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Abstract: Phosphorus (P) is the second-most essential macronutrient required for the growth and
development of plants. It is involved in a number of cellular processes that contribute to the plant’s
growth and development. This study investigated Saccharum spp. hybrid and Sorghum bicolor
promoter regions of Phosphate transporters (PHT), viz., PHT1, PHT2, PHT3, PHT4, and PHO1,
through in silico analysis. The transcription start sites (TSS), conserved motifs, and CpG islands
were studied using various computational techniques. The distribution of TSSs indicated the highest
promoter prediction scores (1.0). MSh2 and MSb4 were recognized as the common promoter motifs for
PHT promoters, found in with 85 to 100% percentage of distribution. The CpG analysis revealed that
the promoter regions of most PHT genes had low CpG density, indicating a possible tissue-specific
expression. The PHT promoters were investigated for the presence of biotic- and abiotic-stress-
associated transcription factor binding sites (TFbs) that revealed the presence of binding motifs for
major transcription factors (TFs), namely, AP2/ERF, bHLH, bZIP, MYB, NAC, and WRKY. Therefore,
the in-silico analysis of the promoter regions helps us to understand the regulation mechanism of
phosphate transporter promoters and gene expression under stress management. The 5′ regulatory
region of the EaPHT gene was isolated from Erianthus, a wild relative of the genus Saccharum.
The promoter construct was prepared and transformed in tobacco wherein the promoter drove the
expression of GUS. Analysis of GUS expression in transgenic tobacco revealed enhanced expression
of GUS under salt-stress conditions. This is the first report of the isolation and characterization of a
phosphate transporter gene promoter from Erianthus and is expected to be useful for the development
of salt-stress transgenic crop plants.

Keywords: in silico; promoter; transcription start site; motif; CpG islands; transcription factor binding
sites; sugarcane

1. Introduction

Sugarcane (Saccharum spp.) is an important commercial crop, grown worldwide for
biofuel production, and accounting for 80% of global sugar [1]. Environmental factors
cause significant economic damage to sugarcane and affect growth and production by
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30 to 60% [2]. Abiotic stress is acknowledged as an important environmental risk factors
to agricultural plant productivity and quality. Drought, salt, severe temperatures, and
nutritional deficits are among the common abiotic stresses recognized to occur world-
wide [3]. Although plants have evolved to deal with a variety of stresses, crop efficiency
remains severely constrained. The current scenario of changing climate and future weather
changes are key challenges for researchers to easily understand the responses of plants
such as signal cascade activation, transduction, and relevant gene expression with respect
to single or combinations of biotic and/or abiotic stresses, eventually boosting agricultural
output [4,5].

Transcription factors (TFs) are activated by various signalling pathways and can
interact directly or indirectly with cis-elements to impact the transcriptional efficiency of
targeted genes that act as important regulators for crop improvement [6]. Understanding
the molecular processes behind plant stress response and gene function demands an in-
depth understanding of gene expression regulation [7]. The gene promoter sequence is
generally in charge of controlling gene expression. The promoter is a segment of non-coding
DNA that contains various motifs or cis-acting regulatory elements (CAREs), as well as
CpG islands, that regulate the expression of a gene [8]. The core promoter is generally
found in the upstream region including the transcription start site (TSS) and is in charge of
initiating transcription. CAREs are small conserved DNA motifs (five to 20 nucleotides)
that have specialized DNA-binding proteins such as transcription factors (TFs) [9]. Over the
last decade, tremendous developments have been made in understanding the significance
of plant TFs as important environmental regulators in essential crops; yet, only a few
studies have been performed on sugarcane.

Phosphorus (P) is a macronutrient that is required for the growth and development of
plants. Crop production is severely hampered by a lack of inorganic phosphate (orthophos-
phate; Pi) in the soil, while excessive fertilizing has polluted the environment [10,11]. Pi
acquisition and homeostasis are dependent on transport mechanisms regulated by Phos-
phate transporters (PHT), which have so far been classified into five families: PHT1, PHT2,
PHT3, PHT4, PHT5, and PHO [12,13]. The expression of these transporters is controlled
by both transcriptional and post-transcriptional levels. In AtPHR1, an MYB TF, binding
to the P1BS (GNATATNC) or P1BS-like motif in PHT1 promoters up-regulates the gene
expression at low P concentrations [14]. The WRKY transcription element regulates PHT1
gene expression by interacting with the W-box (TTGACT/C) cis-acting region in PHT1
promoters [15].

Salinity has been regarded as the most severe abiotic stress factor in sugarcane, caus-
ing severe dehydration and an imbalance of inorganic solutes in important crop species,
eventually limiting development and output. As a result, the phosphate ions in the soil
tend to form an insoluble phosphate that limits P availability, and the use of P fertilizer
in sugarcane plantations has increased year over year [16–18].The development of salt
tolerance in plants results from the combined effects of salinity stress and Pi starvation.
Promoter technology makes it much easier to successfully use transgenic technology by
allowing gene expression to be altered at the desired level [19,20]. In plants, only in potato
(Solanum tuberosum L.) have the regulatory elements of glucan endo-1,3-beta-glucosidase
gene been reported to date [21]. To the best of our knowledge, no study has evaluated
sugarcane in this aspect. Therefore, the aim of this study is to predict the promoter and
regulatory elements of the PHT gene family that are associated with regulating gene ex-
pression in response to abiotic stress challenges and provide vital indications for creating
stress-tolerant sugarcane cultivars. Further, the study is an extension of our prior research,
which has shown that the EaPHT1;2 gene showed increased expression in the root under
salinity stress [22]. As a result, the current work intended to estimate the Transcriptional
Start Sites (TSSs), conserved motifs, CpG islands, and TFbs of the promoter regions of
phosphate transporter genes in sugarcane. We used the closely related Sorghum bicolor as
a reference genome. In order to determine the functional characteristics of the EaPHT1-2
promoter, the T1 generation tobacco seedlings were subjected to salinity stress.
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2. Materials and Methods
2.1. Retrieval of Promoter Regions and Determination of TSSs

The 2.0 kb promoter sequences of each PHT gene of Saccharum spp. hybrid (Sh)
cultivar R570 and Sorghum bicolor (Sb) (v3.1.12) were retrieved from Sugarcane Genome
Hub and Phytozome to determine their respective transcription start sites (TSSs), using
the Neural Network Promoter Prediction (NNPP version 2.2) toolset with the minimum
standard predictive score (between 0 and 1) cut-off value of 0.8 for eukaryotes [23]. If the
promoter regions contained two or more representative TSS positions, the one with the
highest prediction score was chosen to have reliable and valid predictions.

2.2. Documentation of Common Candidate Motifs and TFs

The MEME web server (https://meme-suite.org/tools/meme, (accessed on 12 August
2022)) was utilized to identify the potential motifs that act as transcription factor binding
sites (TFbs) of the phosphate transporter gene family in Saccharum spp. hybrid. The MEME
output with potential motifs was further analyzed using TOMTOM, a component of MEME
Suite that compares the motifs published in public databases of known motifs [24]. JASPAR
Core Plants database is a comprehensive collection of plant transcription factor binding
models that was utilized as a reference database for this study with the default settings.

2.3. Gene Ontology Analysis

The GOMo (Gene Ontology for Candidate Motifs) version 5.0.1 search was performed
to evaluate the functional characteristics of the recovered motifs [25]. GOMo (https://
meme-suite.org/meme/tools/gomo, (accessed on 18 August 2022)) evaluates all promoters
using the nucleotide patterns and is used to discover significant motifs associated with
genes with one or more Genome Ontology (GO) keywords. The motifs’ biological activities
may be deduced using the necessary GO keywords. In a list of ranked genes, the program
searches for enriched GO keywords related to high-ranking genes.

2.4. Search for CpG Islands for PHT Gene Promoter Regions

To find CpG islands, the Takai and Jones method was utilized with severe search crite-
ria: length ≥ 200 bp, GC content ≥ 50%, and Obs CpG/ExpCpG ≥ 0.60 [26]. The CpGi130
(http://dbcat.cgm.ntu.edu.tw/, (accessed on 19 August 2022)) CpG island searcher tool
was employed for the analysis. As a second method the MSpI restriction enzyme site was
determined using the CLC-Genomics Workbench (ver.3.6.5).

2.5. Analysis of TFbs in Sugarcane Promoter Region

To identify transcription factor binding sites (TFbs) in ShPHT gene promoters, the
PlantPAN 3.0 programme (http://plantpan.itps.ncku.edu.tw/, (accessed on 20 August 2022))
was utilized [27]. To determine the presence of the same TFbs in different promoter areas,
the multiple promoter analysis tool (http://plantpan.itps.ncku.edu.tw/gene_group.php?
#multipromoters, (accessed on 23 August 2022)) was employed. The upstream 2000 bp
promoter region of each ShPHT gene was investigated to discover their interactions with
distinct transcription factor groups during the regulation of stress signaling gene expression.

2.6. Development of Transgenic Tobacco and Screening under Salt Stress

The 5′ regulatory region of the EaPHT1-2 gene was isolated using the RAGE genome
walking method and fused to the GUS reporter gene into the pCAMBIA 1305.1 vector by
replacing the CaMV35s promoter. The transgenic tobacco plants were generated using
the leaf disc transformation method using recombinant Agrobacterium as described previ-
ously [28]. The putative transgenic plants were selected on MS medium supplemented with
hygromycin (25 mg/L). The EaPHT transgenic tobacco plants were individually harvested
in the T0 generation. One-month-old seedlings of transgenic tobacco were subjected to
salt stress by being placed in MS medium containing different concentrations of NaCl
(50 mM, 100 mM, 150 mM, and 200 mM) for 24 h, and GUS activity was analyzed [29]. The

https://meme-suite.org/tools/meme
https://meme-suite.org/meme/tools/gomo
https://meme-suite.org/meme/tools/gomo
http://dbcat.cgm.ntu.edu.tw/
http://plantpan.itps.ncku.edu.tw/
http://plantpan.itps.ncku.edu.tw/gene_group.php?#multipromoters
http://plantpan.itps.ncku.edu.tw/gene_group.php?#multipromoters
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stress samples were immersed individually into GUS staining buffer (50 mM NaH2PO4
(pH = 7.0), 10 mM EDTA, 0.5 mM ferricyanide, 0.5 mM ferrocyanide, 2 mM X-glucuronide,
10% Methanol, and 0.1% Triton X-100) and incubated at 37 ◦C for 24 h in the dark. Then,
70% ethanol was used to bleach the chlorophyll of stained samples, and the seedlings were
then imaged.

2.7. Quantitative RT-PCR Analysis

Total RNA extraction using the TRIzol method and cDNA synthesis was carried
out using a Revert Aid First Strand cDNA Synthesis Kit (Thermo Scientific) according
to the manufacturer’s instructions. The quantitative real-time PCR (qRT-PCR) analysis
was conducted using the StepOne real-time PCR system (Applied Biosystems, Burlington,
ON, Canada). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an
endogenous reference control [30–37]. The qRT-PCR profile was as follows: 10 min of
denaturation at 95 ◦C, followed by 40 cycles 15 s of denaturation at 95 ◦C, 1 min of
annealing and extension at 60 ◦C in a final volume of 25 µL reaction [26,29,30]. The relative
expression of the EaPHT1-2 promoter was measured using GUS as a reporter gene and
calculated using the 2−∆∆Ct method [38].

3. Results
3.1. Identification of Transcription Start Sites in Promoter Sequences of the PHT Gene Family

The transcription start sites (TSSs) predicted in promoter sequences of each PHT gene
in both sugarcane (ShPHT) and Sorghum bicolor (SbPHT) species ranged from one to nine
and the regulatory element of the ShPHT3-4 gene from sugarcane recorded the highest
TSSs. For TSSs, PHT genes in both species achieved the highest promoter prediction scores
of 1.0. In Saccharum spp., five genes (PHT1-1, PHT1-4, PHT1-5, PHT3-3, and PHT3-4)
received a 1.0 score, whereas two genes (PHT4-4 and PHT4-5) had the lowest promoter
prediction scores (0.8) (Table 1). Furthermore, the promoter predictions for S. bicolor
sequences resulted in ten genes (PHT1-3, PHT1-7, PHT1-9, PHT1-11, PHT1-12, PHT3-2,
PHT3-5, PHT4-4, PHO1-1, and PHO1-2) with a score threshold of 1.0, whereas the least
score of 0.91 was obtained for SbPHT3-1 (Table 2). In addition, 78.3% and 88.8% of the
genes had multiple transcription start sites, whereas 21.7% and 12.0% had just less than
two transcription start sites in sugarcane and Sorghum, respectively. TSSs of Saccharum spp.
sequences were generally located between −110 and −1868 bp relative to the translation
start codon (ATG), and 82.6% of the TSS were located below −1000 bp.

3.2. Identification of Common Motifs in PHT Promoter Regions

The majority of the PHT gene sequences employed in the present investigation shared
promoter regions, revealing that Saccharum spp. had 100% coverage at MSh 2 (Motif 2)
with an E-value of 7.1 × 10−19 and a width of 29 nucleotides (Table S1). The motifs
found in the majority of PHT promoter regions of Saccharum spp. and Sorghum bicolor
were chosen to discover functionally relevant motifs (Figure 1). As a result, in the ShPHT
promoter regions, MSh2 was identified as a similar promoter element throughout the
ShPHT promoter sequences for all (100%) genes and acts as a binding site for transcription
factors responsible for the control of the phosphate transporter gene’s expression. Similarly,
85.18% of S. bicolor promoter sequences contained a conserved motif MSb4 (Motif 4) with
an E-value of 1.0 × 10−30 and a length of 29 nucleotides (Table S2). Figure 2 shows
the sequence logo of potential motifs identified in promoter regions of sugarcane MSh2,
Sorghum MSb4, and the combination of both species. Further, the MSh2 and MSb4 motifs
were analyzed in comparison with the reported motifs in JASPAR, a public database, to
discover if any putative motif resembled any of the previously reported regulatory motifs
for transcription factors using the TOMTOM online tool. As a result, MSh2 resembled 11 of
the 841 known patterns, whereas MSb4 resembled 42 of the 841 available motifs. The top
ten matching motifs were chosen based on their assessed statistical significance ratings
( Table 3 and Table S3).
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Table 1. Number of TSSs and predictive score for ShPHT genes of Saccharum spp. hybrid.

Promoter ID Number of Identified TSS Predictive Score Location of the Best TSS
from Start Codon (ATG)

ShPHT1-1 5 1.00, 0.97, 0.95, 0.93, 0.81 −1645
ShPHT1-2 4 0.99, 0.99, 0.91, 0.87 −1662
ShPHT1-3 7 0.97, 0.94, 0.94, 0.94, 0.90, 0.84, 0.81 −951
ShPHT1-4 6 1.00, 0.97, 0.94, 0.93, 0.85, 0.81 −737
ShPHT1-5 2 1.00, 0.90 −446
ShPHT1-6 3 0.94, 0.89, 0.88 −609
ShPHT1-7 2 0.97, 0.90 −331
ShPHT1-8 2 0.99, 0.92 −294
ShPHT2-1 2 0.93, 0.90 −456
ShPHT3-1 2 0.99, 0.90 −908
ShPHT3-2 2 0.99, 0.83 −319
ShPHT3-3 5 1.00, 0.95, 0.95, 0.92, 0.88 −380
ShPHT3-4 9 1.00, 1.00, 0.99, 0.98, 0.92, 0.89, 0.88, 0.84, 0.82 −751
ShPHT4-1 1 0.94 −329
ShPHT4-2 1 0.97 −237
ShPHT4-3 6 0.98, 0.96, 0.96, 0.83, 0.83, 0.81 −1686
ShPHT4-4 1 0.83 −1194
ShPHT4-5 3 0.86, 0.84, 0.81 −473
ShPHT4-6 3 0.99, 0.91, 0.84 −856
ShPHO1-1 1 0.94 −486
ShPHO1-2 1 0.95 −219
ShPHO1-3 4 0.99, 0.93, 0.91, 0.82 −524
ShPHO1-4 2 0.91, 0.91 −110

Table 2. Number of TSSs and predictive score for SbPHT genes of S. bicolor.

Promoter ID Number of Identified TSS Predictive Score Location of the Best TSS
from Start Codon (ATG)

SbPHT1-1 3 0.99, 0.99, 0.98 −171
SbPHT1-2 3 0.99, 0.98, 0.97 −884
SbPHT1-3 7 1.00, 0.95, 0.95, 0.92, 0.92, 0.89, 0.88 −226
SbPHT1-4 4 0.98, 0.88, 0.88, 0.83 −796
SbPHT1-5 1 0.95 −421
SbPHT1-6 8 0.99, 0.99, 0.98, 0.95, 0.94, 0.91, 0.88, 0.85 −1780
SbPHT1-7 7 1.00, 0.99, 0.99, 0.95, 0.90, 0.87, 0.85 −384
SbPHT1-8 1 0.92 −562
SbPHT1-9 7 1.00, 1.00, 0.99, 0.95, 0.94, 0.93, 0.82 −1685

SbPHT1-10 6 0.99, 0.99, 0.97, 0.94, 0.82, 0.81 −280
SbPHT1-11 4 1.00, 0.99, 0.96, 0.83 −1868
SbPHT1-12 4 1.00, 1.00, 0.97, 0.97 −1501
SbPHT2-1 4 0.97, 0.88, 0.86, 0.83 −800
SbPHT3-1 2 0.91, 0.88 −265
SbPHT3-2 3 1.00, 0.99, 0.86 −798
SbPHT3-3 4 0.96, 0.94, 0.93, 0.83 −647
SbPHT3-4 5 0.99, 0.94, 0.90, 0.85, 0.80 −113
SbPHT3-5 4 1.00, 1.00, 0.92, 0.90 −743
SbPHT3-6 2 0.99, 0.89 −445
SbPHT4-1 1 0.99 −253
SbPHT4-2 2 0.92, 0.81 −279
SbPHT4-3 5 0.99, 0.95, 0.95, 0.91, 0.81 −158
SbPHT4-4 8 1.00, 1.00, 0.95, 0.93, 0.90, 0.84, 0.83, 0.81 −406
SbPHT4-5 6 0.99, 0.99, 0.95, 0.93, 0.92, 0.91 −618
SbPHT4-6 4 0.99, 0.94, 0.91, 0.85 −1510
SbPHO1-1 6 1.00, 1.00, 0.94, 0.91, 0.90, 0.89 −218
SbPHO1-2 3 1.00, 0.95, 0.88 −181
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Figure 1. Schematic representation of putative conserved motifs identified with the MEME program.
(A) Putative conserved motifs shared by sugarcane PHT promoter sequences; Motif 2—Light Blue
represents the MSh2 motif. (B) Putative conserved motifs shared by Sorghum PHT promoter se-
quences. Five motifs are indicated by different colored boxes: Motif 1—Red, Motif 2—Light Blue,
Motif 3—Yellow, Motif 4—Violet and Motif 5—Green. Motif 4—Violet represents the MSb4 motif.
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Table 3. List of matches to the query motif from the database JASPAR2018_CORE_vertebrates_non
redundant for Saccharum spp. hybrid.

Matrix ID Gene Name E-Value Overlap Offset Orientation TF Family/Class

MA1125.1 ZNF384 8.48 × 10−1 12 −11 Reverse Complement C2H2 zinc finger factors
MA1104.2 GATA6 9.63 × 10−1 13 −13 Normal C4-GATA-related
MA0041.2 FOXD3 1.85 × 10 16 −13 Reverse Complement FOX
MA1978.1 ZNF354A 1.90 × 10 18 −11 Reverse Complement C2H2 zinc finger factors
MA1970.1 TRPS1 4.28 × 10 12 −14 Normal C4-GATA-related
MA1606.1 Foxf1 5.72 × 10 11 −17 Reverse Complement FOX
MA0035.4 GATA1 6.14 × 10 11 −15 Normal C4-GATA-related
MA0029.1 Mecom 6.95 × 10 14 −11 Reverse Complement C2H2 zinc finger factors
MA0602.1 Arid5a 7.85 × 10 12 −17 Reverse Complement ARID-related
MA0157.3 Foxo3 8.36 × 10 12 −16 Reverse Complement FOX
MA0465.2 CDX2 9.53 × 10 12 −10 Reverse Complement HOX

3.3. Gene Ontology Analysis for the Identified Sequence Motifs

The current investigation discovered gene ontology (GO) keywords for the common
putative motifs MSh2 and MSb4 in the PHT gene promoter sequences of Saccharum hybrid
and S. bicolor (Figure 3). A search for the common motifs in the MEME suite yielded
domains with established molecular activities and biological processes.
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3.4. Analysis of CpG Islands in Phosphate Transporter Gene Promoter Regions

The promoter region CpG island analysis was explored in the current study utilizing
two algorithms, CpG island Finder and CLC Workbench 3.6.1. According to Takai and
Jones [26], among 27 SbPHT promoters, 13 (48.14%) sequences, namely, SbPHT1-1, SbPHT1-
4, SbPHT1-5, SbPHT1-6, SbPHT3-2, SbPHT3-4, SbPHT3-6, SbPHT4-4, SbPHT4-5, SbPHT4-6,
SbPHTO1-1, and SbPHTO1-2 CpG islands were observed (Figure 4). Compared to Sorghum,
only nine (ShPHT1-2, ShPHT1-3, ShPHT1-7, ShPHT3-1, ShPHT4-1, ShPHT4-3, ShPHT4-
6, ShPHO1-3, and ShPHO1-4) out of twenty-three (39.13%) showed CpG islands in the
promoter regions of Saccharum spp. On the other hand, MspI (C/CGG sequence) restriction
sites were analyzed in the CLC workbench and this revealed that all the promoter regions
in Saccharum spp. hybrid (Table 4) have at least one CpG island, whereas the SbPHT1-2
and SbPHT1-10 promoter regions of S. bicolor lack CpG islands (Table S4; Figure S1).
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Table 4. MspI cutting sites and fragment sizes for promoter regions of ShPHT genes in Saccharum
spp. hybrid.

Promoter ID No. of Cut Sites Nucleotide Positions of MspI Sites

ShPHT1-1 0 -
ShPHT1-2 1 816
ShPHT1-3 1 -
ShPHT1-4 0 -
ShPHT1-5 1 106
ShPHT1-6 0 -
ShPHT1-7 1 1049
ShPHT1-8 0 -
ShPHT2-1 0 -
ShPHT3-1 1 147
ShPHT3-2 1 968
ShPHT3-3 0 -
ShPHT3-4 2 498, 799
ShPHT4-1 0 -
ShPHT4-2 0 -
ShPHT4-3 0 -
ShPHT4-4 2 1081, 1256
ShPHT4-5 3 1062, 1186, 1200
ShPHT4-6 1 876
ShPHO1-1 0 -
ShPHO1-2 0 -
ShPHO1-3 2 744, 1061
ShPHO1-4 3 82, 638, 1252

3.5. Abiotic-Stress-Related TFbs Analysis

The ShPHT gene promoter regions were examined for transcription factor binding
sites (TFbs) using PlantPAN3.0. As a result, 67,897 TFbs were generated by the database
from input searches (Table S2). Several TFs, namely, AP2/ERF, AT-Hook, bHLH, bZIP,
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C2H2, DOF, GATA, MYB, MADS-Box, NAC, TBP, and WRKY, involved in the regulation of
growth and development, light-responsive elements, and biotic and abiotic stimuli were
discovered. Among all the discovered TFs, we emphasize the TF families implicated in
abiotic stress responses. AP2/ERF has the most TFbs with 5263 binding sites, followed by
MYB, which has 4805 binding sites across the ShPHT promoter region (Figure 5). Other
TFs including the bZIP-binding site, WRKY, bHLH-binding site, and NAC were found to
have 3495, 2393, 2376, and 1168 TFbs sites, respectively (Figures 6 and 7).
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3.6. GUS Activity of Transgenic Tobacco EaPHT Promoter under Osmotic Stress

To investigate GUS expression under control and stressed conditions of the EaPHT
promoter ten independent transgenic lines were randomly screened in the T1 generation
using histochemical GUS staining. High GUS activity was recordedin all parts of two-
week-old transgenic tobacco seedlings, including leaves, stems, and roots, as measured by
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histochemical staining. The analysis showed intense GUS activity in the NaCl-treated trans-
genic, but no significant differences between different concentrations of NaCl. The GUS
activity suggested that this might be due to the presence of a number of stress-responsive
cis-elements that regulate the EaPHT promoter expression under various stresses. Three
independent transgenic lines with consistently high levels of GUS expression were selected
for further analysis (Figure 8A). RT-PCR was used to evaluate the normal and stress-
induced expression of the GUS reporter transcripts driven by the EaPHT promoter under
salt stress. T1 tobacco transgenic lines with high levels of GUS expression were utilized for
qRT-PCR analysis. Figure 8B depicts the amplification of the relative transcript abundance
in transgenic plants under both normal and stressful conditions. The GUS expression level
increased with NaCl treatment and this finding provided evidence that the EaPHT gene
promoter has strong expression under salt-stress conditions.
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qRT-PCR. WT—Wild type, Control—Untreated EaPHT transgenic event.

4. Discussion

In the present study, the comparative analysis of 50 PHT promoter regions of Saccharum
spp. Hybrid (ShPHT) and S. bicolor (SbPHT) using the in silico analysis of transcription
start sites (TSS), motif discovery, CpG islands, and Transcription Factor binding sites (TFbs)
have demonstrated their versatility in phosphate transporter gene regulation under stress
response. The current study’s use of the NNPP server produced a wide range of TSSs, which
may indicate their role in regulatory systems. Studies have shown that the TSS is highly
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important and improves the accuracy of predicting promoters [39], since the promoter
region that includes transcription factor binding sites is often located right upstream of
1 kb. As a result, ShPHT gene promoters typically contained a single transcription start site,
with the number of TSSs ranging from one to nine. Furthermore, only the ShPHT3-4 gene
possesses up to nine TSSs (Table 1). Similarly, the majority of genes in Sorghum contained
at least one TSS, and SbPHT4-4 had a maximum of eight TSSs. Most studies, however, have
discovered that genes with multiple TSSs have an increased likelihood of transcription
initiation and contribute genes in response to changes in the environment [40]. The current
analysis also indicated that the sites of 47.5% and 51.9% of the TSSs were less than −500 bp
from the ATG in sugarcane and Sorghum, respectively [21]. The gene expression pattern
was regulated by the transcriptional factors by binding with the short motif present in the
promoter region of a gene [41]. In this study, the MEME web server was used to discover
the common and putative motifs in the PHT gene promoters of sugarcane and Sorghum.
As a result, five motifs that were predicted in each promoter region shared at least 30.4%
and 37.0% of common motifs in the ShPHT and SbPHT promoters, respectively. Among the
five motifs, motif 2 (MSh2) and motif 4 (MSb4) were revealed as the most common motifs
with 100% and 85% of the higher percentage of distribution among promoter sequences
(Tables S1 and S2, and Figure 2). Therefore, an extensive study on the MSh2 and MSb4
motifs was carried out using TOMTOM to obtain more information on the motifs with
previously published and publicly accessible databases to check whether they resembled
known regulatory motifs for TFs. As a result, C2H2-Zinc finger transcription factor families
were predominantly found to bind to the MSh2 and MSb4 motifs and thereby be involved
in the regulation mechanism of PHT gene expression (Table 3 and Table S3). Furthermore,
the C2H2-ZF-type transcription factor TaZFP15 was up-regulated under starved-Pi stress,
while TaZAT8 was reported in modulating tolerance to Pi deficiency by regulating P
acquisition [42,43]. On the other hand, the C2H2-type TFs act as a positive regulator under
salt stress and regulate plant responses to abiotic stress by interacting with stress response
factors [44,45]. In addition to transcription factors, promoters are also regulated by CpG
islands and these CpG islands have been demonstrated to restrict transcription factor access
to the promoter region, hence reducing gene expression [46,47]. Two methods were used
in this present study to predict CpG islands in the promoter region. It has been proposed
that the phosphate transporter promoter region has a low number of CpG islands (<50%)
in both the Saccharum and Sorghum genomes, indicating that the PHT gene family might
have tissue-specific gene expression.

To better understand plant signalling regulation during stress, it is important to study
the transcription factors and cis-acting regions involved in the signalling cascade. Some
transcription factors perform various functions in response to diverse stress conditions.
In the present study, bioinformatics analysis predicted several TFs associated with stress
management, such as MYB TF, WRKY TFs, NAC TFs, bHLH TF, AP2/ERF TFs, and bZIP.
In our study the maximum number of MYB TFs was detected across the ShPHT promoter
region. MYB transcription factors are commonly associated with signalling networks in var-
ious stress responses. In the PHT gene promoters, phosphate starvation response 1 (PHR1)
is a typical MYB transcription factor that binds to the PIBS site during the Pi starvation
response [48]. A total of 2393 WRKY TFs was discovered in the ShPHT promoter region
(Figure 5), and the C2H2-ZF binding motif identified in the TOMTOM analysis revealed
that PHT promoters are associated with stress-related expression. However, the identi-
fication of the promoter TFbs for WRKY TF was controlled by binding with the W-box
(TTGACC). We found transcription factors including MYB, WRKY, and bZIP that have
roles in Pi starvation and other environmental stress signalling.

In this study, we identified the characteristics of the EaPHT1;2 promoter in transgenic
tobacco seedlings grown in four different NaCl concentrations. The EaPHT1;2 promoter
provides an efficient GUS reporter gene expression and qRT-PCR analysis showed a three-
fold higher expression, suggesting that it is a strong promoter under salinity stress. In
poplar, regardless of the phosphate levels, the PtPHT1;2 gene showed enhanced expression
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during drought conditions [49]. Additionally, the PHT1;2 promoter in wheat showed pre-
dominant expression in root tissue under Pi-starvation [50]. Thus the EaPHT1;2 promoter
can be an alternate plant promoter for CaMV35S and may provide an efficient means of
conferring high levels of transgene expression in sugarcane under salinity stress.

5. Conclusions

In the present study, phosphate transporter (PHT) gene promoter regions in Saccharum
spp. hybrid and S. bicolor were comparatively analyzed. Using in silico strategies, the
transcription start sites (TSSs), common promoter motifs, CpG islands, and transcription
factors and their binding sites were analyzed. The majority of the PHT genes had more than
two TSSs. As a result, among all the detected TSSs, the one with the highest predictability
score was chosen to define the promoter regions. Furthermore, five common potential
motifs were identified in both of the genomes. Among these motifs, MSp2 and MSb4 were
explored as the common promoter elements. As a consequence, the overall findings indicate
that the identified potential motifs and interacting transcriptional factors are predicted to
contribute extensively to gene expression under diverse stress responses. The presence
of several types of TFbs was found in varying frequencies among 23 ShPHT promoter
regions, and only six major TFs involved in biotic and abiotic stresses were focused on
in this study. Although ShPHT promoters exhibited a higher number of TFbs related to
various stress management, further research is needed to confirm these ShPHT promoters
for later use in plant genetic engineering. The results suggested that PHT promoters
from sugarcane are a potential foreign gene expression system for genetic transformation.
Therefore, the overall results suggest that the identified common candidate motifs and
binding transcription factors through bioinformatics approach can contribute to a better
understanding of PHT gene family expression and help to identify the gene regulatory
elements in promoter regions. The in silico analysis together with the evidence of enhanced
expression of the EaPHT1;2 promoter provide insights into responsiveness of the promoter
under salinity stress. Therefore, in the future, the PHT promoter could serve as a valuable
source of promoters for the development of transgenic sugarcane and other crops for
stress tolerant.
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designate the length of the promoter sequence. Table S1: Identified common candidate motifs in PHT
gene promoter regions of Saccharum spp. hybrid; Table S2: Identified common candidate motifs in
PHT gene promoter regions of Sorghum bicolor; Table S3: List of matches to the query motif from the
database JASPAR2018_CORE_vertebrates_non redundant for Sorghum bicolor; Table S4: MspI cutting
sites and fragment sizes for PHT genes in the promoter regions in Sorghum bicolor.
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