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T
he management of conditions
associated with an intense in-
flammatory response such as
severe trauma and sepsis rep-

resents a major challenge in the care of
the critically ill. There is an emerging
consensus that the acute inflammatory
response to major stress might be inap-
propriate or lead to undesirable outcomes
in patients initially resuscitated success-
fully. In the last two decades, much has
been learned regarding cellular and mo-
lecular mechanisms of the acute inflam-

matory response. This progress has led to
considerable efforts and resources to de-
velop interventions that modulate the
acute inflammatory response and posi-
tively affect outcome in these patients.
Except for recombinant human activated
protein C (drotrecogin alfa [activated])
(1) and low-dose steroids (2), this knowl-
edge has not led to effective immuno-
modulatory therapies; consequently, a
significant effort to address the issue of
target confirmation and trial design has
ensued (3–9). This situation is especially

vexing considering that a reasonable

therapeutic rationale was supported by

animal and early phase human studies for

dozens of interventions that failed when

evaluated in phase III (10–12).

Several researchers have proposed a

variety of reasons to explain the incon-

gruence between results and expecta-

tions. We propose that a key reason for

this conundrum is the difficulty of pre-

dicting the impact of modifying single

components of the highly complex, non-

linear, and redundant inflammatory re-

sponse (13–18). The consequences of fail-

ing to take a systems-oriented approach

to understanding and predicting the

time-course of complex diseases are var-

ious and significant. Indeed, prediction of

the behavior of such systems derived

from localized insights gathered from

limited experiments or observations per-

taining to individual components on such

systems may be impossible, however ac-

curate these isolated observations may

be. Meteorologists, engineers, physicists,

and other scientists examining complex
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systems make extensive use of models,
simplified representations of those com-
plex systems, to shed useful insight on
the behavior of such systems.

We sought to adopt a similar approach
and conduct a practical demonstration of
modeling a clinical trial in silico, by exam-
ining a therapy that had initial great prom-
ise in the setting of animal models of sepsis
but failed in large, randomized clinical tri-
als to meet generally accepted criteria for
efficacy. Accordingly, we focused on the
consequences of the administration to sep-
sis patients of a neutralizing antibody di-
rected against the proinflammatory cyto-
kine tumor necrosis factor (anti-TNF) (19).
After promising nonhuman primate re-
sults, pooled outcome of no fewer than 11
clinical trials in 7,265 patients showed a
consistent absolute reduction in mortality
of approximately 3.2% (p � .006) favoring
treatment with anti-TNF antibodies, a dis-
appointing result in light of the effect ex-
pected from preclinical studies (20, 21). Ef-
forts to select populations that would
demonstrate a convincing benefit from an-
ti-TNF have not met expectations either
(20, 21).

We wish to illustrate insights that
mathematical models could provide in
elucidating the reasons for the disap-
pointing results of this particular agent
and, more generally, in the design of fu-
ture trials, especially regarding drug dos-
ing, duration of therapy, and interaction
among cointerventions.

METHODS

Overview. We initially designed a mecha-

nistic model of the acute inflammatory re-

sponse based on information available from

the existing literature on the roles of key cel-

lular and molecular effectors in response to a

bacterial pathogen (22, 23). We constructed a

population of virtual patients differing in their

initial bacterial load, bacterial virulence, time

of initiation of intervention, and genetic abil-

ity to generate effectors in response to stress.

We compared outcomes across several treat-

ment arms and identified determinants of fa-

vorable and unfavorable outcomes.

Modeling the Human Inflammatory Re-
sponse. Because the acute inflammatory re-

sponse is comprised of a large number of com-

ponents that each have specific roles yet are

highly interactive, we chose to model this dy-

namical system with a system of differential

equations, one for each component that we

chose to simulate (Appendix). Each equation de-

scribes the level or concentration of components

over time resulting from their interaction with

other components following the principle of

mass-action. We chose to represent the system

at this level because serum levels of cytokines,

for example, are well known to correlate with

outcome in septic patients (24–28), clinical

measurements are usually obtained from blood,

and chemotherapeutic interventions are typi-

cally administered intravenously. Limitations re-

sulting from this choice are discussed subse-

quently. The strengths of such an approach are

several, in that it a) provides an intuitive means

to translate mechanistic concepts into a mathe-

matical framework; b) can be analyzed using a

large body of existing techniques; c) can be nu-

merically simulated easily and inexpensively on

a desktop computer; d) provides both qualitative

and quantitative predictions; and e) allows ex-

pansion to higher levels of complexity.

Initial values for rate constants were deter-

mined empirically so that the model would

qualitatively reproduce observed literature

data in mice administered endotoxin or sub-

jected to cecal ligation and puncture (23, 29).

Some rate constants, such as cytokine half-

lives, were directly extracted from the litera-

ture (30–32).

Constructing a Clinical Trial of Anti-TNF.
We generated a study population of 1,000 virtual

patients. Pathogen characteristics (growth rate

and initial load) were chosen to result in a sur-

vival of approximately 60%. We varied the delay

before medical consultation, and thus eligibility

for treatment, reasoning that the distribution of

the delays to medical consultation after onset of

infection was related to initial pathogen load and

virulence (i.e., sicker patients would generally

consult earlier). To simulate genetic diversity of

the study population, we randomly varied indi-

vidual propensity of immune cells to generate

effector molecules (proinflammatory such as

TNF and interleukin [IL]-6), anti-inflammatory,

and nitric oxide synthase activity) from �25% of

baseline as dictated by literature data (33). Those

variations were sufficient to explain wide swings

in individual serum levels of effectors.

Optimizing Trial Design. We wished to il-

lustrate the application of mathematical model-

ing to optimizing the design of a clinical trial.

We achieved this demonstration in two steps.

First, we identify administration strategies that

would result in the best outcomes for the entire

cohort. Second, we illustrate how the simulation

can help with patient selection, given a treat-

ment administration regimen. Importantly, our

goal was specifically not the optimization of

treatment regimen to individuals, although this

Table 1. Time to detection of disease and 7-day survival by quartilea of the population

Baseline Characteristics 7-Day Survival, % Mean Detection Time, Hrs

Overall population 62.9 20.8
Host factors

TNF responsivenessa

Q1 76.4 20.8
Q2 67.2 20.9
Q3 61.2 20.5
Q4 46.8 21.0

Anti-inflammatory responsivenessa

Q1 56.4 20.1
Q2 58.8 19.9
Q3 64.4 21.9
Q4 72.0 21.3

iNOS responsiveness
Q1 63.6 21.2
Q2 58.0 21.1
Q3 64.8 21.5
Q4 65.2 19.4

Pathogen factors
Pathogen inoculumb,c

Q1 68.8 43.1
Q2 63.6 18.7
Q3 65.2 12.5
Q4 54.0 8.9

Pathogen virulenceb

Q1 100 19.7
Q2 97.2 21.2
Q3 49.2 20.8
Q4 5.2 21.4

Time to detectionb,c

Q1 57.6 7.4
Q2 59.6 12.2
Q3 65.2 19.1
Q4 69.2 44.5

TNF, tumor necrosis factor; iNOS, inducible nitric oxide synthase.
aQuartiles are from lowest values (Q1) to highest (Q4) for effector cell propensity to elaborate

products for a given stimulus, for pathogen initial inoculum, for pathogen virulence, and for time to

detection of disease; bp � .01 between quartiles for mortality; cp � .01 between quartiles for difference

in earliest detection time.
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constitutes another potential application of our

simulation.

To identify optimal dosing and duration of

administration strategies, we submitted the

virtual cohort of 1,000 patients to nine inter-

ventions with anti-TNF. We varied the dura-

tion of administration of anti-TNF (6, 24, or 48

hrs). Comparatively, the half-life of anti-TNF

antibodies in naïve patients is 40–50 hrs (34,

35) We simulated the binding of serum TNF

with three different “doses” of anti-TNF (2, 10,

and 20 arbitrary units). Depending on dose,

TNF neutralization varied from 18.6% to

55.5% of total TNF produced in controls. A

clear correlation with published reports is dif-

ficult as these do not typically report areas

under the curve and do not always distinguish

between biologically active TNF, TNF bound

by antibody, and TNF bound by specific solu-

ble receptors (35). Death was determined by

the inability of the individuals to clear more

than 50% of maximal sustained tissue dys-

function at one week. Such a definition seg-

regated the population into two outcome

groups (see the Results).

Trial optimization involves selecting a dosing

strategy that optimizes outcome in a cohort of

patients and then selecting patients who would

benefit from treatment while avoiding treating

patients for which treatment would either have

no effect or cause harm. The optimal treatment

administration scheme has already been deter-

mined as part of prior results (see preceding

section). To select patients who would most ben-

efit from this treatment, we constructed a multi-

nomial logistic model with a four-valued out-

come variable: a) is helped by treatment

(survives but would have died without treat-

ment); b) survives irrespective of treatment; c)

dies irrespective of treatment; and d) is harmed

(dies because of treatment). Independent vari-

ables were chosen at the time of disease detec-

tion (the earliest possible treatment opportu-

nity) and 60 mins later, reflecting the possibility

of using short-term trends in analytes and as-

suming rapid diagnostic capabilities. Variables

included serum TNF, anti-inflammatory activity,

long-acting proinflammatory cytokine (IL-6),

their ratios and products, activated protein C,

thrombin, as well as blood pressure and cell

counts of activated neutrophils. The statistical

model was validated in a different population of

1,000 simulated cases. All predictions from the

statistical model relate to the validation popula-

tion.

We wrote our own software for the simu-

lations and analyses (JB, RK, GC). Statistical

analyses and multivariate statistical models

were conducted in SPSS (Chicago, IL).

RESULTS

Baseline Population

Characteristics of the baseline popula-
tion and outcome are detailed in Table 1.
Mean time to medical consultation was
20.1 hr from the onset of infection and was
shorter in patients with high pathogen load
and high virulence. Survivors had lower

peak and cumulative TNF, IL-6, nitrites/
nitrates, and global tissue dysfunction than
nonsurvivors (Fig. 1 and Table 1). Overall
mortality rate was 37.1% as determined by
tissue dysfunction at 168 hrs divided by
maximal dysfunction value during the first
168 hrs (Fig. 2.). We chose this variable as
a proxy to unfavorable outcome because
there was a clear bimodal distribution of
this variable after 72–96 hrs. Therefore, the
model offered a “natural” separation of fa-
vorable and unfavorable outcomes. There is
a logical physiologic correlate to this obser-
vation: After reaching a maximum, tissue
dysfunction tended to improve significantly
and rapidly in some cases (survivors) or
remained elevated at a substantial fraction
of maximum in all other cases (nonsurvi-
vors). Mortality rate was higher with high
bacterial load, high virulence, and high
TNF production potential by effector cells.
Previously suggested predictors of out-
come, such as TNF/IL-10 ratio and TNF/
IL-6 ratio, indeed discriminated between
survivors and nonsurvivors (36–39). How-
ever, this discrimination was only moderate
and highly time-dependent (Fig. 3.).

Optimizing Trial Design

Impact of Drug Dose and Duration of
Administration on Outcome. We observed
a saturation of the effect of anti-TNF on
peak and cumulative concentration of me-
diators and tissue dysfunction. Markers of
inflammation were higher with the lowest
dose of anti-TNF, but there was little differ-
ence between the two higher doses (Table
2). In fact, the higher treatment dose was
associated with higher cumulative serum
TNF levels as measured by area under the
curve. The reason for this paradoxical effect
seems to be a rebound in proinflammatory
mediators, presumably because of de-
creased generation of anti-inflammatory
mediators, and therefore decreased inhibi-
tion of proinflammation after anti-TNF is
discontinued.

Despite relatively modest differences in
circulating levels of effectors, the simula-
tions suggest that modifications in treat-
ment intensity and duration result in large
differences in survival (Table 3). Survival is
highest when the lowest dose of anti-TNF is
administered for 48 hrs and worst when the
highest dose is administered for 48 hrs. A
surprising yet key finding is that anti-TNF
treatment helps a significant percentage of
individuals but also harms many. Thus, the
beneficial effect of this therapy is reduced
considerably if it is administered in a ran-
domized fashion (Fig. 4). This balance is

Figure 1. Time course of receiver operating characteristic (ROC) area under the curve for tumor

necrosis factor(TNF)/interleukin (IL)-6 and TNF/anti-inflammatory activity (Ca) ratios. The ability of

TNF/IL-6 and TNF/Ca ratios to discriminate survivors from nonsurvivors as determined by ROC area

under the curve varies significantly in time. Given that the predictive values of those ratios would be

most useful early in the course of infection and that cases do not necessarily present early, the

usefulness of those ratios as discriminators of outcome is questionable.
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also very dependent on drug dose and du-

ration. The proportion of patients helped by

anti-TNF increases with dosage, but so does

the proportion of patients harmed. Dura-

tion also had a significant impact on sur-

vival, but less so than dose. There was

therefore a clear, but nonintuitive, interac-

tion between dose and duration to affect

overall survival.

Improving Case Selection in a

Clinical Trial

To illustrate the implications of using

modeling to improve case selection in clin-

ical trials, we selected as an intervention

the administration of anti-TNF at an inter-

mediate dose for 24 hrs. We chose this

intervention as opposed to the optimal one

(low-dose anti-TNF administered for 48

hrs) because we wished to illustrate the

potential of modeling to identify patients

harmed by an intervention. Under this in-

tervention, 242 cases were helped by treat-

ment, whereas 181 were harmed, for a

global survival advantage of 6.1% in the

anti-TNF arm. Cases helped by anti-TNF

treatment had higher peak TNF, IL-6, and

anti-inflammatory levels. They also tended

to have higher initial pathogen load and

higher pathogen virulence. Nonsurvivors

who were not helped by treatment had

overwhelming infection and were treated

late, and TNF levels tended to be low at

onset of treatment. Patients harmed by

therapy tended to have infections of mod-

erate severity but were low TNF responders

and high anti-inflammatory responders

(Fig. 5). Interestingly, low production of

TNF and high production of IL-10, deter-

mined by specific genetic polymorphisms,

have been shown to be beneficial in trans-

plant patients (40). However, potentially in-

dependent determinants of outcome such

as pathogen load, virulence, and vigor of

effector cells to produce TNF are not acces-

sible to clinicians having to decide whether

to administer treatment.

We therefore constructed a statistical

model in which the independent variables

were based on levels of effectors and cell

counts measured at the beginning and 60

mins into the earliest treatment window,

and we assessed the ability of this statistical

model to identify patients potentially

helped or harmed by the intervention. Ac-

tual and predicted outcomes from this sta-

tistical model are presented in Table 4. This

model also demonstrated that several vari-

ables other than mediators were predictive

of response to therapy. Specifically, base-

line circulating TNF, IL-6, TNF to anti-
inflammatory activity ratio, neutrophils
circulating thrombin, and activated protein
C were predictive of treatment efficacy (p �

.01). Sixty-minute trends in TNF, IL-6, TNF
to IL-6 ratio, TNF to IL-6 product, and TNF
to anti-inflammatory activity ratio were
also predictive.

Figure 2. Frequency histogram of the time course of tissue dysfunction in the control cohort. Over the

first 48–72 hrs (time is on the y-axis), tissue dysfunction is increasing. Accordingly, the ratio of

current level of dysfunction to maximal dysfunction (x-axis) since onset of disease is 1. As their clinical

condition improves, ultimate survivors witness a decrease in tissue dysfunction, and the ratio of

current level of dysfunction to maximum level is now �1. This is depicted in the inset, where a typical

survivor (solid line) sees resolution of dysfunction, whereas a nonsurvivor (dashed line) sees progres-

sive worsening of dysfunction. The population segregates, between 72 and 96 hrs, into a nonsurvivor

branch where dysfunction remains high (ratio close to 1) and a survivor branch where dysfunction

improves with time (ratio gradually decreasing). The dotted line in the main figure represents the

threshold of 50% of current to maximal dysfunction discriminating survivors from nonsurvivors.

Figure 3. Time course of serum tumor necrosis factor (TNF) and outcome. Survivors generally have

mean lower serum TNF levels (pale gray area, 95% confidence interval of mean) that peak later than

in nonsurvivors (dark gray area, 95% confidence interval of mean). There is considerable overlap early

in the clinical course, rendering TNF measurement a poor discriminator of outcome.

2064 Crit Care Med 2004 Vol. 32, No. 10



If the decision to treat had been based
on this statistical model, adopting a strat-
egy to treat only patients predicted to be
helped by treatment would have resulted
in 265 (26.5%) patients treated. Of these,
233 (positive predictive value � 87.2%)
would indeed have been helped, whereas

only two (0.2%) patients would actually
have been harmed by treatment; with-
holding treatment for the other 735 pa-
tients would have resulted in harming a
further 22 patients while preventing 87
patients from being harmed. In sum-
mary, in a separate validation cohort, fol-

lowing the statistical model’s recommen-
dation for treatment would have harmed
24 patients whereas indiscriminate ad-
ministration would have harmed 148 pa-
tients. Adopting a strategy to administer
treatment in those predicted to be helped
and also in those predicted to die irre-
spective of treatment would have resulted
in treating 397 patients, harming 12 pa-
tients, yet sparing 136 lives (Table 4).

Two recent clinical trials that restricted
administration of anti-TNF to patients with
IL-6 levels greater than 1000 pl/mL favored
anti-TNF treatment over placebo (20, 21).
When restricted to patients in the upper
two quartiles of IL-6 at the time of detec-
tion, our model predicts a comparable mor-
tality of 57%. The model also predicts a
survival advantage of 26.4%, with only
6.8% of patients harmed by treatment. The
reported 28-day adjusted absolute mortality
differences in these trials were 4.0% and
6.9%, favoring anti-TNF treatment (20, 21).
In our simulated cohort, the discrimination
of serum IL-6 levels for mortality at the
time of detection as expressed by receiver-
operating characteristic area under the
curve (ROC) was 0.814 (0.786–0.847). ROC
for discrimination of patients harmed by
treatment was 0.715 (0.693–0.757). Com-
paratively, the discrimination of a statistical
model was almost perfect for mortality
(ROC � 0.999) and excellent to identify
patients who would be harmed (ROC �
0.979 [0.971–0.986]). Our model confirms
the relevance of selecting patients based on
IL-6 levels but also points out how the
selection process could be improved.

DISCUSSION AND

CONCLUSIONS

The almost universal failure of immu-
nomodulatory therapies has called into
question the basic nature of how antisepsis
trials are designed and carried out (9, 41).
Furthermore, assuming that a prospective
drug demonstrates benefit over placebo in a
randomized trial, how is this drug to be
used as part of a multidrug regimen? In the
absence of clear physiologic insight, it ap-
pears hazardous to compare or combine
prospective therapies to recombinant hu-
man activated protein C without adopting a
factorial design. Indeed, the combination of
a prospective drug with recombinant hu-
man activated protein C might well prove
worse than standard care without recombi-
nant human activated protein C. The re-
cent iteration of the Helsinki convention
on the safety of patients dictating that ran-
domized clinical trials should compare new

Table 2. Cumulative and peak analytes levels across different treatment arms (arbitrary units)

Controls

Duration of Anti-TNF Therapy

6 Hrs 24 Hrs 48 Hrs

Cumulative TNF
Controls 97
Anti-TNF, dose

2 83 72 67
10 75 58 51
20 76 64 56

Peak TNF
Controls 0.54
Anti-TNF, dose

2 0.46 0.41 0.41
10 0.42 0.30 0.30
20 0.43 0.27 0.27

Cumulative IL-6
Controls 336
Anti-TNF, dose

2 259 207 182
10 211 143 112
20 220 155 124

Peak IL-6
Controls 0.62
Anti-TNF, dose

2 0.54 0.50 0.50
10 0.51 0.38 0.38
20 0.53 0.36 0.36

Cumulative dysfunction
Controls 803
Anti-TNF, dose

2 686 598 564
10 616 475 429
20 631 501 458

Peak dysfunction
Controls 1.25
Anti-TNF, dose

2 1.15 1.06 1.05
10 1.10 0.90 0.88
20 1.11 0.86 0.83

TNF, tumor necrosis factor; IL, interleukin.

Because these results are derived from a predetermined, but arbitrarily large, sample size, all differences

could potentially be made statistically significant and, therefore, no tests of significance are reported.

Table 3. Impact of treatment dose and duration on cohort survival at 7 days

Controls

Duration of Anti-TNF Therapy

6 Hrs 24 Hrs 48 Hrs

Survival (%)
Controls 62.9
Anti-TNF, dose

2 72.6 76.9 80.8
10 77.9 69.0 72.8
20 76.5 56.3 57.9

TNF, tumor necrosis factor antibody.

The lowest dose administered for 48 hrs resulted in the best survival, whereas higher doses for

longer times had worse survival than placebo.
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compounds to the current “best” does not
trivially apply to the problem of sepsis (6).
Insights as to how to improve the design of
such trials, including reducing the need for
an unrealistically large number of patients
yet preserving enough sensitivity to detect
clinical benefit, are yet to emerge. There is
growing sense of the need for a paradigm
shift in this regard and that the concept of
the randomized controlled trial, as we
know it, might face insurmountable chal-
lenges in the context of multimodal thera-
pies of complex disease. We propose that an
intense effort at modeling of complex phys-
iologic processes and their modulation
might become an essential tool in the de-
sign of clinical trials of emerging therapies
in this context. Although basic scientists
and clinicians perceive the need for a more
comprehensive approach to understanding
physiologic dynamics and their modula-
tion, significant advances in the implemen-
tation of practical tools derived from this
“complex systems” approach have not been
forthcoming. Reasons for this include the
unfamiliarity of medical scientists with the
necessary analytical tools involved, the per-
ceived complexity of the processes to be
modeled, the incomplete knowledge of the
mechanisms involved, the difficulty in gen-
erating results that are perceived useful by
interested parties, and lack of insight as to
the limits and biases of conventional statis-
tical approaches and reductionism-driven
hypothesis testing (13, 14, 17).

We present such an implementation as a
practical approach to the vexing problem of
immunomodulation in patients with severe
sepsis. The results of the simulation pre-
sented herein reproduce many observa-
tions characteristic of this disease process.

Figure 4. Mortality rate at 7 days according to treatment regimen. There is a dose response relationship

with all durations of administration of anti-tumor necrosis factor: More patients are helped by treatment

with higher doses. However, longer duration of administration is also associated with increasing harm,

where people who would have survived in the placebo arm are effectively killed by treatment.

Figure 5. Determinants of outcome. For each baseline feature, representing host (ability of immune effector cells

to elaborate tumor necrosis factor [TNF] and anti-inflammatory (CA) given a standard stimulus) and pathogen

(bacterial load and virulence) determinants, the study population is divided into quartile of increasing value. The

impact of anti-TNF treatment, administered for 24 hrs at a dose of 10, is depicted. Anti-TNF appeared particularly

useful where there was a higher pathogen load, high pathogen virulence, higher TNF responsiveness, and lower

IL-10 responsiveness. Conversely, harm was more probable in those with high CA responsiveness or low TNF

responsiveness and those infected with pathogen of lower virulence.

T
he construction of

an in silico clinical

trial could provide

profound insight into the de-

sign of clinical trials of immu-

nomodulatory therapies, rang-

ing from optimal patient

selection to individualized dos-

age and duration of proposed

therapeutic interventions.
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For example, in a disease where tissue dys-
function results from excessive immune
stimulation, it is reasonable to find that
there is dose-response behavior to inter-
vention in patients who are helped. It is
also reasonable that excessive suppression
of appropriate inflammation, especially if
an individual has a limited capacity to gen-
erate inflammation, results in harm. Yet,
the simulation furnishes nonintuitive pre-
dictions as to how an intervention would
have to be designed to optimize clinical
response. Our results are humbling in that
there clearly appear to be opposing effects
of immunomodulation in severe sepsis,
where patients are both saved and killed,
that are not apparent in the outcome of
clinical trials as currently measured. How-
ever, our simulation also suggests that
modeling could assist in further refining
enrollment criteria for trials or treatment
criteria for approved interventions. As
shown, an intervention targeted to all those
individuals predicted to be helped, based on
measured circulating analytes, physiologic
parameters, and possibly genetic polymor-
phisms, could be successful.

Further methodological development
might improve on the ability to predict
likely response to treatment. We present
herein a statistical model to achieve this
goal. The intuition, however, is that the
same mathematical model that describes
the likely course of illness in individual
patients could be used to obtain improved
predictions in individual patients based on
sequential measurements of several ana-

lytes. How to accomplish this goal is an
analytical problem yet to be explored. We
suggest that a diagnostic device that would
measure relevant analytes repeatedly and in
near-real time, coupled to a mathematical
model such as the one presented herein,
could help predict the dynamics of inflam-
mation of a particular patient and thereby
guide intervention. An immediate exten-
sion of such a development could be real-
time monitoring of response to interven-
tion, resulting in modification of the
intervention before harm occurs or be-
comes irreversible.

There are several limitations to our ap-
proach. Our model remain essentially qual-
itative, although we are currently conduct-
ing efforts to calibrate the simulation using
animal data (42, 43). A more quantitative
comparison to data from existing trials
would certainly be possible and would pro-
vide further validation of the predictive
ability of the model, assuming that longi-
tudinal measurements of analytes were ob-
tained. Although our simulations repro-
duce several observations from clinical
trials of anti-TNF treatment, we cannot at
this stage address nonattributable mortality
or attributable mortality beyond a limited
time horizon. It is likely that the success of
treatments for severe sepsis is limited by
factors, such as burden of chronic disease
and parameter organ physiologic reserve,
which are not easily modeled. Our ap-
proach does not take such factors into con-
sideration. Equation-based models include
a large number of parameters that express

the relative importance and time-scale of
interaction and processes involved. The val-
ues of these parameters are typically diffi-
cult to extract from existing literature and
therefore attributed in such as way that the
model reproduces known kinetics of as
many variables as possible under a variety
of experimental conditions. This qualitative
fitting exercise is time-consuming and does
not guarantee that the resulting set of pa-
rameters is either unique or optimal. The
relationship between gene polymorphism
and outcome of patients with sepsis has
been difficult to document (33, 44–50). Al-
though models such as the one presented
herein provide clear predictions, these are
difficult to confirm in the absence of con-
sistent clinical and epidemiologic studies.
One expects systematic advances in the
next few years as substantial efforts are un-
derway to elucidate the relationship be-
tween sepsis outcome and polymorphisms
of effectors of the acute inflammatory re-
sponse.

In recent years, modeling complex bio-
logical systems has become increasingly
useful and is moving toward practical ap-
plications (18, 51, 52). Companies have of-
fered similar approaches to simulate clini-
cal trials (www.entelos.com) pertaining to
asthma and diabetes but not to critical ill-
ness. It appears essential to continued
progress that complex biological problems
such as sepsis be approached through col-
laborative efforts to enhance the face valid-
ity and acceptance of the process for all
those involved. It is therefore necessary to
call on the resources and insights of clini-
cians, bench scientists, and mathemati-
cians to address this problem. Importantly,
efforts to construct models applicable to
humans would greatly benefit from unpub-
lished data collected in phase I and II trials.
This is a nontrivial endeavor that requires
close collaboration between academicians
of disparate backgrounds and industry (13–
15). It is our hope that given such an effort,
we will see a new generation of therapeu-
tics to successfully address the seemingly
intractable problem of sepsis and organ
dysfunction.
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APPENDIX: Components of the mathematical model

Model Component Symbol Comment

Pathogen P A generic Gram-negative pathogen.
Lipopolysaccharide PE Immunostimulant derived from Gram-negative bacteria or administered exogenously.
Resting macrophage MR Circulating monocyte or local macrophages that acts as a cellular pool for activated macrophages. The total

count of resting monocyte/macrophages can increase in proportion to the total inflammatory activity.
Activated macrophages MA Activation triggered by lipopolysaccharide (LPS), tumor necrosis factor (TNF), interleukin (IL)-6, tissue trauma,

and tissue dysfunction. Activation is down-regulated by anti-inflammatory cytokines.
Activated neutrophils NA Activation triggered by LPS, TNF, IL-6, and tissue dysfunction.
Nitric oxide synthase (NOS) activity NOD Combines the activities of constitutive and inducible NOS. Normally participates in blood pressure homeostasis.

Increased by LPS and TNF in activated neutrophils and macrophages. Decreased by anti-inflammatory
cytokines.

Circulating NO2
�/NO3

� NO A measure correlating with cumulative NOS activity.
Tissue necrosis factor TNF A major early proinflammatory cytokine secreted mainly by activated macrophages but also by activated

neutrophils.
Interleukin-6 IL6 A proinflammatory cytokine with additional anti-inflammatory effects.
Generic anti-inflammatory activity CA, CAR, CAI Represents the combined long-lived anti-inflammatory activity of IL-10, steroids, transforming growth factor-�,

soluble receptors to proinflammatory cytokines, and intracellular products with anti-inflammatory activity,
such as heat-shock molecules. As a group, their anti-inflammatory activity is triggered by TNF, IL-6, and
nitric oxide.

Activated protein C PC Acts as an antithrombotic and anti-inflammatory agent.
Tissue factor TF Promoted by proinflammation, increases global dysfunction.
Thrombin TH Represents global procoagulant/anticoagulant balance, also participates in blood pressure and tissue dysfunction.
Blood pressure B Homeostasis depends mainly on NO. The blood pressure equation contains a “restoring” term representing

autonomic autoregulation.
Tissue damage D Can be caused by hypotension, the action of proinflammatory cytokines, tissue microthrombosis. Nitric oxide is

tissue-protective, and there is a slow natural repair process.

Functions included in the equations
The model includes functions expressing saturating dynamic similar to Michaelis-Menten kinetics:

f�v, y� �

y � v

v � y

f2�v, y� �

y2
� v2

v2
� y2

Inhibitory functions expressing down-regulation or exhaustion kinetics:

fs�v, y� �

y

v � y

f2�v, y� �

y2

v2
� y2

Step/square functions:

square�ton, toff� � heav�t � ton� � heav�t � toff�

where heav �x� � 1, x � 0

� 0, x � 0.
Equations
The equations were generated from “influence diagrams,” expressing current knowledge regarding interactions between components included in the model. We documented

the vast majority of these interactions, although data on relative quantification are scarce.

P� � kpg � P � �1 � kps � P� � heav�P � P0� � �kpm � MA � kpno � NO � kpo2 � O2 � kab � heav�t � tab�� � P

PE� � kpp � P � kpg � P � �1 � kps � P� � heav�P � P0� � �kpm � MA � kpno � NO � kpo2 � O2 � kab � heav�t � ta � kpe � PE

MR� � � �kmp � P � kmpe � PE � kmd � D� � �Sm � f2�TNF, xtnf� � km6 � f2�IL6, xil6� � fs2�CA, xca�� � MR � kmm � f�snoa � TNF � snoa � PE � NO, xt� � kmr � MR � Sm

MA� � �kmp � P � kmpe � PE � kmd � D� � �Sm � f2�TNF, xtnf� � km6 � f2�IL6, xil6� � fs2�CA, xca�� � MR � kma � MA

NA� � �knp � f�P, xt2� � knpe � f�PE, xt2� � kntnf � f�TNF, xtnf� � kn6 � f�IL6, xil6� � knd � f�D, xt2�� � NA � �1 � kns � NA� � ��knno � NO/snoa � kno2 � O2� � NA � kn � �fs�TNF, xtnf�

� fs�IL6, xil6�� � NA � Sn

NOD� � �knon � NA � knom � MA� � fca�CA, xca� � �f�TNF, xtnf� � f�IL6, xil6�� � knod � NOD

NO� � kno � �NOD � snoa � NO�

O2� � ��ko2n � N � ko2m � MA� � �f�TNF, xTNF� � k026 � f�IL6, xil6�� � k02np � NA � f�P, xt�� � fs2�CA, xca� � ko2 � O2

TNF� � �ktnfn � NA � ktnfmr � MR � ktnfma � MA� � fs2�CA, xtnfca� � �1 � ktnftnf � f�TNF, xtnf� � ktnf � TNF � katnf � square�tiatnf, tiatnf � dur� � TNF

IL6� � k6m � MA � �1 � k6th � f�TH, xt� � fs2�CA, xt2� � k6 � IL6

CAR� � �kcan � N � kcam � MA� � �kcatnf � f�TNF, xtnf� � kca6 � f�IL6, xil6� � kcano � f�NO, xt� � kcao2 � f�O2, xt�� � kcar � CAR

CAI� � CAR � kca � CAI

CA � CAI � kcapc � PC

TF� � �ktfpe � PE � ktftnf � TNF � ktf6 � IL6� � fs�PC, xt� � ktf � TF

TH� � �kth1 � kthn � TH� � TF � kth � TH

PC� � kpcth � TH � kpc � PC

B� � kb � �Ba � B� � ��kbno/snoa� � NO � fs�O2, xt� � kbtnf � TNF � kbth � TH� � B

D� � kdb � �1 � �B/Ba�� � kdtnf � TNF � kdo2 � O2 � �kdno/snoa� � NO � fs�NO, xt2 � snoa�/snoa � kdth � TH � kdeq � O2 � e�10��NO�snoa�O2�2/snoa
2

� kd � D

Continued
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P(0) � floating PE(0) � 0 MR(0) � 1 MA(0) � 0 NA(0) � 0.01 NOD(0) � 0
NO(0) � 50 O2(0) � 0 TNF(0) � 0.001 IL6(0) � 0 CAR(0) � 0 CAI(0) � 0
TF(0) � 0 TH(0) � 0 PC(0) � 0 B(0) � 1 D(0) � 0

Rate constants (hr�1 unless otherwise specified)

kpg � floating kps � 0.001 kpm � 0.1 kpno � 0.5 kpo2 � 1.0 kab � 0.0
kpp � 1.0 kpe � 0.2 kmp � 0.05 kmpe � 0.02 kmd � 0.04 kmr � 0.05

km6 � 0.8 kmm � 0.1 kma � 0.2 knp � 0.2 kntnf � 0.4 kn6 � 2.0
knd � 0.2 kns � 0.1 knno � 1.0 kno2 � 6.0 kn � 0.04 knpe � 1.5

knon � 0.25 knom � 0.2 knod � 0.1 kno � 0.1 ko2n � 0.2 ko2m � 0.1
ko26 � 0.1 ko2np � 0.0 ko2 � 0.5 ktnfn � floating ktnfmr � 5e-4 ktnfma � floating

ktnftnf � 0.7 ktnf � 2.5 katnf � floating k6m � floating k6th � 0.4 k6 � 0.1
kcan � floating kcam � floating kcatnf � 0.1 kca6 � 0.04 kcano � 0.1 kcao2 � 0.1
kcar � 0.5 kca � 0.02 kcapc � 0.1 ktfpe � 0.01 ktftnf � 0.1 ktf6 � 0.1

ktf � 0.1 kth1 � 0.05 kthn � 0.004 kth � 0.1 kpbth � 0.1 kpc � 0.1
kb � 0.2 kbno � 0.02 kbtnf � 0.02 kbth � 0.2 kdb � 0.1 kdtnf � 0.01

kdo2 � 0.02 kdth � 0.05 kdno � 0.01 kdeq � 0.1 kd � 0.03

Other model constants (units)

Ba � 1.0 snoa � 870 Sm � 0.1 (h-1) Sn � 0.001 (h-1) P0 � 10-4
dur � floating (h) tiatif � floating (h) tab � floating (h)

Saturation constants

xtnf � 1.0 xt � 1.0 xil6 � 1.0 xca � 10.0 xt2 � 10.0 xtnfca � 1.0

Trial and cases conditions

Trial variables (varied for each treatment arm)
Comment Range

katnf Intensity of treatment 2, 10, or 20
dur Duration of administration 6, 24, or 48 hrs

Case variables (varied for each case, uniform distribution unless specified otherwise)
P(0) Initial bacterial load 1.6 (0.3–3.0)
kpg Bacterial doubling rate 0.104 (0.01–0.2)
tiatnf Time of initiation of therapy 20.8 (4.2–107.5)a

ktnfn
b TNF production by activated neutrophils 0.5 (0.4–0.6)

ktnfm
b TNF production by activated macrophages 0.5 (0.4–0.6)

kcan
b Anti-inflammatory effector production by neutrophils 0.1 (0.08–0.12)

kcam
b Anti-inflammatory effector production by activated macrophages 0.04 (0.032–0.048)

knom
b Nitric oxide production by activated macrophages 0.2 (0.16–0.24)

knon
b Nitric oxide production by activated neutrophils 0.25 (0.2–0.3)

atiatnf�1 is a uniform distribution obtained from the P(0) distribution; bfor each patient, variables are co-varied.

APPENDIX: Continued

Model parameters
Model variables are divided into several categories: initial conditions, rate constants, and saturation constants determining the behavior or the modulating functions f and fs

described previously. Variables labeled as floating determined either trial conditions (dose and duration of anti-tumor necrosis factor treatment) or individual case
characteristics.

Fixed initial conditions (where initial conditions dependent on patient or trial characteristics [see next table], the corresponding parameter is said to be floating).
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