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Abstract

Monkeypox virus (MPXV) outbreaks have been reported in various countries worldwide;

however, there is no specific vaccine against MPXV. In this study, therefore, we employed

computational approaches to design a multi-epitope vaccine against MPXV. Initially, cyto-

toxic T lymphocyte (CTL), helper T lymphocyte (HTL), linear B lymphocytes (LBL) epitopes

were predicted from the cell surface-binding protein and envelope protein A28 homolog,

both of which play essential roles in MPXV pathogenesis. All of the predicted epitopes were

evaluated using key parameters. A total of 7 CTL, 4 HTL, and 5 LBL epitopes were chosen

and combined with appropriate linkers and adjuvant to construct a multi-epitope vaccine.

The CTL and HTL epitopes of the vaccine construct cover 95.57% of the worldwide popula-

tion. The designed vaccine construct was found to be highly antigenic, non-allergenic, solu-

ble, and to have acceptable physicochemical properties. The 3D structure of the vaccine

and its potential interaction with Toll-Like receptor-4 (TLR4) were predicted. Molecular

dynamics (MD) simulation confirmed the vaccine’s high stability in complex with TLR4.

Finally, codon adaptation and in silico cloning confirmed the high expression rate of the vac-

cine constructs in strain K12 of Escherichia coli (E. coli). These findings are very encourag-

ing; however, in vitro and animal studies are needed to ensure the potency and safety of this

vaccine candidate.
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Introduction

After more than two years of significant global economic and health impacts from COVID-19,

outbreaks of the monkeypox virus (MPXV) have been reported in many countries around the

world, raising new concerns about a new global pandemic [1]. World Health Organization

(WHO) has reported 87,301 confirmed cases and 130 confirmed deaths of MPX in 111 coun-

tries as of May 3, 2023 continents [2]. The virus was named MPXV after it was discovered in

monkeys in a Danish laboratory in 1985 [3]. The first human case was identified in a nine-

month-old child from the Democratic Republic of the Congo (DRC) in 1970 [4]. MPXV has

since become endemic in the DRC and has spread to other African countries. The first MPXV

outbreak outside of Africa has been reported in the United States, following the shipment of

infected African mammals from Ghana [5].

The MPXV is divided into two clades: the Congo Basin (central African) clade and the West

African clade. The Congo Basin clade is more virulent, with a fatality rate of 106% compared to

the West African clade, which has a fatality rate of 3.6% [6]. MPXV is a zoonotic virus that can

be transmitted from animal to human and from human to human [7]. Animal-to-human trans-

mission can occur through biting or scratching, consumption of game meat, and direct or indi-

rect contact with body fluids or feces [8]. Transmission from human to human may occur via

large respiratory droplets. Because respiratory droplets can only travel a few feet, prolonged

face-to-face contact is required to spread the virus. MPXV can be transmitted through contact

with an infected person’s body fluids, feces, and urine, as well as infected clothing or bed linen

[1]. The MPXV virus may be released in wastewater during rinsing, showering, or using the toi-

let [9]. The current outbreak of this virus among many gay men or men who have sex with

other men raises the possibility of sexual transmission of the virus [10].

The symptoms of MPXV infection are similar to but milder than those of smallpox [11]

and include fever, chills, headache, muscle aches, and fatigue. The main difference between

this disease’s symptoms and those of smallpox is that MPX causes lymph node swelling

(lymphadenopathy) [1]. The incubation period of MPX is usually 7–14 days, but it can take up

to 21 days [1]. The infected person develops skin rashes that resemble blisters 1 to 3 days

(sometimes more) after the onset of fever. The majority of these rashes begin on the face and

spread to other areas of the body [12]. MPXV infection is diagnosed based on the patient’s his-

tory, clinical symptoms, and laboratory tests such as PCR, ELISA, western blot, and immuno-

histochemistry. The World Health Organization (WHO) recommends using qRT-PCR to

detect viral DNA during acute infection of the MPXV [1].

MPXV belongs to the Poxviridae family’s Orthopoxvirus genus [13]. The morphology of

the MPXV reveals that virions are ovoid or brick-shaped particles enclosed by a geometrically

corrugated lipoprotein outer membrane, as with other orthopoxviruses. The size range of the

MPXV is 200 by 250 nm [14]. The MPXV genome is a linear double-stranded DNA with a

length of about 197 kbp, consisting of hairpin loops, some open reading frames, and tandem

repeats, and both ends contain inverted terminal repeats (ITRs) with a length of 10 kbp [15].

Vaccines have historically been the most effective tool for preventing and even eradicating

infectious diseases. Vaccines can also cause herd effects, which result in protection even

among those who have not been vaccinated, which can be especially useful for low-income

individuals who are unable to access health care [16]. So far, no vaccine has been developed

specifically to protect against MPX infection. The FDA approved ACAM2000 for use against

smallpox in 2007. Since this vaccine is made from a live, replication-competent Vaccinia virus,

there is a risk of serious side effects in vaccinated individuals [17]. On the other hand, Jynneos,

a non-replicating modified Vaccinia Ankara virus vaccine, was approved by the FDA in 2019

for the prevention of both MPX and smallpox. Jynneos does not cause the production of live
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virus in vaccinated individuals, making it safer than ACAM2000, particularly for use in immu-

nocompromised individuals; however, there is limited information on Jynneos’s effectiveness

in preventing MPXV infection in humans [18].

The emergence of new infectious diseases necessitates the development of novel vaccine

design methods. Conventional vaccine development methods are time-consuming and costly,

requiring the cultivation of pathogenic microorganisms and the identification of their immu-

nogenic components [19]. Bioinformatics methods and techniques have expanded exponen-

tially over the years, recently influencing immunological studies. Reverse vaccinology is a

computational approach that uses bioinformatics methods to identify new antigens from

genome sequence information without the need to isolate and culture the pathogen, signifi-

cantly accelerating vaccine development [20]. The design of multi-epitope vaccines using

reverse vaccinology is a new and rapidly growing field. These vaccines have gotten a lot of

attention because of their high specificity, safety, low-cost production, and simultaneous

induction of cellular and humoral immune responses [21, 22]; the major drawback of these

vaccines is their low immunogenicity [23–25], which is why it is suggested that protein-based

adjuvants be included in the structure of these vaccines to solve this problem [21].

This study aims to design a multi-epitope vaccine against the MPXV using a reverse vacci-

nology approach. The cell surface-binding protein and envelope protein A28 homolog were

used as target proteins for epitope prediction in this study. The cell surface-binding protein

and envelope protein A28 homolog are attractive targets for vaccine development for the fol-

lowing reasons: the cell surface-binding protein is responsible for important biological func-

tions of the MPXV, including virion attachment to the host cell and entry of the virus into the

host cell [26]; the envelope protein A28 homolog is also required for virus entry into the host

cell and cell-cell fusion [27]. To improve the vaccine candidate’s immunogenicity, the cholera

toxin B subunit (CTxB) sequence, which has been proven to act as a potential viral adjuvant,

was incorporated into the vaccine construct [28–30]. We hope that the findings of this study

will help in the fight against MPXV by leading to the development of a vaccine.

Materials and methods

The sequential steps used in this study to design and evaluate a multi-epitope vaccine against

the MPXV are depicted in Fig 1.

Retrieval of protein sequences and identification of conserved regions

For each cell surface-binding protein and envelope protein A28 homolog, a hundred

sequences in FASTA format were obtained from the NCBI database (https://www.ncbi.nlm.

nih.gov/). Following the removal of irrelevant sequences, partial sequences, and sequences

with ambiguous characters, multiple sequence alignment (MSA) was done using Clustal

Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) with default parameters [31].

Prediction and screening of T-cell and linear B-cell epitopes

Cytotoxic T lymphocyte (CTL) epitopes play an important role in the elimination of virus-

infected cells, the promotion of cellular immunity, and the reduction of virus levels in the

body [32]. The ProPred-I server (https://webs.iiitd.edu.in/raghava/propred1/index.html) was

used to predict CTL epitopes from the cell surface-binding protein and envelope protein A28

homolog of MPXV. ProPred-I is an online web tool that predicts MHC binding sites in an

antigenic sequence for 47 MHC class-I alleles using a matrix-based approach [33]. The adap-

tive immune response relies heavily on helper T-lymphocytes. They play roles in the activation

of B-cells and the killing of infected target cells, respectively [34]. The ProPred server (https://
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webs.iiitd.edu.in/raghava/propred/index.html) was used to predict the helper T lymphocyte

(HTL) epitopes of the target proteins. ProPred predicts HTL epitopes in an antigen sequence

using quantitative matrices for 51 HLA-DR alleles, which cover more than 90% of MHC Class

II molecules expressed on antigen-presenting cells [35]. During a viral infection, B-cells use

Fig 1. Flowchart depicting the stages required in the in silico design of a multi-epitope vaccine against MPXV. The

process comprises numerous key phases, including target protein sequence retrieval, epitope prediction, vaccine

construction, physicochemical characterization, 3D model prediction, molecular docking to immune receptor, MD

simulation, and in silico cloning.

https://doi.org/10.1371/journal.pone.0286224.g001
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viral epitopes to detect viruses, providing humoral immunity [36, 37]. The ABCpred server

(https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html) was used to identify linear

B lymphocytes (LBL) epitopes. The ABCpred server predicts LBL epitopes with 65.93 percent

accuracy using an artificial neural network (ANN) [38, 39].

The vaccine components, while antigenic and non-toxic, should not cause allergic reac-

tions. As a result, the predicted epitopes were tested for antigenicity, toxicity, and allergenicity.

VaxiJen 2.0 server (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) was used to

calculate the antigenicity of the predicted epitopes. This is the first server for independent pre-

diction of the level of protective antigens, allowing antigen classification based solely on the

physicochemical properties of proteins without the use of sequence alignment [40–42]. In this

study, we chose the virus as the target organism and set the antigenicity threshold at 0.4. The

ToxinPred server (https://webs.iiitd.edu.in/raghava/toxinpred/design.php) was used to predict

the potential toxicity of epitopes. A key feature of the server is that it calculates various physi-

cochemical properties in addition to toxicity [43, 44]. The AllerTOP v. 2.0 server (https://

www.ddg-pharmfac.net/AllerTOP/) was used to predict the allergenicity of the epitopes. To

predict allergenicity, this server employs the auto cross covariance (ACC) transformation of

amino acid sequences into uniform vectors of equal length [45]. The presence of predicted epi-

topes in the target proteins’ conserved regions was then investigated. HTL epitopes that induce

cytokines are important for vaccine development [46]. In addition to the previously mentioned

parameters, HTL epitopes were tested for the production of cytokines such as interferon-

gamma (IFN-γ) and interleukin-4 (IL-4). The two cytokines, IL-4 and IFN, play important

roles in the generation and regulation of immune responses. IFN-γ promotes T helper type 1

responses, while IL-4 promotes T helper type 2 responses [47]. The IFNepitope server (https://

webs.iiitd.edu.in/raghava/ifnepitope/design.php) was used to predict the ability of HTL epi-

topes to induce IFN-γ production [48]. In this study, we chose an SVM-based approach and

an IFN-gamma versus other cytokine model for prediction. Furthermore, the IL4pred server

(https://webs.iiitd.edu.in/raghava/il4pred/design.php) at 0.2 threshold was used to check HTL

epitopes for IL-4 production [49].

Multi-epitope vaccine construction

The final selected CTL, HTL, and LBL epitopes from the cell surface-binding protein and

envelope protein A28 homolog were linked to each other using appropriate linkers to design a

multi-epitope vaccine construct. The CTL, HTL, and LBL epitopes were connected using

AAY, GGGGS, and KK linkers, respectively. Furthermore, to enhance the immunogenicity of

the designed vaccine, the CTxB (accession number: P01556) was added as an adjuvant to the

N-terminal of the vaccine construct via an EAAAK linker.

Population coverage analysis

The frequency of various HLA alleles varies by geography and ethnic background [50, 51]. The

IEDB population coverage analysis tool (http://tools.iedb.org/population/) was used to assess

the population coverage of the vaccine candidate [52]. We used the selected CTL and HTL epi-

topes, as well as their MHC alleles, separately and in combination for this purpose. We addi-

tionally emphasized the total coverage of selected alleles across multiple continents.

Prediction of antigenicity, allergenicity, solubility, and physicochemical

properties of the vaccine construct

The antigenicity of the vaccine construct was predicted by the VaxiJen 2.0 server (threshold

value of 0.4) and the ANTIGENpro server (http://scratch.proteomics.ics.uci.edu/).
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ANTIGENpro predictions are sequence-based, alignment-free, and pathogen-independent.

To make predictions, this server employs a two-stage architecture based on multiple represen-

tations of the primary sequence and five machine learning algorithms [53]. The AllerTOP v.

2.0 server was used to predict the allergenicity of the proposed vaccine. To test the solubility of

the multi-epitope vaccine, the Protein-Sol server (https://protein-sol.manchester.ac.uk/) was

used. The population average for the experimental dataset in this server is 0.45, so if the solu-

bility value of a protein sequence is predicted to be greater than 0.45, it indicates that it has a

higher solubility than the average soluble protein of Escherichia coli (E. coli) from the experi-

mental solubility dataset [54]. Furthermore, the Expasy server’s ProtParam tool (https://web.

expasy.org/protparam/) was used to predict various physicochemical properties of the final

vaccine construct, including the number of amino acids, molecular weight, theoretical pI, half-

life, instability index, aliphatic index, and grand average of hydropathicity (GRAVY) [55].

3D structure modeling, refinement, and validation of the vaccine candidate

The I-TASSER server (https://zhanggroup.org/I-TASSER/) was used to predict the three-

dimensional structure of the proposed vaccine. This server is a web-based resource for predict-

ing protein structure and annotating structure-based functions. I-TASSER first recognizes

structural templates from the PDB using multiple threading alignment approaches. Iterative

fragment assembly simulations are then used to build full-length structural models. Finally,

functional insights are obtained by matching predicted structure models with known proteins

in function databases [56–58]. The predicted 3D model was refined to improve structural qual-

ity using the GalaxyRefine server (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=

REFINEO). CASP10 has successfully tested the GalaxyRefine server’s refining approach. The

method first reconstructs side chains, then performs side chain repacking and overall structure

relaxation using molecular dynamics simulation [59]. Validation is an important step in the

modeling of proteins that includes evaluating the quality of the crude and refined models. We

used the ZLab server (https://zlab.umassmed.edu/bu/rama/) and the ProSA-web server

(https://prosa.services.came.sbg.ac.at/prosa.php) to assess the quality of the initial and refined

models. The Ramachandran plot is generated by the Zlab server and reveals the two-dimen-

sional distribution of the torsion angles—phi (φ) and psi (ψ)—of the amino acids contained in

the protein backbone [60, 61]. The ProSA-web server computes an overall quality score for the

protein structure. If this score falls outside of the normal range for native proteins, the struc-

ture most likely contains errors [62, 63].

Identification of discontinuous B-cell epitopes

The ElliPro tool from the IEDB server (http://tools.iedb.org/ellipro/) was used to predict dis-

continuous B-cell epitopes in the vaccine’s refined 3D model. ElliPro predicts and visualizes

antibody epitopes in a given protein structure using Thornton’s method, a residue clustering

algorithm, the MODELLER program, and the Jmol viewer [64].

Disulfide engineering of the multi-epitope vaccine

Disulfide engineering is a method for forming disulfide bonds in protein structures. Disulfide

bonds promote the stability of the folded protein structure by decreasing conformational

entropy and increasing the free energy of the denatured state [65]. The Disulfide by Design

2.13 server (http://cptweb.cpt.wayne.edu/DbD2/) was used to identify residue pairs in the vac-

cine construct that had the potential to mutate to cysteine and form a disulfide bond [66].
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Molecular docking of vaccine construct with TLR4

Molecular docking is an in silico method for predicting the binding affinity and orientation of

a receptor and its ligand [67]. The Cluspro 2.0 server (https://cluspro.bu.edu/login.php) was

used to perform molecular docking between the designed vaccine and Toll-Like receptor 4

(TLR4) (PDB ID: 4G8A). This server runs the following three computational steps to perform

molecular docking: (1) rigid body docking is carried out using billions of conformations as

samples, (2) clustering of the 1000 lowest energy structures using root-mean-square deviation

(RMSD) to find the largest clusters that will represent the most likely models of the complex,

and (3) chosen structures are refined using energy minimization [68–71]. The LigPlot software

was used to generate schematic diagrams of bonds formed between vaccine construct residues

and TLR4 [72].

Molecular dynamics simulation of the TLR4-vaccine complex

Molecular dynamics (MD) simulation is a powerful computational method for determining

the motions of proteins at the atomic scale over time, based on a general model of the physics

governing interatomic interactions [73]. In this study, we used the GROMACS 2019.6 software

to run an MD simulation [74]. The selected complex from the molecular docking step was

used as input for the MD simulation process. The input structure was prepared using the

ff99SB force field. This structure was solved in a cubic box of TIP3P water molecules using the

gmx solvate software, and then Na+ and Cl− ions were introduced to the protein’s surface to

neutralize the total charge of the system. The system’s energy was minimized using the steepest

descent algorithm. The system’s temperature was gradually increased from 0 to 300 K for 200

ps at constant volume, and the system was then brought to equilibrium at constant pressure.

The MD simulation was run at 300 K and for 40 ns.

Calculation of binding free energy

The MMPBSA method and the gmx MMPBSA program were used to calculate the binding

free energies for the vaccine, TLR4, and the vaccine-TLR4 complex. In this method, Poisson-

Boltzmann (PB) and generalized Born (GB) models were used to calculate the binding free

energy [75], and 1000 frames at regular intervals were extracted from the simulation trajectory

and analyzed.

Codon optimization and in silico cloning of the multi-epitope vaccine

The codon optimization approach can improve the expression efficiency of foreign genes in

the host [76]. The Java Codon Adaptation Tool (JCat) (http://www.jcat.de/) was used to per-

form back translation, codon optimization, and determine the vaccine sequence’s codon adap-

tation index (CAI) value and GC content [77]. In this analysis, the protein sequence of the

designed vaccine was submitted to this server as input, and E. coli (strain K12) was chosen as

the host organism [46]. Three additional options were selected to avoid the rho-independent

transcription termination, prokaryote ribosome binding site, and cleavage sites of restriction

enzymes. Following that, the HindIII and BamHI restriction enzyme recognition sequences

were introduced to the N- and C-terminal of the vaccine sequence, respectively. The sequence

was then inserted into the expression pET28a (+) vector using the SnapGene 3.2. 1sofware.

Ethics statement

The ethical committee of Shahrekord University of Medical Sciences approved this study with

the number: IR.SKUMS.REC.1401.065.
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Results

Retrieval of protein sequences and identification of conserved regions

A total of seven appropriate sequences for the envelope protein A28 homolog and eighteen

suitable sequences for the cell surface-binding protein were selected (S1 and S2 Data). The

Clustal Omega then performed MSA to identify the conserved regions of target proteins. The

conserved regions were selected based on the protein sequence’s lack of gaps and the highest

number of similar amino acids.

Prediction and screening of T-cell and linear B-cell epitopes

Using the ProPred-I server, 78 CTL epitopes for the cell surface-binding protein and 56 CTL

epitopes for the envelope protein A28 homolog were predicted. Among them, 12 CTL epitopes

of the cell surface-binding protein and 21 CTL epitopes of the envelope protein A28 homolog

that was capable of binding to at least three MHC class-I alleles were tested for antigenicity,

toxicity, and allergenicity using the VaxiJen v2.0, ToxinPred, and AllerTOP v. 2.0 servers,

respectively. The screened epitopes were then checked for their presence in the conserved

regions of the target proteins. Finally, 2 CTL epitopes for the cell surface-binding protein

(S1 Table) and 7 CTL epitopes for the envelope protein A28 homolog (S1 and S2 Tables) were

chosen. Here, we predicted 38 HTL epitopes for the cell surface-binding protein and 25 HTL

epitopes for the envelope protein A28 homolog using the ProPred server. Antigenicity, non-

allergenicity, toxicity, presence in conserved regions, and IFN-γ and IL-4 production were

assessed for 20 HTL epitopes of the cell surface-binding protein and 16 HTL epitopes of the

envelope protein A28 homolog that could bind to at least three MHC class-II alleles. In total, 3

HTL epitopes were chosen for each target protein based on the mentioned parameters (S3 and

S4 Tables). Moreover, the ABCpred server predicted 19 and 12 LBL epitopes for the cell sur-

face-binding protein and envelope protein A28 homolog, respectively. After evaluation, 4 LBL

epitopes for the cell surface-binding protein and 1 LBL epitope for the envelope protein A28

homolog with a score of 0.8 or higher were found to be antigenic, non-allergenic, and non-

toxic in the conserved regions (S5 and S6 Tables).

Multi-epitope vaccine construction

Overlapping epitopes were removed to avoid epitope duplication in the vaccine construct’s lin-

ear structure. The final vaccine structure consisted of 1 adjuvant (CTxB), 7 CTL, 4 HTL, and 5

LBL epitopes linked together with EAAAK, AAY, GGGGS, and KK linkers, in that order

(Fig 2). The epitopes that constituted the vaccine’s structure are listed in Table 1.

Population coverage analysis

To estimate population coverage of selected CTL and HTL epitopes, the IEDB population cov-

erage analysis tool was employed. The CTL and HTL epitopes in the multi-epitope vaccine can

cover 87.67% and 64.07% of the world population, respectively. The population coverage for

combined CTL and HTL epitopes was estimated to be 95.57%. The population coverage of

CTL and HTL epitopes when used in combination is highest in Europe (98.22%), followed by

North America (96.66%), West Indies (95.48%), East Asia (94.37%), North Africa (94.24%),

South America (94.13%), East Africa (93.5%), South Asia (92.55%), Central Africa (92.43%),

West Africa (90.34%), Southwest Asia (90.15%), South Africa (84.98%), Northeast Asia

(81.99%), Southeast Asia (80.06%), and Oceania (75.54%) (Fig 3).
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Prediction of antigenicity, allergenicity, solubility, and physicochemical

properties of the vaccine construct

The VaxiJen 2.0 server predicted the antigenicity of the designed vaccine to be 0.6355 with a

virus model and 0.6107 with a bacteria model at a threshold of 0.4, while the ANTIGENpro

server predicted the probability of antigenicity of the vaccine to be 0.774680. The vaccine con-

struct was identified as non-allergen by the AllerTOP v.2.0 server. Furthermore, the Protein-

Sol server predicted that our proposed vaccine was soluble, with a score of 0.455. The Prot-

Param tool predicted the physiochemical characteristics of the vaccine candidate, which are

displayed in Table 2.

3D structure modeling, refinement, and validation of the vaccine candidate

I-TASSER server predicted the five 3D structure models of our vaccine construct using several

threading templates (PDB Hit: 1LTR, 7P1A, 7LVB, 4L6T, 7QQK, 3KIG, 7Q0D, and 5ELB).

The Z-score values ranged from 1 to 8.82, revealing that all of the threading templates were

properly aligned; a Z-score greater than 1 indicates good alignment, and vice versa. Models

1–5 had C-scores of -1.29, -2.18, -2.45, -2.24, and -4.02, respectively. The C-score typically

ranges from -5 to 2, with a higher C-score indicating a more confident model. As a result, we

chose model 1 with a C-score of -1.29 for the refinement process (Fig 4). The GalaxyRefine

server was used to refine the selected model, generating five refined models with different

quality assessment parameters (Table 3). Higher GDT-HA and Rama favored values, as well as

lower RMSD, MolProbity, Clash score, and Poor rotamers values, indicate that the models are

of higher quality [78]. Model 2 was chosen for further evaluation based on the parameters

Fig 2. A schematic representation of the multi-epitope vaccine construct against MPXV. It includes 376 amino acids, 124 of

which are adjuvant (grey). CTL, HTL, and LBL epitopes were represented by blue, green, and pink, respectively.

https://doi.org/10.1371/journal.pone.0286224.g002

Table 1. A list of the epitopes used in the proposed multi-epitope vaccine.

Protein CTL epitopes HTL epitopes LBL epitopes

Cell surface-binding protein RLKTLDIHY
FAIIAIVFV

YVLSTIHIY CFSYYQKYIEGNKTFAIIAI
HLIDVYKYSGEINLVHWNKK
NVYFQKIVNQLDSIRSANMS
NLVHWNKKKYSSYEEAKKHD

Envelope protein A28 homolog ALDRRVQDV
SLSIFFIVV
SIFGFQAEV
ISDVKQKWR
KEFNATHAA

FTFSDVINI
VKQKWRCVV
VVATAAVCL

FSDVINIDIYNPCIAPNINN

https://doi.org/10.1371/journal.pone.0286224.t001
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mentioned above (Fig 4). The Zlab server and the ProSA-web server were used to analyze the

overall quality of the vaccine construct’s three-dimensional structure before and after refining.

The Ramachandran plot analysis of the initial model revealed that 83.188%, 11.304%, and

5.507% of residues were present in the highly preferred, preferred, and questionable regions,

Fig 3. Population coverage of selected CTL and HTL epitopes and their corresponding MHC alleles separately and in combination.

https://doi.org/10.1371/journal.pone.0286224.g003

Table 2. The physicochemical properties of a multi-epitope vaccine.

Parameter Value

Number of amino

acids

376

Molecular weight 41.97 kDa

Theoretical pI 9.48

Half-life 30 hours (mammalian reticulocytes, in vitro) >20 hours (yeast, in vivo) >10 hours (E. coli,
in vivo)

Instability index 38.70

Aliphatic index 91.12

GRAVY -0.044

https://doi.org/10.1371/journal.pone.0286224.t002
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respectively (Fig 5A), whereas, in the refined model, these values changed to 94.783%, 4.638%,

and 0.580%, respectively (Fig 5B). The ProSA web server calculated the z-scores for the initial

model to be -3.48 (Fig 5C), which changed to -3.67 after refinement (Fig 5D).

Identification of discontinuous B-cell epitopes

The ElliPro server predicted eight discontinuous B-cell epitopes with scores greater than 0.5 in

the vaccine construct (Fig 6). The predicted epitopes ranged in size from 5 to 79 amino acids

(Table 4).

Disulfide engineering of the multi-epitope vaccine

The Disulfide by Design 2.13 server identified 24 residue pairs in the vaccine construct’s

refined model that could form a disulfide bond (Table 5). The χ3 peaks in 1505 native disulfide

bonds in 331 non-homologous proteins have been observed at -87 and +97 degrees and

approximately 90% of naturally formed disulfide bonds have an energy value of less than 2.2

Fig 4. The initial 3D structure of the multi-epitope vaccine is illustrated in green, and the refined 3D structure is

presented in violet. To compare the initial and refined models, the structures were superimposed.

https://doi.org/10.1371/journal.pone.0286224.g004

Table 3. The quality parameter scores of the models generated by the GalaxyRefine server.

Model GDT-HA RMSD MolProbity Clash score Poor rotamers Rama favored

Initial 1.0000 0.000 3.282 19.5 13.6 70.6

MODEL 1 0.9162 0.501 2.379 19.5 0.0 88.2

MODEL 2 0.9202 0.509 2.360 11.8 0.6 89.6

MODEL 3 0.9122 0.514 2.438 19.5 1.3 89.0

MODEL 4 0.9189 0.525 2.429 18.1 1.3 88.5

MODEL 5 0.9169 0.518 2.431 19.5 1.3 89.3

https://doi.org/10.1371/journal.pone.0286224.t003
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kcal/mol [66]. Based on a χ3 angle between -87˚ and +97˚ and an energy value less than 2.2

kcal/mol, only three residue pairs were chosen for disulfide bond formation. These residue

pairs were LYS 290-ALA 306, PHE 146-LYS 341, and SER 345-ALA 350 (Fig 7).

Molecular docking of vaccine construct with TLR4

Molecular docking between the vaccine and TLR4 was done using the Cluspro 2.0 server. This

server generated 11 clusters and calculated the number of members and the corresponding

lowest energy for each cluster. The comparison of all clusters revealed that cluster 1 has the

strongest interaction energy (the most negative) with the lowest energy of -999.8 kcal/mol and

29 members (Fig 8). The LigPlot tool illustrated the bonds formed between the amino acids in

the vaccine and TLR4 (Fig 9). The amino acids involved in hydrogen bonds, as well as their

lengths, are listed in Tables 6 and 7.

Fig 5. Comparing the quality of the initial and refined models of the vaccine construct’s three-dimensional

structure using the Zlab server and the ProSA-web server. (A) The Ramachandran plot analysis shows that in the

initial model, 83.188%, 11.304%, and 5.507% of the residues are found in the highly preferred (green crosses), preferred

(brown triangles), and questionable (red circles) regions, respectively; (B) whereas in the refined model, 94.783%,

4.638%, and 0.580% of the residues are found in the highly preferred, preferred, and questionable regions, respectively.

(C) The initial model has a Z-score of -3.48, (D) while the refined model has a Z-score of -3.67.

https://doi.org/10.1371/journal.pone.0286224.g005
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Molecular dynamics simulation of the TLR4-vaccine complex

The MD simulation results obtained from GROMACS 2019.6 software were analyzed as

RMSD and RMSF using gmx rms and gmx rmsf modules, respectively. The RMSD parameter

of the structures formed during MD simulation in the time dimension is an appropriate and

Fig 6. The discontinuous B-cell epitopes in the multi-epitope vaccine 3D model (A-H). The vaccine construct is depicted by gray sticks, while the

discontinuous B-cell epitopes are shown by cyan spheres. (A) 8 residues with a score of 0.948; (B) 11 residues with a score of 0.833; (C) 6 residues with a score

of 0.744; (D) 73 residues with a score of 0.732; (E) 16 residues with a score of 0.646; (F) 79 residues with a score of 0.646; (G) 6 residues with a score of 0.562;

(H) 5 residues with a score of 0.515.

https://doi.org/10.1371/journal.pone.0286224.g006

Table 4. A list of the discontinuous B-cell epitopes predicted by the ElliPro server.

No. Residues Number of

residues

Score

1 A:V217, A:L218, A:S219, A:T220, A:I221, A:H222, A:I223, A:Y224 8 0.948

2 A:V73, A:P74, A:G75, A:S76, A:Q77, A:H78, A:I79, A:D80, A:S81, A:Q82, A:K83 11 0.833

3 A:K84, A:A85, A:I86, A:E87, A:R88, A:K90 6 0.744

4 A:M1, A:I2, A:K3, A:L4, A:K5, A:F6, A:G7, A:V8, A:F9, A:V12, A:L13, A:L14, A:

S15, A:S16, A:A17, A:Y18, A:A19, A:H20, A:G21, A:T22, A:P23, A:Q24, A:N25, A:

I26, A:T27, A:D28, A:L29, A:C30, A:A31, A:E32, A:Y33, A:H34, A:N35, A:T36, A:

Q37, A:I38, A:Y39, A:T40, A:L41, A:N42, A:D43, A:K44, A:S47, A:Y48, A:E50, A:

S51, A:L52, A:A53, A:G54, A:K55, A:R56, A:E57, A:M58, A:A59, A:I60, A:I61, A:

T62, A:K356, A:Y362, A:K363, A:Y364, A:S365, A:G366, A:E367, A:I368, A:N369,

A:L370, A:V371, A:H372, A:W373, A:N374, A:K375, A:K376

73 0.732

5 A:G133, A:F134, A:Q135, A:A136, A:E137, A:V169, A:K170, A:Q171, A:K172, A:

R174, A:A175, A:A176, A:Y177, A:G301, A:K303, A:F305

16 0.646

6 A:V149, A:V150, A:A151, A:A152, A:Y153, A:A154, A:R158, A:L191, A:K192, A:

T193, A:L194, A:D195, A:I196, A:Y198, A:A199, A:A200, A:Y201, A:F202, A:G225,

A:G226, A:G227, A:G228, A:S229, A:F230, A:T231, A:F232, A:S233, A:D234, A:

V235, A:N237, A:G240, A:G241, A:G242, A:S243, A:V244, A:K245, A:K247, A:

W248, A:R249, A:C250, A:V251, A:V252, A:G254, A:G255, A:V258, A:V259, A:

A260, A:T261, A:A262, A:K267, A:F269, A:S270, A:D271, A:V272, A:I273, A:N274,

A:I275, A:D276, A:I277, A:Y278, A:Y294, A:I308, A:A309, A:I310, A:K311, A:K312,

A:N313, A:V314, A:Y315, A:F316, A:K318, A:S328, A:A329, A:N330, A:M331, A:

S332, A:K333, A:K334, A:N335

79 0.646

7 A:G212, A:G213, A:G214, A:S215, A:Y216, A:Y298 6 0.562

8 A:H357, A:L358, A:I359, A:D360, A:V361 5 0.515

https://doi.org/10.1371/journal.pone.0286224.t004
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widely used measure for assessing the structural stability of the protein [79]. The RMSD plot of

the TLR4 indicated values in the 0.16–0.52 nm range. The vaccine’s RMSD plot showed an

upward trend at the beginning of the simulation, peaking at 0.84 nm after about 33 ns and fluc-

tuating slightly until the simulation ended (Fig 10A). RMSF is a calculation of protein structure

Table 5. List of residue pairs capable of forming disulfide bonds in the vaccine construct.

Residue 1 Residue 2 Bond

Chain Seq AA Chain Seq AA χ3 Energy (kcal/mol) S B-factor

A 4 LEU A 39 TYR 74.49 6.7 0

A 4 LEU A 62 THR -94.4 6.76 0

A 17 ALA A 22 THR -88.6 2.53 0

A 63 PHE A 68 ILE -108.72 4.43 0

A 78 HIS A 82 GLN 78.35 4.41 0

A 110 ASN A 348 GLU -79.67 3.31 0

A 114 PRO A 119 ALA 75.29 5.94 0

A 120 ILE A 211 GLY 125.8 2.4 0

A 123 ALA A 350 ALA -72.61 4.31 0

A 124 ASN A 345 SER -104.43 5.36 0

A 125 GLU A 144 SER -81.96 4.36 0

A 146 PHE A 341 LYS 101.7 1.74 0

A 152 ALA A 158 ARG -79 2.72 0

A 179 GLU A 302 ASN 84.18 6.41 0

A 183 THR A 211 GLY -65.2 5.17 0

A 207 ILE A 293 SER 111.2 4.16 0

A 230 PHE A 259 VAL -79.15 4.45 0

A 240 GLY A 321 ASN -63.48 4.1 0

A 257 SER A 292 PHE 116.47 2.67 0

A 284 PRO A 324 ASP -86.41 3.44 0

A 287 ASN A 320 VAL 88.4 2.57 0

A 290 LYS A 306 ALA 102.78 0.36 0

A 345 SER A 350 ALA -72.56 2.02 0

A 351 LYS A 354 ASP 126.83 5.21 0

https://doi.org/10.1371/journal.pone.0286224.t005

Fig 7. The disulfide engineering of the multi-epitope vaccine’s 3D structure. (A) The wild type; (B) The mutant type

(the three introduced disulfide bonds are shown by red sticks).

https://doi.org/10.1371/journal.pone.0286224.g007
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residue fluctuation during an MD simulation. Because the two chains A and B from the TLR4

have the same sequence, the RMSF plot of these two chains is shown to more accurately study

the effect of the vaccine construct binding on the flexibility of chain A. The residues at both

ends of chain A have shown less flexibility than chain B, while the flexibility of other regions in

the two chains is the same and does not show a noticeable change. The vaccine’s RMSF plot

revealed that the majority of the vaccine’s residues were highly flexible (Fig 10B).

Calculation of binding free energy

The binding free energies of TLR4, vaccine, and TLR4-vaccine complex were calculated using

the MM-GBSA and MM-PBSA methods. In the MM-PBSA analysis, the total binding free

energy was -53718.65 kcal/mol for TLR4, -33558.07 kcal/mol for the vaccine, and -87411.4

kcal/mol for the TLR4-vaccine complex. Moreover, the total binding free energy in the

MM-GBSA was -54463.47 kcal/mol for TLR4, -34327.63 kcal/mol for the vaccine, and

-88867.65 kcal/mol for the TLR4-vaccine complex. According to the calculated values, the gas

phase energy contribution was equal and substantial in both methods. The contribution of

each energy component is shown in Table 8.

Codon optimization and in silico cloning of the multi-epitope vaccine

The vaccine protein sequence was reverse translated into a nucleotide sequence with a length

of 1128 bp using the JCat server. This server estimated the optimized sequence’s GC content to

be 45.30% and its CIA value to be 0.97. The vaccine nucleotide sequence was then in silico
cloned into the multiple cloning site (MCS) of pET28a (+) between HindIII (173) and BamHI
(1307) restriction sites, resulting in a recombinant plasmid with a length of 6478 bp (Fig 11).

Fig 8. The docked complex of the vaccine and TLR4. The vaccine construct is shown in surface form, while TLR4 is

shown in cartoon form.

https://doi.org/10.1371/journal.pone.0286224.g008
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Discussion

Despite the fact that the MPXV is endemic in West and Central African countries, outbreaks

in other countries with no known epidemiological links to West or Central Africa have

occurred [80]. Because the MPXV is so closely related to smallpox, the smallpox vaccine is at

least 85% effective in preventing MPX, but a vaccine that specifically targets the MPXV is

needed [81]. The multi-epitope vaccines have a high potential to elicit humoral and cellular

immune responses; these vaccines are composed of epitopes rather than large proteins or

whole genomes, protecting the host from excessive antigenic load and allergic reactions [82].

In recent years, a large number of multi-epitope vaccines against various pathogens have been

designed, including human papillomavirus (HPVs) [83], Zika virus [84, 85], Ebola virus [86,

87], SARS-CoV-2 [88–92], Klebsiella pneumonia [93], Helicobacter pylori [79, 94], Staphylococ-
cus aureus [95], Leishmania [96, 97], and Cystic echinococcosis [98].

Several studies on multi-epitope vaccine design against MPXV have been carried out so far.

In the study conducted by Aiman et al. (2022), selected epitopes from MPXVgp167,

MPXVgp028, and MPXVgp105 proteins along with 4 different adjuvants (HBHA protein, β-

defensins, 50S ribosomal protein L7/L12 adjuvants, and HBHA conserved peptide sequences)

were included in four vaccine constructs [99]. In the study of Ullah et al. (2022), to design a

multi-epitope vaccine against MPXV, three extracellular proteins, including a cupin domain-

containing protein, ABC transporter ATP-binding protein, and DUF192 domain-containing

Fig 9. The interaction map of the vaccine construct with chains A and C from TLR4. Hydrogen bonds are shown by dashed (green) lines

with the length of the bond printed in the middle.

https://doi.org/10.1371/journal.pone.0286224.g009
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protein were selected as epitope prediction targets, as well as the CTxB was used as an adjuvant

in the vaccine construct [100]. The multi-epitope vaccine designed by Shantier et al. (2022)

included T-cell and B-cell epitopes selected from the cell surface-binding proteins, as well as

Table 6. List of residues involved in the formation of hydrogen bonds between TLR4 (chains A) and the vaccine.

TLR4 (A) Vaccine (E) Bond Length (Å)

Gln599 His353 2.88

Lys352 2.66 2.7

Arg598 Lys352 2.7

Asn25 2.73

Leu601 Lys352 2.45

His456 Ser219 2.95

Glu474 Thr261 2.87

Ser455 Lys297 2.43

Gln505 Ser219 2.94

Val217 2.88

Asp453 Lys297 2.85

Asp502 Lys297 2.75

Lys477 Tyr294 2.64

Asn526 Ser215 2.97

Lys153 Gln322 2.68

Asn575 Ser215 2.92

Arg606 Tyr216 2.65 2.97

Thr577 Tyr216 2.63

Arg355 Asn313 2.85 2.67

Asp405 Gly227 2.95

Tyr403 Gly228 2.96

Glu287 Lys312 2.78

Ser311 2.62

Ser312 2.77

His229 Lys311 2.83

His256 2.66

Arg382 Gly225 2.66

Glu27 Arg88 2.87

Glu31 2.84

Glu31 Arg94 2.75

Asp60 Gln135 2.85

https://doi.org/10.1371/journal.pone.0286224.t006

Table 7. List of residues involved in the formation of hydrogen bonds between TLR4 (chain C) and the vaccine.

TLR4 (C) Vaccine (E) Bond Length (Å)

Lys91 Tyr224 2.58

Lys89 His222 2.75

Lys72 Trp173 2.68

Glu137 2.53

Ser141 Glu137 2.69

Lys170 2.64

Glu143 Lys178 2.94 2.69

Glu144 Lys178 2.45

https://doi.org/10.1371/journal.pone.0286224.t007
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RS09 and PADRE adjuvants attached to the vaccine construct’s N-terminal to increase immu-

nogenicity [101]. Waqas et al. (2023) assembled the best B- and T-cell epitopes obtained from

A35R, A43R, B16R, B21R, C4L, E8L, E13L, E21R, and G10R proteins into a vaccine construct

and used RpfE sequence as an adjuvant to boost vaccine immunogenicity [102]. In the study

by Zaib et al. (2023), two vaccine constructs were developed, one containing B- and T-cell epi-

topes from the COP-B7R protein and the other containing B- and T-cell epitopes from the

COP-A44L protein. The 50 S ribosomal L7/L12 was used as an adjuvant at the N-terminal of

both vaccine constructs [103]. Tan et al. (2023) designed five vaccine constructs based on B-

and T-cell epitopes found in A35R, B6R, and H3L proteins. All other components of these

constructs were identical except for the adjuvant, and five distinct adjuvants (50S ribosomal

Fig 10. The MD simulation of the vaccine-TLR4 docked complex in a period of 40 ns. (A) The RMSD plot of TLR4 exhibits a consistent trend during the

simulation period, while the vaccine’s RMSD plot begins with an infinitesimal variation and becomes stable at about 33 ns. (B) The RMSF plot shows that both

TLR4 chains A and B show very mild fluctuations, while the vaccine construct shows high fluctuations.

https://doi.org/10.1371/journal.pone.0286224.g010

Table 8. Binding free energies of TLR4, vaccine, and TLR4-vaccine complex. All values are given in kcal/mol.

Energy component TLR4 Vaccine TLR4-Vaccine Complex

MM-PBSA

Van der Waals -4965.78 -2516.34 -7689.16

Electrostatic -41692.74 -25030.73 -70148.83

Polar solvation -7190.2 -6126.71 -9790.73

Non-polar solvation 130.07 115.71 217.32

Delta Gas phase -46658.52 -27547.07 -77837.99

Delta Solvation phase -7060.13 -6011 -9573.41

Delta Total -53718.65 -33558.07 -87411.4

MM-GBSA

Van der Waals -4965.78 -2516.34 -7689.16

Electrostatic -41692.74 -25030.73 -70148.83

Polar solvation -8000.85 -6948.02 -11364.64

Non-polar solvation 195.9 167.46 334.98

Delta Gas phase -46658.52 -27547.07 -77837.99

Delta Solvation phase -7804.95 -6780.56 -11029.66

Delta Total -54463.47 -34327.63 -88867.65

https://doi.org/10.1371/journal.pone.0286224.t008
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protein L7/L12, b-defensin, LT-IIC, CTB, RS09) resulted in five different vaccine constructs

[104]. In the study of Jin, et al. (2023) a vaccine construct was designed that included B- and

T-cell epitopes from B13R, Abundant component of virosome, Bifunctional zinc finger-like

protein/E, Ankyrin, DNA-directed RNA polymerase subunit, A18L, Bifunctional hemaggluti-

nin/type-I membrane, IMV membrane protein, Interleukin-1 receptor antagonist-like protein,

and CC-type chemokine binding protein. They also appended a beta-defensin-2 sequence as

an adjuvant to the vaccine construct’s N-terminal [105]. In comparison to published articles,

our study is unique in that it combined the epitopes of the cell surface-binding protein and

envelope protein A28 homolog for the first time with CTxB (adjuvant) to construct a multi-

epitope vaccine against MPXV.

Because the cell surface-binding protein and envelope protein A28 homolog are important

for virus infectivity, we considered them for epitope prediction [106]. Epitope mapping of the

aforementioned proteins was performed, and epitopes interacting with at least three MHC

class-I and MHC class-II alleles were chosen for further screening. We planned to design a

universal multi-epitope vaccine against the MPXV. For this purpose, in addition to evaluating

Fig 11. In silico cloning. The sequence of the multi-epitope vaccine (shown in red) surrounded between HindIII (173) and BamHI (1307) into the pET-28a

(+) expression vector (shown in black).

https://doi.org/10.1371/journal.pone.0286224.g011
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epitopes for parameters such as antigenicity, toxicity, and allergenicity, as well as induction of

IFN-γ and IL-4 (only for HTL epitopes), we also considered their presence in conserved

regions from all virus strains available in NCBI. The multi-epitope vaccine was constructed by

assembling the selected BCL, HTL, and CTL epitopes and appropriate linkers as well as the

CTxB (as adjuvant). The CTxB is a non-toxic component of cholera toxin that has a high affin-

ity for the monosialotetrahexosylganglioside (GM1) receptor, which is found in many cell

types, including gut epithelial cells, antigen-presenting cells, macrophages, dendritic cells, and

B cells [107]. As a result, CTxB has been widely employed as an adjuvant in vaccine design to

boost immune responses [108–110]. In this study, like many other studies, the AAY linker was

used to connect CTL epitopes [85, 111, 112], the GGGGS linker to connect HTL epitopes [113,

114], the KK linker to connect LBL epitopes [115–117], and the EAAAK linker to connect

adjuvant [116, 118, 119]. The AAY linkers help to increase epitope presentation while decreas-

ing the formation of junctional epitopes [120]. The GGGGS linker, which is made up of small

or polar amino acids like Gly and Ser, provides good flexibility and solubility and is an excel-

lent choice for fusion protein domains that require specific movements or interactions [121].

The KK linker is a target for cathepsin B, a key protease in antigen processing. This linker

helps in the reduction of junctional immunogenicity by preventing antibody induction for the

peptide sequence formed when the individual epitopes are linearly connected [120]. The

EAAAK linker is a rigid alpha-helix-forming peptide linker that functions as a domain spacer

in fusion proteins [122].

According to population coverage analysis, the vaccine construct covers 95.57% of the

worldwide population, while the vaccine designed in study of Waqas et al. covers 93.62% of

the worldwide population [102]. The high antigenicity scores predicted by the VaxiJen 2.0

server and the ANTIGENpro server showed that the proposed vaccine is effective enough to

elicit strong immune responses in the body. Furthermore, the vaccine construct’s non-allergic

behavior was validated using the AllerTOP v. 2.0 server. The vaccine has good solubility,

according to the Protein-Sol server’s solubility score (0.455), which was higher than the thresh-

old (0.45). The solubility score of the vaccine designed in the study of Shantier et al. (2022) was

lower than the threshold, so in terms of solubility, the vaccine designed in the present study is

preferable to this vaccine [101]. Evaluating the physicochemical properties of the vaccine

structure provides us with relative knowledge of the vaccine’s physicochemical properties,

which facilitates in vitro and in vivo vaccine evaluations. The vaccine construct had a molecu-

lar weight of 41.97 kDa, which is ideal because proteins with a molecular weight of less than

110 kDa are easier and faster to express and purify than heavier proteins [95]. The proposed

vaccine’s theoretical pI was determined to be 9.48, implying its alkaline nature. Our vaccine

candidate’s half-life was estimated to be 30 hours in mammalian reticulocytes, more than 20

hours in yeast, and more than 10 hours in E.coli, indicating that the vaccine is exposed to the

immune system for an extended period of time [123]. In terms of half-life, our vaccine outper-

formed the vaccine designed by Waqas et al., which had a half-life of 7.2 hours in mammalian

reticulocytes (in vitro) [102]. The half-life of our vaccine matched the half-life of the vaccine

construct designed in the study by Ullah et al. [100] and Shantier et al. [101]. The vaccine

instability index was determined to be 38.70, which is less than 40, indicating that the vaccine

candidate is stable under standard conditions [123]. The vaccine’s aliphatic index was com-

puted to be 91.12, indicating that the vaccine is stable over a wide temperature range [124].

The aliphatic index value of this vaccine was higher than the aliphatic index of the vaccine

designed in studies by Waqas et al. (74.63) [102], Zaib et al. (79.90) [103], and Shantier et al.
(65.75) [101]. The GRAVY score of the multi-epitope vaccine was calculated to be -0.044; this

parameter indicates hydrophilicity and is related to protein solubility, and its negative value

indicates that the vaccine interacts better with water molecules [32, 125].
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After modeling, the vaccine’s 3D structure was refined to optimize its quality and bring it

closer to experimental accuracy. The Ramachandran plot revealed that in the initial model,

83.188% of the residues were present in the highly preferred region, while after refinement, the

number of residues in this region increased to 94.783%. The z-scores for the initial and refined

models were calculated by the ProSA web server as -3.48 and -3.76, respectively. A higher neg-

ative value of this parameter indicates that the structure is of higher quality [22]. Humoral

immunity along with cellular immunity, is critical in fighting pathogens in the body [126]. The

B-cells which produce antibodies are responsible for the body’s humoral immunity [127]. Dis-

continuous B-cell epitopes play a key role in the antigen–antibody response [128]. Our vaccine

candidate has the potential to induce robust humoral immunity because it has a large number

of discontinuous B-cell epitopes.

Various Toll-like receptors (TLRs) are involved in the initial interaction of host cells with

invading viruses, regulate virus replication and host responses, and ultimately affect virus path-

ogenesis [129]. Hutchens et al. revealed that in vaccinia-infected mice, TLR4 recognizes a viral

ligand rather than an endogenous ligand, and mice with a nonfunctional mutant version of

TLR4 had higher viral replication, hypothermia, and mortality than control animals. The find-

ings of this work demonstrated that TLR4 promotes a protective innate immune response

against the vaccinia virus, which can help to develop new vaccines and therapeutic agents

against poxviruses [130], therefore, we used TLR4 as a receptor in molecular docking analysis.

The results of the molecular docking show that our vaccine has a strong affinity for TLR4 and

can stimulate both innate and adaptive immunity. The RMSD plot revealed the vaccine-TLR4

complex’s stability during the MD simulation The vaccine’s binding to chain A of TLR4 has

reduced chain A’s flexibility in comparison to chain B, as shown by the RMSF plot. Further-

more, the high flexibility of the vaccine’s amino acids 40–100 in comparison to its other amino

acids can be attributed to the fact that this region has no interaction with the receptor protein

and can move freely. The computation of the binding free energies confirmed that the

TLR4-vaccine complex is more stable than each of its parts individually.

The CAI value and GC content of our vaccine were calculated by the JCat server to be 0.97

and 45.30%, respectively. CAI value between 0.8 and 1 [131], as well as GC content between

30% and 70% [128], are considered optimal for gene expression in the target organism.

Although the findings of this study are encouraging, it is still essential to test the vaccine candi-

date both in vitro and in vivo.

Conclusion

Following recent WHO reports of confirmed MPXV cases in non-endemic regions, global

concern about the possibility of a new pandemic has been raised. There is still no licensed

vaccine specifically for MPXV. Because computational methods allow researchers to

develop an effective and safe vaccine in less time and at a lower cost, we used this strategy to

develop a multi-epitope vaccine against MPXV in this study. We believe our vaccine candi-

date can be a universal vaccine capable of inducing cellular and humoral immunity because

we incorporated the best T-cell and B-cell epitopes from the conserved regions of the target

proteins into the vaccine construct. Furthermore, the proposed vaccine’s high affinity for

the innate immune receptor (TLR4) indicates that it could be able to stimulate both innate

and adaptive immunity against pathogen infection. The findings of this study are encourag-

ing, but they are based on computational methods that will never be able to replace labora-

tory validation; thus, we recommend that this designed vaccine construct be tested in

animal models in the future.
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