1. During ours
initial examination, of 307 examples, SIFT detected 259 non synonymous SNPS, displaying
TI scores between 0 and 0.3, with 199 nsSNPs exhibiting TI scores of 0, 22 showing TI
scores of 0.1, 17 expressing TI scores of 0.2, and 21 revealing TI scores of 0.3, indicating the
importance of these nsSNPs (Table 1). Out of the 259 isolated nsSNPs, 158 were designated
by Polyphen2 as only “possibly damaging” or “probably damaging” SNPs. REVEL results
revealed that 136 cases of illness were caused by the remaining 158 nsSNPs. MetaLR
showed 128 as damaging, and finally, Mutation Assessor identified only two SNPs as
damaging. These mutations are summarized in Supplementary Table S1.

Table 1. The deleterious nsSNPs were discovered in the LIPH gene using different tools.

Variant ID AA Change SIFT Polyphen-2 PROVEAN SNP&GO PhD-SNP
Pred 1 Scr Effect 2 Scr Pred 3 Scr Pred 4 RI Pred 5 RI

rs267607219 W108R Dmg 0.00 Pro.
Dmg 1.00 Del −12.81 Disease 8 Disease 9

rs201249971 C246S Dmg 0.00 Pro.
Dmg 1.00 Del −9.36 Disease 7 Disease 9

rs201868115 H248N Dmg 0.00 Pro.
Dmg 1.00 Del −6.56 Disease 7 Disease 9

AA (amino acid); Pred (prediction); Dmg (damage); Pro. Dmg (probably damage); Scr (score), and RI (reliability
index). 1 SIFT: Dmg (Scr ≤ 0.05), 2 Polyphen-2: Pro. Dmg (Scr = 1.00), 3 PROVEAN: Del (Scr < −6.56), PhD-
SNP: Disease (Scr > 0.5), 4 SNP&GO: Disease (Probability > 0.5) and 5 PhD-SNP: Disease (probability 0–9).

2.3. Prediction of Clinically Significant Deleterious nsSNPs of LIPH Protein

The large dataset of predicted deleterious SNPs was narrowed down based on the
clinical significance of all the mutations. The extensive literature studies suggested that only
three nsSNPs (LIPHW108R, LIPHC246S, and LIPHH248N) be classified as clinically signifi-
cant. These selected nsSNPs were analyzed using five resources—SNP&GO, Polyphen-2,
PhD-SNP, SIFT, and PROVEAN—to check pathogenicity and to predict nsSNPs with a
significant deleterious outcome affecting the structural character and the role of the LIPH
amino acid chain. Each of the chosen nsSNPs were predicted to be adverse or pathogenic
(Table 1).
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2.4. Pathological Annotation of Clinically Significant Deleterious nsSNPs on LIPH Protein

The pathological implications of mutations on the LIPH protein were annotated using
the PMUT service. The PMUT results reflected the PMUT scores of 0.93, 0.90, and 0.90
for mutations LIPHW108R, LIPHC246S, and LIPHH248N, respectively. These results
show that there is around a 93% probability of LIPHW108R producing a pathological
impact, and a 90% probability for LIPHC246S and LIPHH248N to convey an associated
pathological impact. The prediction class was identified as “disease” for all three of the
mutant sequences.

2.5. Influence of Medically Significant Variations on LIPH Protein Robustness

The protein structure stability was predicted through an online I-Mutant server (ver-
sion 2.0). To express the outcome of I-Mutant 2.0, the reliability index (RI) and the free
energy change value (DDG) were employed. The subjected three mutations yielded a
stability decrease of (−1.91, 1.55, and −0.85) kcal/mol. The I-Mutant results confirmed that
selected nsSNPs cause a decrease in the protein stability because they have a DDG value
(<−0.5), which is a sign of a larger effect on the protein. These steep declines in the stability
of the LIPH protein may cause the loss of LIPH function, which triggers hypotrichosis.

2.6. Evolutionary Conservation Analysis of LIPH Protein

To determine the evolutionary conservation of the modified protein configurations,
the ConSurf computational server was employed. Out of the three nsSNPs, two amino
acids (LIPHW108R, LIPHC246S) were detected in the LIPH gene as functional, highly
conserved, and exposed, while one nsSNP amino acid (LIPHH248N) was shown to be
strongly conserved and prominently displayed (Table 2). LIPHW108R and LIPHC246S
were considered to play a structural role, while LIPHH248N was predicted to perform a
functional role. The conservation score was predicted as 9 for all the variants (Figure 2).

Table 2. I-Mutant version 2.0, PMut, and ConSurf predictions of high-risk nsSNPs in LIPH protein.

Variant ID AA Change
PMut I-Mutant 2.0 ConSurf

Score and
Percentage Pred Stability DDG

Value
Cons.
Score Pred

rs267607219 W108R (0.93) 94% Disease Decrease −1.91 9 Strongly conserved and
prominently displayed (s)

rs201249971 C246S (0.90) 93% Disease Decrease −1.55 9 Strongly conserved and
prominently displayed (s)

rs201868115 H248N (0.90) 93% Disease Decrease −0.85 9 Strongly conserved and
prominently displayed (f)

RI (reliability index); DDG (value of free energy change); f (function amino acid, highly conserved and exposed),
and s (structure amino acid, highly conserved and unexposed). PMut: Disease (Scr > 0.05), ConSurf: highly
variable (Scr = 1.00), and highly conserved (Scr = 9).

2.7. Comparative Analysis of LIPHWT and LIPHMT Structures

To determine whether the high-risk nsSNPs selected had a significant impact on
the final proteins, predicted 3D modeling and comparisons of structure between mutant
models and wild-type were used. SWISS-MODEL was used to predict the model for
LIPH protein. SWISS-MODEL provided 53 templates, but we selected 2ppl.1, which is
the highest query coverage value, and PyMol was used to construct the LIPHMT models.
The predicted model, along with the mutation position, was visualized by PyMol. The
results were then confirmed by the nsSNPs (Figure 3). To check the structural comparison
of LIPH protein with their mutant model, TM-align server was used. For every mutant
model with a TM-score of 1 and an RMSD of 0, the TM-align server reported no major
deviations from their unmutated structures (Table 3). The generated mutant model was
validated through ERRAT (Table 3). The structural integrity was further validated by the
Ramachandran map derived from calculated dihedral angles. The PDB inputs, both mutant
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and non-mutant, were determined by PROCHECK. The region with the highest frequency
of occurrence in LIPHWT contains 340 residues (80.3%), while the additionally allowed
region contains 39 residues (9.9%), the generously allowed region contains 7 residues
(1.8%), and the disallowed region contains 8 residues (2.0%). One of the most detrimental
mutations, LIPHW108R, includes 350 residues (88.8%) in the region that is most preferred,
29 residues (7.4%) in the region that is additionally allowed, 7 residues (1.8%) in the
region that is liberally allowed, and 8 (2.0%) elsewhere. LIPHC246S exhibits 341 residues
(86.5%) in the region with the highest preference, 40 residues (10.2%) in the region with
additional permission, 8 residues (2.0%) in the region with liberal permission, and 5 residues
(1.3%) in the region with the lowest preference. As evidence that the mutant models were
accurately modeled, LIPHH248N exhibits 342 residues (86.8%). In the most favored region,
approximately 70% of the residues were found to be favorable, 10.2% of the residues were
in the additionally allowed zone, 1.8% of the residues were in the generously allowed
region, and 1.3% of the residues were in the banned regions (Table 3).
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2.8. Stability Analysis of LIPHWT and LIPHMTs Protein Models

The molecular dynamics simulation analysis was conducted to assess the RMSD,
RMSF, and the percentage of amino acid secondary structures. Figure 4A presents the
changes in RMSD values over time for the backbone atoms of the non-mutant and mutant
proteins. The plots displaying the RMSD of both proteins determine that the protein
structure attains equilibrium at 10 ns. During the simulation timeframe, the RMSD value for
the predicted protein fluctuated up to 20 ns, with an average value of 1.2 Å. Subsequently,
the RMSD values remained within 1.2 Å, which is highly suitable for small predicted
proteins, as demonstrated in Figure 4A. For mutant proteins, the RMSD is higher, which
indicates major structural and functional changes.
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Figure 3. Mutation mapping and comparative analysis of LIPHWT with LIPHMT structures created
using PyMol v2.5. (A) A 3D structure of LIPHWT protein. (B) Tryptophan to arginine substitution
mapped at 108th position. (C) Cysteine to serine mutation mapped at 246th position. (D) Histidine to
asparagine substitution mapped at 248th position.

Table 3. Analysis of selected model: TM score, RMSD, ERRAT, and PROCHECK.

Model

TM-Align 1 ERRAT 2 PROCHECK Ramachandran Plot Analysis 3

TM Score RMSD
ERRAT Value
(Overall Quality
Factor)

Residues in
Most Favored
Regions

Residues in
Additional
Allowed
Regions

Residues in
Generously
Allowed
Regions

Residues in
Disallowed
Regions

LIPHWT Nill Nill 90.26% 340 (80.3%) 39 (9.9%) 7 (1.8%) 8 (2.0%)
LIPHW108R 1.00 0.00 85.00% 350 (88.8%) 29 (7.4%) 7 (1.8%) 8 (2.0%)
LIPHC246S 1.00 0.00 85.00% 341 (86.5%) 40 (10.2%) 8 (2.0%) 5 (1.3%)
LIPHH248N 1.00 0.00 87.41% 342 (86.8%) 40 (10.2%) 7 (1.8%) 5 (1.3%)

Herein, “1” was used for structure similarities (0.0 < TM score < 0.30) and unordered configurations similarities
(0.50 < TM score <1.00); the structure will belong to same fold. “2” ERRAT, which is the best reliable model, was
used to evaluate the reliability of the model (ERRAT score > 85%). “3” PROCHECK was used to check the number
of residues (percentage of residue) in the most favored regions, additionally allowed region, generously allowed
region, and disallowed region.

2.9. Flexibility Analysis of LIPHWT and LIPHMTs

The flexibility analysis of each residue was measured by root mean square fluctuation
(RMSF) analysis. The average RMSF value for LIPHWT was observed to be 0.24 Å, whereas
the average RMSF values for mutant LIPHW108R, LIPHH248D, and LIPHC246S were
(0.24, 0.27, and 0.22) Å, respectively. The norm RSMF range of LIPHWT and all LIPHMTs
revealed that all were stable during the simulation period of 200 ns. The residue Pro234
exhibited higher fluctuations in LIPHW108R and LIPHH248D, whereas in LIPHWT, the
residue Phe25 showed the highest fluctuation. Furthermore, the residue His305 was the
most fluctuating residue in LIPHC246S, as shown in Figure 4B.

2.10. Gyration Analysis of LIPHWT and LIPHMTs

The conformational behavior of the protein was evaluated by analyzing the system’s
radius of gyration values. A lower Rg value is indicative of a more compact amino acid



Pharmaceuticals 2023, 16, 803 7 of 15

architecture. The norm Rg value for LIPHWT was 27.10 Å, whereas for mutant LIPHW108R,
LIPHH248D, and LIPHC246S, it was 27.08 Å, 26.92 Å, and 26.35 Å, respectively. The lowest
Rg value was obtained for LIPHC246S, which reveals that LIPHC246S showed the most
compactness (Figure 4C).
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(A) RMSD, (B) per-residue RMSF, (C) gyration analysis, (D) hydrogen bond occupancy, and (E) SASA
of the Ca atoms of LIPHWT and LIPHMTs protein models shown via color-coded line graphs for a
200 ns simulation time.

2.11. Hydrogen Bond Occupancy

In this study, hydrogen bond profiles of the proteins were also examined, as shown
in Figure 4D. From the plot in Figure 4D, it is observed that the proteins exhibited similar
hydrogen bonding. The hydrogen chemical link plays a complicated role in the durability
of the amino acid. The range of hydrogen bonding of all proteins was observed between
259–361. The LIPHC246S exhibited the denser hydrogen bonding, i.e., ranging from
264–358, whereas for LIPHWT, LIPHW108R, and LIPHH248D, the bonding lay within the
range of 269–353, 268–361, and 259–348, respectively.

2.12. Solvent-Accessible Surface Area of LIPHWT and LIPHMTs

The aqueous accessibility superficial area measures the portion of a bimolecular
surface that is available to nearby aqueous molecules. The LIPHWT and LIPHMTs under-
went SASA analysis. The mean SASA value of LIPHWT and the mutants LIPHW108R,
LIPHH248D, and LIPHC246S were recorded as 2189.06 Å2, 2142.5 Å2, 2228.37 Å2, and
2097.09 Å2, respectively, throughout the simulation (Figure 4E). During the initial stages of
the simulation, all proteins demonstrated a higher SASA value, but over time, it decreased,
as seen in Figure 4E. The mutant LIPHH248D showed the highest mean value of SASA,
i.e., 2228.37 Å2. The SASA calculations illustrated that mutant protein LIPHC246S showed
decreased SASA value, thus further indicating that the mutant protein LIPHC246S may not
have maintained contact with the solvent molecules around it.
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2.13. Conformational Analysis of LIPHWT and LIPHMTs

Understanding proteins at the molecular level requires a comprehension of their
structure and dynamics. Most of the conformational changes occurred at the loops at the
terminals (Figure 5). The conformational analysis of LIPHWT at different time scales of sim-
ulations revealed certain structural changes. The helix at Ser14–Ser16, which was observed
at the beginning of the simulation, disappeared at 80 ns and never again formed during the
simulation. The conversion of many loops (Arg42–Tyr46, Asn102–Asp107, Met313–Asp319,
Ser361–Thr368, Phe441–Leu445, and Glu448–Gln450) to beta sheets occurred at different
sites in order to attain stability. All these beta sheets formed at 40 ns and remained until
the end of the simulations, except for Glu448–Gln450, which again converted to a loop
at 120 ns. In LIPHW108R protein, the conformational changes were observed in the loop
regions, as loops are the most flexible structures. In LIPHW108R protein, certain loops
are converted into helices (Leu401–Arg405 and Asn383–Leu386). In all LIPHMTs, the
formation of beta sheets at Gln55–Ile57 and Val440–Ile444 was observed during simulation,
whereas in LIPHH248N, the beta sheet Val440–Ile444 again converted into the loop at the
end of the simulation. In LIPHW108R, the protein beta sheet (Gln425–Cys427) and the helix
(Tyr297–Asn301) converted into loops. The conversion of the helix (His184–Asp191 and
Pro195–Asp197) to a loop occurred in both LIPHC246S and LIPHH248N. In LIPHC246S,
the formation of a new helix at Ile237–Gly239 was observed (Figure 5).

Pharmaceuticals 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 5. Conformational analysis of (A) LIPHWT, (B) LIPHW108R, (C) LIPHC246S, and (D) 
LIPHH248N protein models via color-coded protein structures obtained from the 200 ns trajectory 
at 0 ns, 40 ns, 80 ns, 120 ns, 160 ns, and 200 ns, respectively. The protein models were visualized 
using the PyMol molecular graphics system, version 2.5. 

Comparative Functional Analysis of LIPHWT and Mutant Models 
Functional displacement of every system was calculated using the DCCM method as 

a function of time. The results show a substantial negative connection between two clus-
ters of LIPH residues (Figure 6A). The LIPHWT (cluster 2; 200aa–320aa) and the mutants 
LIPHW108R and LIPHC246S showed a relatively comparable correlation, demonstrating 
that the variation in correlation may be caused by a shift in how these two proteins are 
confirmed following a point mutation. Moreover, all of the mutants correlated differently 
from the LIPHWT in cluster 1 (as seen in Figure 6A). In contrast to LIPHWT, other mu-
tants, such as LIPHH248N, showed an entirely different association among their local mo-
ments (Figure 6D). In general, the DCCM findings demonstrate that both original amino 
acid and the mutant amino acid manifest distinctive arrangements of strong agreement 
and disagreement. While the red hue represents a significantly favorable connection, the 
dark blue hue indicates a strong negative link to a few of the leftovers. Residues that are 
positively associated travel in the same direction, but those that are negatively correlated 
move in opposite directions. 

Figure 5. Conformational analysis of (A) LIPHWT, (B) LIPHW108R, (C) LIPHC246S, and
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the PyMol molecular graphics system, version 2.5.
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Comparative Functional Analysis of LIPHWT and Mutant Models

Functional displacement of every system was calculated using the DCCM method as a
function of time. The results show a substantial negative connection between two clusters
of LIPH residues (Figure 6A). The LIPHWT (cluster 2; 200aa–320aa) and the mutants
LIPHW108R and LIPHC246S showed a relatively comparable correlation, demonstrating
that the variation in correlation may be caused by a shift in how these two proteins are
confirmed following a point mutation. Moreover, all of the mutants correlated differently
from the LIPHWT in cluster 1 (as seen in Figure 6A). In contrast to LIPHWT, other mutants,
such as LIPHH248N, showed an entirely different association among their local moments
(Figure 6D). In general, the DCCM findings demonstrate that both original amino acid
and the mutant amino acid manifest distinctive arrangements of strong agreement and
disagreement. While the red hue represents a significantly favorable connection, the dark
blue hue indicates a strong negative link to a few of the leftovers. Residues that are
positively associated travel in the same direction, but those that are negatively correlated
move in opposite directions.
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2.14. Dimensionality Reduction Using PCA

An investigation of the dynamically advantageous structural alterations in the chem-
istry of LIPHWT and its four variants (LIPHW108R, LIPHC246S, and LIPHH248N) was
conducted using motion mode analysis. The variables for the PCA involved the coordi-
nate covariance matrix (CCM), which was calculated from the time-dependent data of
3D positional coordinates of multiple variant models during the 200 ns MD simulation.
This analysis is commonly known as PCA. The results show that the LIPHWT system
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and its four variations (LIPHW108R, LIPHC246S, and LIPHH248N) all exhibited varied
arrangements and failed to converge into a single energy level, demonstrating that the
mutant forms of the LIPH amino acid had an unstable arrangement of configurations
(Figure 7).
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3. Discussion

Hair is included in those important parts of the human body originating from the
ectoderm of human skin. Hair is a protective projection on the human body, and it is
considered to be skin accessory, along with sebaceous organs or glands, nails, and sweat
glands [1]. Hair presenting in the dermis is a protein component that grows from follicles.
LIPH gene mutations result in the development of an irregular protein. When this Lipase
H is non-functional, certain cellular functions, such as the maturation and proliferation of
hair follicle cells, results in the non-formation of LPA. Such hair follicles are structurally
irregular, underdeveloped, and immature, resulting in fragile hair and altered hair growth
and structure. In individuals that have autosomal recessive hypotrichosis, the lack of
Lipase-H enzymes may also often contribute to skin deformities.

Non-synonymous SNPs are created when an amino acid is mutated in a protein chain,
impacting the protein’s composition and purpose. Many genetic abnormalities are caused
by SNPs. The functionally relevant area is at significant risk of mutation due to amino acid
degeneracy. Finding the amino acid that significantly influences disease development and
differentiating between beneficial and harmful SNPs are both very challenging tasks [15].
When an amino acid in a protein chain changes, a non-synonymous single nucleotide
polymorphism (SNP) occurs that affects the protein’s structure and function. SNPs can be
linked to common genetic disorders [16,17]. Mutations are common in the functionally
important region due to amino acid degeneracy. Distinguishing between beneficial and
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deleterious SNPs is difficult, as is determining the amino acid that has a significant impact
on disease predisposition.

Bioinformatics has been impactful in the field of genome-wide association studies
(GWAS) for mutation detection [18,19], annotation [18,20]„ and impact [20–23], as well
as the discovery of new and effective medications [24,25]. Important in silico approaches
include those used to identify the location genetic locus, forecast its transcripts, and predict
its interactions with other genes and proteins [26], as well as those used to evaluate the
protein’s cellular function and structure [27]. We can distinguish between benign and
harmful SNPs using in silico research [27], which employs a variety of algorithms and
publicly available databases. An examination of the altered amino acids using structural
and phylogenetic data produced very precise results. NSSNPs in the amino acid’s coding
plane can cause amino acid substitutions that alter the influence of amino acids on biolog-
ical functions and heighten disease susceptibility [28]. The detection of harmful nsSNPs
through classifying tolerant/intolerant forms is unrivaled when it comes to researching
an individual’s susceptibility to disease. However, not every mutation has a negative
effect on function, and some may be well tolerated. The molecular signature of nsSNPs
linked to a certain disease and other traits has previously been demonstrated. As a result,
these nsSNPs may interfere with protein–protein interactions, affect enzyme activity, and
ultimately lead to a change in protein structure. The identification and characterization of
functionally connected nsSNPs, as well as their separation from non-functionally related
nsSNPs, is the current focus of molecular biology [29–31] and population genetics.

In the present research, we used in silico methods to perform various analyses of
the nsSNPs, since a mutation in the LIPH gene is accountable for autosomal recessive
hypotrichosis. Alopecia is a rare sub-type of hair loss that causes hair to become scarce
(hypotrichosis) on the scalp skin. At position 27.22, The LIPH gene or amino acid is situated
on chromosome 3 (eq27.2). The typical function of lipase is to hydrolyze PA outside the
cell membrane to produce 2-acyl lysophosphatidic acid (LPA, a potent bioactive lipid
mediator) and fatty acid. In this gene, two mutations (c.2T > C; p.M1T and c.322T > C;
p. W108R) have been identified in both families, causing autosomal recessive hypotrichosis.
LIPH gene mutations result in the development of an irregular protein or a protein with
no function. When this enzyme is non-functional, certain cellular functions, such as the
maturation and proliferation of hair follicle cells, result in the non-formation of LPA. Such
hair follicles are structurally irregular, underdeveloped, and immature, resulting in fragile
hair and altered hair shaft growth and structure. These hairs are weak and quickly split. In
individuals who have autosomal recessive hypotrichosis, a lack of Lipase-H enzymes can
also often contribute to skin deformities (NIH). In this research, an attempt is designed to
identify SNPs that modify the architecture and operation of the coded Lipase-H protein.
The gene LIPH encodes the enzyme. Using various bioinformatics computational protein
prediction methods, we tested the pathogenicity of mutation (c.322T > C; p. W108R). SIFT,
POLYPHEN-2, PROVEAN, SNP&GO, I-MUTANT, and PhD-SNP were used to describe
the SNP causing the illness by classifying the mutations. Both (c.736T > A, p. C246S) and
(c.744 C > A; p. H248N) are deleterious and likely to be toxic, according to the evaluations
using SIFT and the Polyphen2 tool [32]. Using I-Mutant version 2.0 to verify the durability
of the mutant protein, it was shown that the amino acid has a lack of durability due to
the disease that is induced. Structural validation and comparison are achieved with the
assistance of molecular dynamic simulation, in which a strong distinction between the
protein of the mutant and wild form has been revealed.

4. Materials and Methods
4.1. Retrieval of LIPH Sequence and nsSNPs

The primary sequence of the LIPH protein, with a length of 451aa in the FASTA format,
was retrieved from browsing the ensemble genome website (https://asia.ensembl.org/
index.html) (accessed on 3 February 2023). We retrieved all the nsSNPs found in the dbSNP
and Ensembl genome browser.

https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
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4.2. Identification of Deleterious nsSNPs

The predictions of damaging nsSNPs affecting the function of LIPH protein were de-
veloped using different bioinformatics equipment: SIFT (sorting intolerant from tolerant—
http://sift.jcvi.org) (accessed on 16 March 2023) [33], PROVEAN (protein or amino acid
variation effect analyzer) [34], Polyphen-2 (polymorphism phenotypingv2) [35], and
SNP&GO (single nucleotide polymorphism and gene ontology), which are linked us-
ing PhD-SNP (predictor of human deleterious single nucleotide polymorphism—https:
//snps.biofold.org/snps-and-go/snps-and-go.html (accessed on 16 March 2023)) [36]. The
non-synonymous single nucleotide polymorphisms (nsSNPs) that were predicted to be
harmful by all five in silico tools were identified as “high-risk” nsSNPs and were selected
for further examination.

4.3. Validation of Deleterious nsSNPs of LIPH Gene

PMut served as a means to confirm the pathogenicity of the identified suspected
harmful nsSNPs (http://mmb.irbbarcelona.org/PMut/ (accessed on 16 March 2023)) [37].
For 12,141 proteins, this artificial neural network-based approach contains 27,203 dangerous
and 38,078 benign mutations. The prediction percentage was calculated, along with a score
that predicts the likelihood of an event ranging from 0 to 1. The nsSNPs of a score with
values of 0.5 or less may be considered neutral, whereas those score with values of >0.5 are
considered disease associated [38].

4.4. Structure Stability of Mutant Protein

I-Mutant V2.0 was employed to forecast the protein stability of the nsSNPs (https:
//folding.biofold.org/i-mutant/i-mutant2.0.html (accessed on 16 March 2023)). This
method evaluates the corresponding values of free energy transform when determining
the increase or decrease in durability transformation in the mutant proteins (DDG). I-
Mutant version 2.0 employs an SVM machine learning algorithm and ProTherm-derived
information, or a dataset, which is a more detailed collection of databanks that contain
experimental thermodynamic data on mutant protein stability. This web server additionally
generated a reliability index (RI) ranging from the lowest reliability (0) to the highest
reliability (10), in addition to the other forecasts [10].

4.5. Structure Prediction and Validation

The determination of a 3D protein model by NMR or X-ray crystallography methods
is very expensive; thus, the homology modeling technique, which is less time consuming
and highly accurate, can be used for the prediction of a 3D protein model. For systematic
comparative modeling of 3D amino acid structures based on models and accessible through
an offline script-based tool, Modeler was used [39]. PyMOL is a free desktop-based
software. It is used for protein visualization. Using various basic functional parameters, it
manipulates the structure to evaluate the chemical properties or proteins. In general, the
tool is available for operating systems such as Linux, Windows, and macOS [40]. ERRAT
is an online bioinformatics tool used for the validation and refinement of protein 3-D
structures. After prediction, the quality of the protein structure was analyzed using the
ERRAT tool [41]. To further check the estimate of the structure quality of the proteins,
PROCHECK Ramachandran plots were used (https://saves.mbi.ucla.edu/ (accessed on
16 March 2023)).

4.6. Computer Simulation of Molecular Dynamics

MD simulations were carried out for 200 ns using Desmond, a Schrödinger LLC
platform. The initial structures of the proteins were obtained from the predicted models.
The amino acid architecture was preprocessed using Maestro’s Protein Preparation Wizard,
which revealed protein refinement, as well as reduction. The Device Builder tool was used
to prepare all structures. The orthorhombic box solvent model was employed, using TIP3PP.
In the simulation, the OPLS-2005 force field was used [42]. The system was neutralized by

http://sift.jcvi.org
https://snps.biofold.org/snps-and-go/snps-and-go.html
https://snps.biofold.org/snps-and-go/snps-and-go.html
http://mmb.irbbarcelona.org/PMut/
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://folding.biofold.org/i-mutant/i-mutant2.0.html
https://saves.mbi.ucla.edu/
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adding counter ions, and 0.15 M salt (NaCl) was applied to mimic physiological conditions.
The simulation was carried out under the NPT ensemble at a temperature of 300 K and a
pressure of 1 atm. After every 50 ps, the trajectories were saved for further assessment, and
the robustness of the simulations was assessed by measuring protein RMSD, RMSF, and
the radius of gyration.

4.7. Dynamic Cross-Correlation Map (DCCM)

A DCCM plot was created to investigate the cross-correlation shift of the backbone
atom (C) and to offer insight into how mutations affect the dynamics of LIPHWT and
LIPHMTs. DCCM was created to analyze and determine the dominating correlated move-
ments of each residue in distinct LIPH systems.

Cij = 〈∆ri. ∆rj〉

(〈∆ri〉2 < ∆rj < ∆ri > 2) 1⁄2

Here, the matrix Cij illustrated the time-correlated information between the (i) and (j) atomic
particles of a protein, where ∆ri and ∆rj were the displacements from the mean position
of the ith and jth residues with respect to time. The angular brackets “〈〉” represented the
time norm over the entire route. The Cij ranged from −1 to 1. The only alpha carbon atoms
from the last 5000 snapshots were selected at 0.002 ns time intervals to create the matrix.
The following displayed graph from DCCM is based upon two positive (+ve) and negative
(−ve) values; the (+ve)-values explain the residue motion in a unique direction, while the
(−ve) values indicate the residue displacement in the opposite direction.

4.8. Essential Dynamics Using Principal Components Analysis

Using the trajectories files produced by MD simulation, we examined the dynamic move-
ments of every system, including bound GalN6SWT, bound GalN6SMTs, free GalN6SWT,
and free GalN6SMTs, using principal component analysis (PCA) or conformational sam-
pling [24]. The rotational and translational motions of the positioned coordinates were
removed before the system was placed on a reference structure. Subsequently, the posi-
tional covariance matrix (PCM) of the atomic coordinates and their eigenmode/eigenvector
was constructed. As a result, the retrieved data for the matrix was diagonalized by the
orthogonal coordinate transformation matrix, yielding the diagonal matrix of the eigen-
values. The first eigenvector and its associated eigenvalue represent the protein structure
ensemble’s significant dominating motion. Matplotlib was used to display the dominant
motion of all systems.

5. Conclusions

In this study, the LIPH gene was examined using a computational technique to de-
termine the significance of harmful SNPs in the coding and untranslated zones. Based on
clinical importance, 3 out of a total of 307 missense SNPs were projected to be the most
harmful. These SNPs were anticipated to be highly conserved and to influence protein
stability. The structural analysis found that all W108R, C346S, and H248N mutations exhib-
ited significant RMSD values, indicating a loss of total hydrogen bonds. As a result, we
determined that the three nsSNPs W108R, C346S, and H248N, might be key players in the
development of hypotrichosis, a rare type of alopecia.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16060803/s1, Table S1: Details of the 126 missense
mutations, that are identified as deleterious by all the five tools.
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