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Abstract

Purpose: Drug metabolism and pharmacokinetics (DMPK) assessment has come to occupy a place of interest
during the early stages of drug discovery today. The use of computer modelling to predict the DMPK and toxicity
properties of a natural product library derived from medicinal plants from Central Africa (named ConMedNP).
Material from some of the plant sources are currently employed in African Traditional Medicine.

Methods: Computer-based methods are slowly gaining ground in this area and are often used as preliminary
criteria for the elimination of compounds likely to present uninteresting pharmacokinetic profiles and unacceptable
levels of toxicity from the list of potential drug candidates, hence cutting down the cost of discovery of a drug.
In the present study, we present an in silico assessment of the DMPK and toxicity profile of a natural product library
containing ~3,200 compounds, derived from 379 species of medicinal plants from 10 countries in the Congo Basin
forests and savannas, which have been published in the literature. In this analysis, we have used 46 computed
physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and
elimination and toxicity (ADMET) of the compounds.

Results: This survey demonstrated that about 45% of the compounds within the ConMedNP compound library are
compliant, having properties which fall within the range of ADME properties of 95% of currently known drugs,
while about 69% of the compounds have ≤ 2 violations. Moreover, about 73% of the compounds within the
corresponding “drug-like” subset showed compliance.

Conclusions: In addition to the verified levels of “drug-likeness”, diversity and the wide range of measured
biological activities, the compounds from medicinal plants in Central Africa show interesting DMPK profiles and
hence could represent an important starting point for hit/lead discovery.
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Background
Natural products (NPs) have always played an important
role in drug discovery until today (Li and Vederas 2009;
Chin et al. 2006; Newman 2008; Harvey 2008; Koehn and
Carter 2005). This is because they both serve as active
principles in drugs and as templates for the synthesis of
new drugs (Newman 2008; Efange 2002). Additionally, a
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good proportion of drugs which have been approved for
clinical trials, are either NPs or their analogues (Butler
2005). What makes NPs unique is that they are often
rich in stereogenic centres and cover segments of
chemical space which are typically not occupied by a
majority of their synthetic counterparts (Wetzel et al.
2007; Grabowski et al. 2008). Moreover, NPs generally
contain more oxygen atoms and less aromatic atoms
on average, when compared with “drug-like” mole-
cules (Grabowski and Schneider 2007). They some-
times fail the test for “drug-likeness” due to the fact
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that they are often bulkier than synthetic drugs (Quinn
et al. 2008).
The fact that more and more drugs fail to enter the

market as a result of poor pharmacokinetic profiles, has
necessitated the inclusion of pharmacokinetic consider-
ations at earlier stages of drug discovery programs
(Hodgson 2001; Navia and Chaturvedi 1996). This re-
quires the search for lead compounds which can be eas-
ily orally absorbed, easily transported to their desired
site of action, not easily metabolised into toxic products
before reaching the targeted site of action and easily
eliminated from the body before accumulating in suffi-
cient amounts that may produce adverse side effects.
The sum of the above mentioned properties is often re-
ferred to as ADME (absorption, distribution, metabolism
and elimination) properties, or better still ADMET,
ADME/T or ADMETox (when toxicity assessment is
included).
Computer-based methods have been employed in

the prediction of ADMET properties of drug leads at
early stages of drug discovery and such approaches
are becoming increasingly popular (Lipinski et al.
1997; Lombardo et al. 2003; Gleeson et al. 2011). The
rationale behind in silico approaches are the relatively
lower cost and the time factor involved, when com-
pared to standard experimental approaches for ADMET
profiling (DiMasi et al. 2003; Darvas et al. 2002). As an ex-
ample, it takes a minute in an in silico model to screen
20,000 molecules, but takes 20 weeks in the “wet” labora-
tory to do the same exercise (Hodgson 2001). Due to the
accumulated ADMET data in the late 1990s, many
pharmaceutical companies are now using computational
models that, in some cases, are replacing the “wet” screens
(Hodgson 2001). This paradigm shift has therefore
spurred up the development of several theoretical
methods for the prediction of ADMET parameters. A host
of these theoretical models have been implemented in a
number of software programs currently available for
drug discovery protocols (OCHEM platform 2009;
Lhasa 2010; Schrodinger 2011a; Cruciani et al. 2000),
even though some of the predictions are often disap-
pointing (Tetko et al. 2006). The software tools cur-
rently used to predict the ADMET properties of
potential drug candidates often make use of quantita-
tive structure-activity relationships, QSAR (Tetko
et al. 2006; Hansch et al. 2004) or knowledge-base
methods (Greene et al. 1999; Button et al. 2003; Cro-
nin 2003). A promising lead compound may therefore
be defined as one which combines potency with an
admirable ADMET profile (commonly referred to as a
compound’s CV). As such, compounds with uninter-
esting predicted ADMET profiles may be completely
dismissed from the list of potential drug candidates
(even if these prove to be highly potent). Otherwise,
the DMPK properties are “fine-tuned” in order to im-
prove their chances of making it to clinical trials
(Hou and Wang 2008). This may explain why the
“graveyard” of very highly potent compounds which
do not make it to clinical trials keeps filling up, to
the extent that experts in drug discovery are often
faced with the challenge of either resorting to new
lead compounds or “resurrecting” some buried leads
with the view of “fine-tuning” their DMPK properties.
A natural product compound database built on infor-

mation collected from several literature sources on
medicinal plants from Central African countries, cur-
rently used in ATM, has been recently developed at our
laboratory. The plants had been harvested from 10
countries (Burundi, Cameroon, Central African Republic,
Chad, Congo, Equatorial Guinea, Gabon, the Democratic
Republic of Congo, Rwanda and the Republic of São
Tomé and Príncipe). This NP library currently contains
~3,200 compounds and preliminary analyses have proven
the dataset to be sufficiently “drug-like” and diverse to be
employed in lead discovery programs (Ntie-Kang et al.
2013a; Ntie-Kang et al.: ConMedNP: a natural product
library from Central African medicinal plants for drug
discovery. RSC Adv, submitted). Additional arguments
in favour of the use of this database are the wide
range of the previously observed biological activities
of the compounds and the wide range of ailments being
treated by traditional medicine with the help of the herbs
from which the compounds have been derived (Ntie-Kang
et al. 2013a, b; Zofou et al. 2013; Ntie-Kang et al.:
ConMedNP: a natural product library from Central
African medicinal plants for drug discovery. RSC Adv,
submitted).
Since numerous drugs and many more lead com-

pounds fail due to adverse pharmacokinetic properties
at a late stage of pharmaceutical development (Darvas
et al. 2002), it has become important to incorporate
ADME properties’ prediction into the lead compound
selection early enough, by means of molecular descrip-
tors. A molecular descriptor may be defined as a struc-
tural or physico-chemical property of a molecule or
part of a molecule, for example logarithm of the n-
octanol/water partition coefficient (log P), the molar
weight (MW) and the total polar surface area (TPSA).
A number of relevant molecular properties (descrip-
tors) are often used to help in the assessment of the
DMPK properties of potential drug leads. In this
paper, an attempt has been made to carry out an in
silico assessment of the ADMET profile of this
dataset. A number of computed molecular descrip-
tors, currently implemented in a wide range of soft-
ware, have been used as indicators of the
pharmacokinetic properties of a large proportion of
currently known drugs.
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Methods
Data sources and generation of 3D structures
The plant sources, geographical collection sites, chem-
ical structures of pure compounds as well as their mea-
sured biological activities, were retrieved from literature
sources and have been previously described (Ntie-Kang
et al. 2013b; Zofou et al. 2013). The 3D structures of the
compounds had been sketched and energy minimisation
subsequently carried out using a previously described
protocol (Ntie-Kang et al. 2013a).

Initial treatment of chemical structures and calculation of
ADMET-related descriptors
The 3,179 low energy 3D chemical structures in the
ConMedNP library were saved in .mol2 format and ini-
tially treated with LigPrep (Schrödinger 2011a). This im-
plementation was carried out with the graphical user
interface (GUI) of the Maestro software package
(Schrödinger 2011b), using the Optimized Potentials for
Liquid Simulations (OPLS) forcefield (Shivakumar et al.
2010; Jorgensen et al. 1996; Jorgensen et al. 1988).
Protonation states at biologically relevant pH were cor-
rectly assigned (group I metals in simple salts were dis-
connected, strong acids were deprotonated, strong bases
protonated, while topological duplicates and explicit hy-
drogens were added). All molecular modelling was car-
ried out on a Linux workstation with a 3.5 GHz Intel
Core2 Duo processor. A set of ADMET-related proper-
ties (a total of 46 molecular descriptors) were calcu-
lated by using the QikProp program (Schrödinger 2011c)
Table 1 Selected computed ADMET-related descriptors and th

Property Description

Smol the total solvent-accessible molecular surface, in Å2 (probe radius

Smol,hfob the hydrophobic portion of the solvent-accessible molecular surfa

Vmol the total volume of molecule enclosed by solvent-accessible mole

log Swat the logarithm of aqueous solubility (Jorgensen and Duffy 2002; Jo

log KHSA the logarithm of predicted binding constant to human serum alb

log B/B the logarithm of predicted blood/brain barrier partition coefficien

BIPcaco–2 the predicted apparent Caco-2 cell membrane permeability, in nm
Yazdanian et al. 1998; Irvine et al. 1999; Stenberg 2001)

MDCK the predicted apparent Madin-Darby canine kidney cell permeabi

Indcoh the index of cohesion interaction in solids, calculated from the nu
(HBD) and the surface area accessible to the solvent, SASA (Smol) b
(Jorgensen and Duffy 2000)

Glob the globularity descriptor, Glob = (4πr2)/Smol, where r is the radius
molecular volume

QPpolrz the predicted polarizability

log HERG the predicted IC50 value for blockage of HERG K+ channels, (Caval

log Kp the predicted skin permeability (Potts and Guy 1992; Potts and Gu

#metab the number of likely metabolic reactions
running in normal mode. QikProp generates physically
relevant descriptors, and uses them to perform ADMET
predictions. An overall ADME-compliance score – drug-
likeness parameter (indicated by #stars), was used to as-
sess the pharmacokinetic profiles of the compounds
within the ConMedNP library. The #stars parameter indi-
cates the number of property descriptors computed by
QikProp that fall outside the optimum range of values for
95% of known drugs. The methods implemented were de-
veloped by Jorgensen and Duffy (Jorgensen and Duffy
2002; Duffy and Jorgensen 2000; Jorgensen and Duffy
2000). Some of the computed ADMET descriptors are
shown in Table 1, along with their recommended ranges
for 95% of known drugs.

Results and discussion
Overall DMPK compliance of the ConMedNP library
The 24 most relevant molecular descriptors calculated
by QikProp are used to determine the #star parameter
(Schrödinger 2011d). A plot of the #stars parameter
(on x-axis) against the corresponding counts (on y-
axis) in the ConMedNP is plotted within the same set
of axes with those of the “drug-like”, “lead-like”, and
“fragment-like” standard subsets (Figure 1). The cri-
teria for the respective standard subsets were defined
as (MW < 500; log P < 5; HBD ≤ 5; HBA ≤ 10) (Lipinski
et al. 1997), (150 ≤MW ≤ 350; log P ≤ 4; HBD ≤ 3;
HBA ≤ 6) (Teague et al. 1999; Oprea 2002; Schneider
2002) and (MW ≤ 250; -2 ≤ log P ≤ 3; HBD < 3; HBA <
6; NRB < 3) (Verdonk et al. 2003). The ADMET
eir recommended ranges for 95% of known drugs

Recommended
range

1.4 Å) 300 to 1000 Å2

ce, in Å2 (probe radius 1.4 Å) 0 to 750 Å2

cular surface, in Å3 (probe radius 1.4 Å) 500 to 2000 Å3

rgensen and Duffy 2000) −6.0 to 0.5

umin (Colmenarejo 2001) −1.5 to 1.2

t (Luco 1999; Kelder et al. 1999; Ajay et al. 1999) −3.0 to 1.0

s-1 (in Boehringer–Ingelheim scale, Yazdanian et al. < 5 low, > 100
high

lity in nm s-1 (Irvine et al. 1999) < 25 poor, > 500
great

mber of hydrogen bond acceptors (HBA), donors
y the relation Indcoh ¼ HBA�

ffiffiffiffiffiffiffi

HBD
p
Smol

0.0 to 0.05

of the sphere whose volume is equal to the 0.75 to 0.95

13.0 to 70.0

li et al. 2002; De Ponti et al. 2001) concern < −5

y 1995) −8.0 to −1.0

1 to 8



Figure 1 Distribution curves for #stars within the ConMedNP library, along with the standard “drug-like”, “lead-like” and “fragment-
like” subsets. Blue = ConMedNP library, red = “drug-like” subset, green = “lead-like” subset and violet = “fragment-like” subset.
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descriptors for some 67 compounds in the total library
were not computed by QikProp, probably due to some
technical details related to the working of the software
which was beyond our notice. Of the remaining 3,112
compounds, 45.31% showed #star = 0, while 68.93% had
#star ≤ 2. Among the 1,696 compounds of the “drug-like”
subset whose pharmacokinetic properties were predicted,
Table 2 Summary of mean pharmacokinetic property distribu
the various subsets

Library name aLib. size bNo. compl. cMW (Da)

Total library 3,118 1,410 421.72

Drug-like 1,696 1,230 326.14

Lead-like 730 589 269.55

Fragment-like 154 101 192.98
hLogB/B iBIPcaco-2 (nm s-1) jSmol (Å

2) kS

Total library −1.23 1322.58 696.98

Drug-like −0.77 1195.51 564.70

Lead-like −0.57 1233.11 494.87

Fragment-like −0.47 1178.35 393.88
oMDCK pIndcoh

qGlob rQ

Total library 765.31 0.013 0.84

Drug-like 689.00 0.009 0.87

Lead-like 717.25 0.008 0.88

Fragment-like 682.72 0.007 0.91
aSize or number of compounds in library; bNumber of compounds with #star = 0; cM
coefficient between n-octanol and water phases (range for 95% of drugs: -2 to 6.5);
drugs: 2–20); fNumber of hydrogen bonds donated by the molecule (range for 95%
hLogarithm of predicted blood/brain barrier partition coefficient (range for 95% of d
Boehringer–Ingelheim scale, in nm/s (range for 95% of drugs: < 5 low, > 500 high);
95% of drugs: 300–1000 Å2); kHydrophobic portion of the solvent-accessible molecu
lTotal volume of molecule enclosed by solvent-accessible molecular surface, in Å3 (p
aqueous solubility (range for 95% of drugs: -6.0 to 0.5); nLogarithm of predicted bin
oPredicted apparent MDCK cell permeability in nm/sec (< 25 poor, > 500 great); pIn
descriptor (0.75 to 0.95 for 95% of drugs); rPredicted polarizability (13.0 to 70.0 for 9
< −5); tPredicted skin permeability (−8.0 to −1.0 for 95% of drugs); uNumber of likel
72.52% had pharmacokinetic descriptors within the ac-
ceptable range for 95% of known drugs, while 96.88%
showed #stars ≤ 2. The “lead-like” and “fragment-like”
subsets were respectively 80.68% and 65.58% compliant
for all of the 24 most relevant computed descriptors. The
mean values for 19 selected computed descriptors have
been shown in Table 2 for all 4 compound libraries, while
tions of the total ConMedNP library in comparison with

dLogP eHBA fHBD gNRB

3.86 6.54 2.03 7.46

2.76 5.13 1.43 4.47

2.24 4.26 1.17 3.23

1.33 3.58 0.89 2.17

mol,hfob (Å2) lVmol (Å
3) mLogSwat (S in mol L-1) nLogKHSA

420.94 1314.78 −5.16 0.52

274.17 1014.47 −3.78 0.13

204.27 856.93 −3.04 −0.07

111.25 640.36 −1.78 −0.48

Ppolrz (Å
3) sLogHERG tLogKp

u# metab

42.99 −4.60 −2.99 5.53

33.17 −4.39 −2.91 4.55

27.75 −4.17 −2.85 3.40

19.67 −3.46 −2.81 1.90

olar weight (range for 95% of drugs: 130–725 Da); dLogarithm of partitioning
eNumber of hydrogen bonds accepted by the molecule (range for 95% of
of drugs: 0–6).; gNumber of rotatable bonds (range for 95% of drugs: 0–15);
rugs: -3.0 to 1.0); iPredicted apparent Caco-2 cell membrane permeability in
jTotal solvent-accessible molecular surface, in Å2 (probe radius 1.4 Å) (range for
lar surface, in Å2 (probe radius 1.4 Å) (range for 95% of drugs: 0–750 (Å2);
robe radius 1.4 Å) (range for 95% of drugs: 500–2000 Å3); mLogarithm of
ding constant to human serum albumin (range for 95% of drugs: -1.5 to 1.5);
dex of cohesion interaction in solids (0.0 to 0.05 for 95% of drugs); qGlobularity
5% of drugs); sPredicted IC50 value for blockage of HERG K+ channels (concern
y metabolic reactions (range for 95% of drugs: 1–8).
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percentage compliances for 14 selected parameters are
shown in Table 3. The mean values were used to assess the
probability of finding drug leads within the ConMedNP
compound library.

Bioavailability prediction
The bioavailability of a compound depends on the pro-
cesses of absorption and liver first-pass metabolism (Van
de Waterbeemd and Gifford 2003). Absorption in turn
depends on the solubility and permeability of the com-
pound, as well as interactions with transporters and me-
tabolizing enzymes in the gut wall. The computed
parameters used to assess oral absorption are the pre-
dicted aqueous solubility, logSwat, the conformation-
independent predicted aqueous solubility, CI logSwat, the
predicted qualitative human oral absorption, the pre-
dicted % human oral absorption and compliance to
Jorgensen’s famous “Rule of Three” (ro3). The solubility
calculation procedure implemented depends on the
similarity property space between the given molecule
and its most similar analogue within the experimental
training set used to develop the model implemented
in QikProp, i.e., if the similarity is < 0.9, then the
QikProp predicted value is taken, otherwise, the pre-
dicted property, Ppred, is adjusted such that:

Ppred¼SPexp þ 1‐Sð ÞPQP ð1Þ

where S is the similarity, and Pexp and PQP are the re-
spective experimental and QikProp predictions for the
most similar molecule within the training set. In
equation (1), if S = 1, then the predicted property is
equal to the measured experimental property of the
training set compound. According to Jorgensen’s ro3,
if a compound complies to all or some of the rules
(logSwat > −5.7, BIPcaco–2 > 22 nm/s and # Primary Me-
tabolites < 7), then it is more likely to be orally avail-
able. The distribution curves for two of the three
Table 3 Summary of percentage compliances of selected ADM
comparison with the various subsets

Library name *LogB/B *BIPcaco-2 (nm s-1) *Smol (Å
2) *S

Total library 88.53 37.28 90.36

Drug-like 99.35 43.99 99.35

Lead-like 99.72 53.70 99.72

Fragment-like 100.00 33.11 95.45
*MDCK *Indcoh

*Glob

Total library 47.14 94.92 89.88

Drug-like 59.61 99.14 97.70

Lead-like 59.86 100.00 97.81

Fragment-like 63.33 100.00 92.21
*Descriptors are defined in Tables 1 and 2; apercentage compliance to Jorgensen’s R
determinants for the ro3 (logSwat and BIPcaco–2) are
shown in Figure 2. In general 43.57% of the
ConMedNP library was compliant to the ro3, while
the respective % compliances for the various subsets
were 73.52%, 93.56% and 100% for the “drug-like”,
“lead-like” and “fragment-like” libraries. Among the
individual computed parameters, the most remarkable
was logSwat. This was met by 72.46% of the com-
pounds within the ConMedNP library, while this property
showed a Gaussian distribution for the “drug-like” and
“lead-like” subsets. Only 37.28% of the compounds fell
within the respected range for the BIPcaco–2 criterion. The
predicted apparent Caco-2 cell permeability, BIPcaco–2 (in
nm s-1), model the permeability of the gut-blood barrier
(for non-active transport), even though this parameter is
not often correctly predicted computationally (Veber et al.
2002). The histograms of the predicted qualitative human
oral absorption parameter (in the scale 1 = low, 2 =
medium and 3 = high) are shown in Figure 3. It was ob-
served 48.65% of the compounds in ConMedNP were pre-
dicted to have high human oral absorption. The predicted
% human oral absorption (on 0 to 100% scale) shows a
similar trend, 42.09% of the compounds being predicted
to be absorbed at 100% and 57.81% of the compounds
predicted to be absorbed at > 90%.
A molecule’s size, as well as its capacity to make

hydrogen bonds, its overall lipophilicity and its shape
and flexibility are important properties to consider
when determining permeability. Molecular flexibility
has been seen as a parameter which is dependent on
the number of rotatable bonds (NRB), a property
which influences bioavailability in rats (Veber et al.
2002). The distribution of the NRB for this dataset
has been discussed in detail elsewhere (Ntie-Kang et al.
ConMedNP: a natural product library from Central Afri-
can medicinal plants for drug discovery. RSC Adv, submit-
ted) and the results reveal that the compounds within the
ConMedNP library show some degree of conformational
ET-related descriptors of the total ConMedNP library in

mol,hfob (Å2) *Vmol (Å
3) *LogSwat (S in mol L-1) *LogKHSA

91.32 91.03 72.46 81.01

99.82 98.99 90.39 99.35

100.00 99.72 99.31 99.59

100.00 92.21 97.40 98.05
aro3 *LogHERG *LogKp

*# metab

43.57 58.35 92.09 81.52

73.52 63.62 95.93 91.89

93.56 76.03 97.53 96.44

100.00 100.00 98.05 92.21

ule of Three.



Figure 2 Distribution curves for compliance to Jorgensen’s “Rule of Three”. (A) calculated logSwat against count, (B) predicted BIPcaco–2
against count. Colour codes are as defined in Figure 1.
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flexibility, the peak value for the NRB being between 1
and 2, while the average value is 7.46 (Table 2).

Prediction of blood–brain barrier (BBB) penetration
Too polar drugs do not cross the BBB. The blood/brain par-
tition coefficients (logB/B) were computed and used as a
predictor for access to the central nervous system (CNS).
The predicted CNS activity was computed on a −2 (inactive)
to +2 (active) scale and showed that only 2.47% of the com-
pounds in ConMedNP could be active in the CNS (pre-
dicted CNS activity > 1). A distribution of logB/B (Figure 4)
shows a right-slanted Gaussian-shaped curve with a peak
at −0.5 logB/B units (the same for all the standard subsets),
with 88.53% of the compounds in ConMedNP falling within
the recommended range for the predicted brain/blood parti-
tion coefficient (−3.0 to 1.2). Madin-Darby canine kidney
(MDCK) monolayers, are widely used to make oral absorp-
tion estimates, the reason being that these cells also express
transporter proteins, but only express very low levels of me-
tabolizing enzymes (Veber et al. 2002). They are also used
as an additional criterion to predict BBB penetration. Thus,
our calculated apparent MDCK cell permeability could be
considered to be a good mimic for the BBB (for non-active
Figure 3 Histograms showing the distribution of human oral absorpt
transport). It was estimated that only about 47% of the com-
pounds had apparent MDCK cell permeabilities which fall
within the recommended range of 25–500 nm s-1 for 95% of
known drugs. This situation knew improvements in the
“drug-like” and “lead-like” subsets (~60% for both subsets).

Prediction of dermal penetration
This factor is important for drugs administered through the
skin. The distribution of computed skin permeability par-
ameter, log Kp, showed smooth Gaussian-shaped graphs
centred at −2.5 log KP units for all 4 datasets (Figure 5),
with ~92% of the compounds in the dataset falling within
the recommended range for 95% of known drugs. The pre-
dicted maximum transdermal transport rates, Jm (in
μ cm-2 hr-1), were computed from the aqueous solubility
(Swat) and skin permeability (Kp), using the relation (2):

Jm ¼ KP �MW � Swat ð2Þ

This parameter showed variations from 0 to
1603 μ cm-2 hr-1, with only about 1.38% of the com-
pounds in ConMedNP having predicted value of
Jm > 100 μ cm-2 hr-1.
ion predictions.



Figure 4 Plot of the physico-chemical descriptor used to predict BBB penetration. Predicted log B/B against count. The x-axis label is the
lower limit of binned data, e.g. 0 is equivalent to 0.0 to 1.0. Colour codes are as defined in Figure 1.
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Prediction of plasma-protein binding
The efficiency of a drug may be affected by the degree to
which it binds to the proteins within blood plasma. It is
noteworthy that binding of drugs to plasma proteins
(like human serum albumin, lipoprotein, glycoprotein, α,
β‚ and γ globulins) greatly reduces the quantity of the
drug in general blood circulation and hence the less
bound a drug is, the more efficiently it can traverse cell
membranes or diffuse. The predicted plasma-protein
binding has been estimated by the prediction of binding
to human serum albumin; the log KHSA parameter
(recommended range is −1.5 to 1.5 for 95% of known
drugs). Figure 6 shows the variation of this calculated
parameter within the ConMedNP dataset, as well as for
the standard subsets. This equally gave smooth
Gaussian-shaped curves centred on −0.5 log KHSA units
Figure 5 Distribution curves for the predicted skin penetration param
for the total and “drug-like” libraries and −1.5 log
KHSA units for the “lead-like” and “fragment-like”
datasets. In addition, our calculations reveal that >
81% of the compounds within the ConMedNP library
are compliant to this parameter, indicating that a ma-
jority of the compounds are likely to circulate freely
within the blood stream and hence have access to the
target site.

Metabolism prediction
An estimated number of possible metabolic reactions
has also been predicted by QikProp and used to de-
termine whether the molecules can easily gain access
to the target site after entering the blood stream. The
average estimated number of possible metabolic reac-
tions for the ConMedNP library is between 5 and 6,
eter. Colour codes are as defined in Figure 1.



Figure 6 Distribution curves for predicted plasma-protein binding. Colour codes are as defined in Figure 1.
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while those of the standard subsets are respectively
between 4 and 5, between 3 and 4 and between 1
and 2 for the “drug-like”, “lead-like” and “fragment-
like” libraries (Table 2). Even though some of the
compounds are likely to undergo as many as up to
26 metabolic reactions due to the complexity of some
of the plant secondary metabolites within the data-
base (Figure 7), ~81% of the compounds are predicted
to undergo the recommended number of metabolic
steps (1 to 8 reactions), with the situation improving
to ~92% and almost 100% in the “drug-like” and
“lead-like” subsets respectively. From Figure 7, it can
be observed that the total and “lead-like” libraries
show peak values at 3 metabolic steps, while the drug-like
subset rather shows a peak at 4 metabolic steps and the
“fragment-like” subsets peaks at 2 predicted metabolic
reactions.
Figure 7 Graphs showing the distribution of the predicted number o
are as defined in Figure 1.
Prediction of blockage of human ether-a-go-go-related
gene potassium (HERG K+) channel
Human ether-a-go-go related gene (HERG) encodes a
potassium ion (K+) channel that is implicated in the fatal
arrhythmia known as torsade de pointes or the long QT
syndrome (Hedley et al. 2009). The HERG K+ channel,
which is best known for its contribution to the electrical
activity of the heart that coordinates the heart’s beating,
appears to be the molecular target responsible for the
cardiac toxicity of a wide range of therapeutic drugs
(Vandenberg 2001). HERG has also been associated with
modulating the functions of some cells of the nervous
system and with establishing and maintaining cancer-
like features in leukemic cells (Chiesa et al. 1997). Thus,
HERG K+ channel blockers are potentially toxic and the
predicted IC50 values often provide reasonable predic-
tions for cardiac toxicity of drugs in the early stages of
f metabolic reactions for compounds in ConMedNP. Colour codes
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drug discovery (Aronov 2005). In this work, the esti-
mated or predicted IC50 values for blockage of this chan-
nel have been used to model the process in silico. The
recommended range for predicted log IC50 values for
blockage of HERG K+ channels (logHERG) is > −5. A
distribution curve for the variation of the predicted
logHERG is shown in Figure 8, which is a left-slanted
Gaussian-shaped curve, with a peak at −5.5 logHERG
units for the total library, as well as for the “drug-like”
and “lead-like” subsets. It was observed that in general,
this parameter is predicted to fall within the recommended
range for about 58% of the compounds within the
ConMedNP dataset, ~64% for the “drug-like” subset
and ~76% for the “lead-like” subset.

Usefulness of the compound library
The usefulness of the ConMedNP database in lead gen-
eration has been exemplified with the docking and
pharmacophore-based screening for potential inhibitors
of a validated anti-malarial drug target in our laboratory,
and the results will be published in a subsequent paper.
It is important to mention that virtual screening results
could provide insight and direct natural product chem-
ists to search for theoretically active principles with
attractive ADMET profiles, which have been previously
isolated, but not tested for activity against specified drug
targets (if samples are absent). This “resurrection”
process could prove to be a better procedure for lead
search than the random screening, which is a common
practice in our African laboratories. This dataset is con-
stantly being updated; meanwhile a MySQL platform to
facilitate the searching of this database and ordering of
compound samples is under development within our
group and will also be published subsequently. However,
3D structures of the compounds, as well as their
physico-chemical properties that were used to evaluate
Figure 8 A plot of predicted logHERG values for ConMedNP and stan
the DMPK profile, can be freely downloaded as add-
itional files accompanying this publication (Additional
files 1, 2, 3 and 4). In addition, information about com-
pound sample availability can be obtained on request
from the authors of this paper or from the pan-African
Natural Products Library (p-ANAPL) project (Chibale
et al. 2012; p-ANAPL 2013).

Conclusions
Modern drug discovery programs usually involve the
search for small molecule leads with attractive pharma-
cokinetic profiles. The presence of such within the
ConMedNP library is of major importance and therefore
renders the database attractive, in addition to the already
known properties – “drug-like”, “lead-like”, “fragment-
like” and diverse. This is an indication that the 3D
structures of naturally occurring compounds within
ConMedNP could be a good starting point for docking,
neural networking and pharmacophore-based virtual
screening campaigns, thus rendering ConMedNP a use-
ful asset for the drug discovery community.

Availability and requirements
3D structures of the compounds, as well as their
physico-chemical properties that were used to evalu-
ate the DMPK profile of the ConMedNP library, can
be freely downloaded (for non commercial use) as
additional files which accompany this publication
(Additional files 1, 2, 3 and 4). Physical samples for
testing are available at the various research laborator-
ies in Central Africa in varying quantities. Questions
regarding the available of compound samples could
be addressed directly to the authors of this paper.
Otherwise samples could be obtainable from the p-
ANAPL consortium, which has a mandate to collect
samples of NPs from the entire continent of Africa
dard subsets. Colour codes are as defined in Figure 1.
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and make them available for biological screening.
This network is being set up under the auspices of the
Network for Analytical and Bioassay Services in Africa
(NABSA) (Chibale et al. 2012; p- ANAPL 2013).

Additional files

Additional file 1: 3D structures of compounds currently included in
ConMedNP with calculated pharmacokinetic descriptors.

Additional file 2: 3D structures of the “drug-like” subset with
calculated pharmacokinetic descriptors.

Additional file 3: 3D structures of the “lead-like” subset with
calculated pharmacokinetic descriptors.

Additional file 4: 3D structures of the “fragment-like” subset with
calculated pharmacokinetic descriptors.
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