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Abstract: The use of material for implant bearing has a vital role in minimizing failures that endanger
implant recipients. Evaluation of contact pressure of bearing material can be the basis for material
selection and have correlations with wear that contribute to the need of revision operations. The
current paper aims to investigate three different metallic materials, namely cobalt chromium molyb-
denum (CoCrMo), stainless steel 316L (SS 316L), and titanium alloy (Ti6Al4V) for application in
metal-on-metal bearing of total hip implant in terms of contact pressure. In silico model based on
finite element simulation has been considered to predict contact pressure of metal-on-metal bearings
under normal walking conditions. It is found that the use of Ti6Al-4V-on-Ti6Al4V is superior in its
ability to reduce contact pressure by more than 35% compared to the other studied metal-on-metal
couple bearings.

Keywords: contact pressure; gait; in silico; metal-on-metal; total hip implant

1. Introduction

In the field of orthopedics, surgical replacement of diseased human hip joints, such as
osteolysis, has been successfully performed using total hip implants [1–3]. The use of hard-
on-soft bearings, such as metal-on-polyethylene and ceramic-on-polyethylene has generally
been implanted in the human system through hip replacement surgery. Unfortunately,
the wear particles of the polyethylene material in their articulation with the hard material
can result in a reduced life span of the artificial hip joint [4–6]. The wear particles of
polyethylene range in size between sub-micrometers to micrometers and can absorb into
human bone resulting in mechanical loosening and fixation loss of implant components [7].
Ultimately, reoperation is required to correct the condition with a new hip joint prosthesis.

Hard-on-hard bearings can be a choice for implants due to the disadvantages of hard-
on-soft, with the option of using metal or ceramic materials. To avoid revision surgery
of hip joint implant recipients with high activity intensity and younger age, the use of
metal-on-metal bearings may be considered [8]. This is because ceramic materials have
brittle characteristics that endanger patients due to the high risk of failure from fracture
caused by various high-intensity activities, generally carried out by younger patients [9].
In addition, compared to conventional metal-on-polyethylene bearings, metal-on-metal
bearings produce approximately 200 times lower wear. Although it is not the best bearing
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option when viewed from the number of failure cases compared to other bearing options,
metal-on-metal is still widely used by surgeons to meet the needs of the national market
independently without import in various developing countries, including Indonesia [10].
This is due to the relatively affordable price, ease of production process with limited tools,
and ease to obtain raw materials [11].

Metal ions generated from wear particles in metal-on-metal bearings circulate in
the body, causing local inflammation and contributing to osteolysis. [12–14]. Metal wear
particles can circulate in the lymphatic system far from the prosthesis position and metal
deposits are found in the bone marrow, lymph nodes, and liver. The reactive nature of these
metal wear particles also has the potential to cause cytotoxicity, hypertension, and neoplasia.
To solve this problem, the proper selection of the metal material needs to be evaluated
further due to concerns regarding biological problems to minimize failures that occur. Metal
materials commonly used as bearing materials include cobalt chromium molybdenum
(CoCrMo) [15], stainless steel 316 L (SS 316L) [16], and titanium alloy (Ti6Al4V) [17]. In
the development of implants that are suitable for the Indonesian population and most
countries in Asia as developing countries, apart from looking at the material aspect, the size
of the implant also needs to be considered. The geometry of total hip implants available in
the market as well as various current studies refer to European sizes that are different from
Asian sizes. A metal-on-metal total hip implant that adopts Indonesian geometries needs
to be established.

Several studies in the development of medical implant have been carried out in vitro [18],
in vivo [19], and in silico [20]. Adoption in silico becomes a rational option as an initial study
before conducting long-term inversion, either in vitro or in vivo. In addition to being able to
save time, in silico research also does not require relatively costly laboratory test equipment as
in vitro and approval of research involving living organisms to completion as in vivo. With
the demands of development and innovation in the medical and pharmaceutical sectors, more
studies are being conducted on computers to solve problems that approximate the results
from in vitro and in vivo. The extraordinary capabilities of in silico research have the potential
to revolutionize knowledge in the medical and pharmaceutical sectors, such as the study of
total hip implants.

The evaluation of contact pressure on implants as a preliminary study was extensively
carried out in previous studies before the evolution of wear [21–23]. This is because contact
pressure has a correlation with wear according to the Archard wear equation [24] as shown
in Equation (1), where WL is linear wear, Kw is wear coefficient, P is contact pressure, and s
is sliding distance. Based on this equation, contact pressure has a linear correlation with
linear wear. This means, reducing wear can be achieved by reducing contact pressure.

WL = KwPs (1)

Apart from the Archard wear equation which proved that wear can be minimized by
reducing the magnitude of contact pressure, other evidence is also demonstrated through
the experimental testing from Levanov et al. [25]. The results of this study explain the
correlation between intensity of wear and contact pressure, where it is found that the
intensity of wear tends to increase with increasing contact pressure. Correlation of intensity
of wear and contact pressure from the results of Levanov et al. [25] is described in Figure 1.

Some research computational studies have been conducted on metallic bearing in
total hip implants. De la Torre et al. [26] studied von Mises stress from CoCrMo femoral
head against ultra-high molecular weight polyethylene (UHMWPE) acetabular cup with
cemented and uncemented configuration. Furthermore, Jamari et al. [27] evaluate contact
pressure on metal-on-polyethylene bearing with different femoral head materials under
the gait cycle. Moreover, Ammarullah et al. [28] investigate Tresca stress of UHMWPE
acetabular cup with a counterpart of CoCrMo femoral head during loads based on six
different types of body mass index categories. Using a commercially pure titanium femoral
head connecting with UHMWPE acetabular cup, Handoko et al. [29] investigate wear
volume with different femoral head diameters of 0.5 mm, 1 mm, and 1.25 mm. Though
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a metallic head together with different plastic liner was studied in the past, metal-on-
metal bearing couples with three commonly used materials such as CoCrMo, SS 316L, and
Ti6Al4V that are mostly used in developing countries were less reported. In addition, the
use of geometry for the Indonesian population is also still rarely performed.
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Figure 1. Correlation between contact pressure and intensity of wear [25].

The purpose of this study is to analyze the contact pressure of bearing metal-on-
metal total hip implant with different materials, namely CoCrMo, SS 316L, and Ti6Al4V
using Indonesian hip joint geometry. We used in silico model based on finite elements to
complete the contact pressure prediction in this paper with a gait condition that refers to
the physiological activity of the human hip joint.

2. Materials and Methods
2.1. Bearing Geometry and Materials

An acetabular cup of 5 mm thickness and femoral head of 28 mm diameter are used
for geometry of total hip implant with 50 µm radial clearance as adopted based on patient’s
hip joint geometry from Indonesia and countries in Asia [30]. For material properties,
Young’s modulus for CoCrMo is 210 GPa, SS 316L is 193 GPa, and Ti6Al4V is 110 GPa [31],
while the Poisson ratio is 0.3 for all materials assuming homogeneity, isotropic, and linear
elasticity. Coefficient of friction for metal-on-metal bearing that used CoCrMo, SS 316L,
and Ti6Al4V used the same materials in both femoral head and acetabular cup are 0.2, 0.8,
and 1 [31], respectively.

2.2. In Silico Model

Finite element simulation for in silico metal-on-metal model running with ABAQUS/CAE
6.14-1 (Dassault Systèmes, Vélizy-Villacoublay, France) is represented by two main compo-
nents, acetabular cup and femoral head. In the definition of contact between surfaces, the
master surface is the contacting femoral head surface and the slave surface is the contacting
acetabular cup surface. We adopted a 2D ball-in-socket model with an asymmetry forming
a quarter circle that did not consider the pelvic bone component in the simulation to speed
up the time required to complete the computational simulation. This is because it did not
significantly affect the results [32]. The optimum number of elements for our finite element
model is 5500 consisting of 2000 CAX4 for the acetabular cup and 3500 CAX4 for the femoral
head. The finite element model we used is explained in Figure 2.
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Figure 2. In silico model of metal-on-metal bearing couple.

2.3. Gait Loading

Patients who have undergone hip joint replacement surgery with a total hip implant
will carry out gait activities as the most common daily activities. To provide a physiological
condition according to the actual condition of the human hip joint, the load is given with
a gait condition. We adopted the gait conditions used by Jamari et al. [24] for one cycle
that is simplified into 32 phases, but without considering the range of motion as conducted
by Basri et al. [33] described in Figure 3. Phases 1–19 are referred to as the ‘stance phase’,
which represent the initial 60% of the gait cycle and phases 20–32 are referred to as the
‘swing phase’, which represent the final 40% of the gait cycle.
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3. Results and Discussion

Validation needs to be conducted to determine the accuracy of the computational
simulation results obtained from published literature under identical conditions, either
analytical, computational, clinical, or experimental. In the current work, we compared
the maximum contact pressure of metal-on-metal bearings using CoCrMo with published
results of Jamari et al. [24] and Hertzian contact (see Equation (2), where F denotes the
forces during gait loading, and a is contact radius) [34]. The comparison of maximum
contact pressure as validation is described in Figure 4. Jamari et al. [24], and Hertzian
contacts [34] change during one gait cycle as the magnitude of the applied triaxial forces
change over time. The difference in the maximum contact pressure magnitude below
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10% seems to be in the permissible range so it can be said that the computational model
developed in this study is valid.

3F
2πa2 (2)

Figure 5 describes the maximum contact pressure for metal-on-metal bearings with a
variety of different metal materials in a full cycle under gait loading. As for the comparison of
the highest, lowest, and average contact pressures of the maximum contact pressures of the
32 phases described in Figure 6. Because the resultant force changes over time gait cycle, the
maximum contact pressure changes in each phase, with the highest contact pressure being
in the 7th phase. Of the three types of metal-on-metal bearings in the current study, the
contact pressures from the highest to the lowest overall were found in CoCrMo-on-CoCrMo,
SS 316L-on-SS 316L, and Ti6Al4V-on-Ti6Al4V. Maximum values of contact pressure for the
three different types of metal-on-metal bearings are shown in Table 1.
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Table 1. Maximum contact pressure for different metal-on-metal bearing materials at peak loading.

Metal-on-Metal Bearings Contact Pressure

CoCrMo-on-CoCrMo 79.34 MPa
SS 316L-on-SS 316L 75.23 MPa
Ti6Al4V-on-Ti6Al4V 53.85 MPa
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Meanwhile, the distribution of contact pressure is shown in Figure 7 obtained with
the S22 in ABAQUS for the simulation results [35]. A total of five selected phases are taken
to explain the contact pressure conditions referred from Jamari et al. [24]. Since micro-
separation is not considered during the contact process, the contour of contact pressure
is always centered, indicating that no edge contact occurs. However, in actual conditions,
edge contact can occur due to various unexpected activities that cause stripe wear [36].

Contact pressure and contact radius relationship on different metal-on-metal bearing
materials during peak loading is shown in Figure 8. We can see that contact pressure profiles
are different in our simulated metal-on-metal bearings. CoCrMo-on-CoCrMo exhibits the
highest contact pressure magnitude compared to other bearings, but the contact radius
is only about 3.8 mm during peak loading. On the contrary, Ti6Al4V-on-Ti6Al4V has the
lowest contact pressure value compared to other bearings, but the longest contact radius
at about 4.7 mm. It is strongly influenced by Young’s modulus that gives it a different
material hardness affecting the characteristics of the contact [37], where the value of Young’s
modulus has a linear relationship with the contact pressure, but is inversely proportional
to the contact radius.

Archard wear equation [24] as shown in Equation (1) explains that contact pressure
has a linear relationship with wear that can cause failure. Despite CoCrMo-on-CoCrMo
demonstrating the highest contact pressure, this does not mean that the bearing has the
highest wear. This is because based on Archard’s wear equation [24], wear is not only
affected by contact pressure, but also the wear coefficient that can be obtained through pin-
on-disc testing [38]. For initial studies, the contact pressure can be used as a reference for
material evaluation to minimize wear failure. However, for further research, it is necessary
to conduct wear studies using finite element procedures or hip joint simulators.

In selecting bearing materials for metal-on-metal, apart from the mechanical aspect,
we also need to look at the medical aspect. The biggest consideration for not choosing
metal-on-metal bearings is the possibility of toxicity due to metal ions. Vara et al. [39]
explained that the use of metal materials for orthopedic purposes has several potential
negative impacts that endanger implant users and disrupt the performance of various body
organs, such as the nervous system, digestive system, immune system, and others. The
potential for poisoning by using Ti6Al4V can be minimized from other metal materials
due to its better biocompatibility and corrosion resistance when compared to SS 316L and
CoCrMo [27].

Looking at the results of the contact pressure study that we performed on material
evaluation for metal-on-metal bearings, other efforts to enhance implant ability need to
be conducted. Some efforts would be include the application of textured surfaces as ex-
plained by Ammarullah et al. [40], as the application of textured surfaces on metal-on-metal
bearing could reduce contact pressure. Second, geometric parameters are also important
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to investigate as described by Utomo et al. [41] that these parameters may affect implant
performance. Next, coating application in implant could minimize medical problems after
hip replacement surgery which is in line with Maistrovskaia et al. [42]. Surgical procedures
also need to improve since technical issues have implications with failure as explained
by London Health Sciences Centre [43] to improve the performance of metal-on-metal
bearings in the future. The last, ultra-precision polishing and surface finish on implants
also needs to be studied further on metal-on-metal bearings considering the findings of
Fan et al. [44–46] and Tian et al. [47] describing its importance for mechanical components.
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In the current computational study, several shortcomings could affect the results. First,
the use of friction coefficient under gait conditions only uses a constant coefficient. In fact,
the coefficient of friction changes over time according to lubrication conditions, surface
roughness, and wear [48]. Furthermore, not accounting for the range of motion and only
using vertical loading to load the resultant force does not accurately represent the human
physiological condition during the gait process [49]. In addition, our prediction model only
considers the components of the femoral head and acetabular cup without considering the
fixation system and pelvic bone. Finally, the adoption of an asymmetric 2D finite element
model can also reduce the accuracy of the computational results [50]. Various shortcomings
in the current research need to be improved in further studies.

4. Conclusions

Contact pressure evaluation for the metal-on-metal bearing of total hip implant using
different metallic materials has been successfully investigated using 2D in silico model. An
excellent agreement of contact pressure was obtained between the present study, published
literature, and Hertzian contact. The highest maximum contact pressure is found in the
seventh phase with a similar trend for all simulated metal-on-metal bearings corresponding
to the highest resultant force during gait activity. The selection of bearings comprising
Ti6Al4V-on-Ti6Al4V demonstrate the best performance to reduce contact pressure, which
indicates it has a longer life owing to the reduction in wear. The better biocompatibility
and corrosion resistance factors of other bearings in this study also prompted the selection
of this material. In addition to the selection of metal materials for metal-on-metal bearings,
other aspects considering the textured surface, geometric parameters, coating application,
surgical procedure, ultra-precision polishing, and surface finish also need to be carried out
in the future to minimize implant failures.
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