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ABSTRACT  

Background. Rhamnolipids, biosurfactants with a wide range of biomedical applications, are 

amphiphilic molecules produced on the surfaces of or excreted extracellularly by bacteria including 

Pseudomonas aeruginosa. However, Pseudomonas putida is a non-pathogenic model organism with 

greater metabolic versatility and potential for industrial applications.  

Methods. We investigate in silico the metabolic capabilities of P. putida for rhamnolipids 

biosynthesis using statistical, metabolic and synthetic engineering approaches after introducing key 

genes (RhlA and RhlB) from P. aeruginosa into a genome-scale model of P. putida. This pipeline 

combines machine learning methods with multi-omic modelling, and drives the engineered P. putida 

model towards an optimal production and export of rhamnolipids out of the membrane.  

Results. We identify a substantial increase in synthesis of rhamnolipids by the engineered model 

compared to the control model. We apply statistical and machine learning techniques on the 
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metabolic reaction rates to identify distinct features on the structure of the variables and individual 

components driving the variation of growth and rhamnolipids production. We finally provide a 

computational framework for integrating multi-omics data and identifying latent pathways and genes 

for the production of rhamnolipids in P. putida. 

Conclusions. We anticipate that our results will provide a versatile methodology for integrating 

multi-omics data for topological and functional analysis of P. putida towards maximization of 

biosurfactant production.  
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INTRODUCTION 

The growing demand for rhamnolipids production owes to its wide range of industrial and 

biomedical applications, including pharmaceuticals, cosmetics and detergents (Randhawa and 

Rahman, 2014). The rhamnolipids composed of glycosyl head group (i.e., rhamnose moiety) and 

fatty acid tail, well-characterized bacterial biosurfactants, are mainly produced by Pseudomonas 

aeruginosa (Rahman et al., 2002; Abdel-Mawgoud et al., 2014; Randhawa and Rahman, 2014). P. 

aeruginosa, a gram-negative opportunistic bacterial pathogen, is widely studied for the biosynthesis 

of rhamnolipids. The production of these biosurfactants relies on two precursors: L-rhamnose and R-

3-hydroxy fatty acid (FA), an intermediate of the FA degradation pathway. The rhamnosyltransferase 

A (RhlA encoded by rhlA) dimerizes R-3-hydroxy fatty acids to form R-3-((R-3-

hydroxyalkanoyl)oxy)alkanoic acids (HAA) (Déziel et al., 2003; Zhu and Rock 2008; Abdel-

Mawgoud et al., 2014); subsequently the rhamnosyltransferase RhlB catalyzes the addition of the 

first rhamnose moiety, forming mono-rhamnolipids (Rahim et al., 2001; Abdel-Mawgoud et al., 

2014). By contrast, Pseudomonas putida is a gram-negative, soil-dwelling, non-pathogenic bacterium 

and represents a model organism with versatile metabolism with valuable industrial applications 
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(Wittgens et al., 2011; Tiso et al., 2016). Although it is an evolutionary close relative of P. 

aeruginosa, its simplified genetics, the lack of complex regulatory networks found in P. aeruginosa 

and the presence of pathways required for the synthesis of rhamnolipid precursors made P. putida the 

ideal bacterium of choice to conduct this study. 

The applications of bacterial surfactants are diverse and rapidly growing in demand. One of the 

reasons rhamnolipids have become such an attractive area for biochemical research is the scope of 

their applications. Rhamnolipids could replace petrochemical derived surfactants used in many 

cleaning products detergents (Randhawa and Rahman, 2014).  Rhamnolipids have also been shown 

to be a valuable resource in the agricultural industry, providing pest resistance in various plants, e.g., 

stimulating the expression of important defense genes in tobacco plants and protecting 

monocotyledonous plants against harmful biotrophic fungi (Mulligan, 2005). Additionally, it has 

been shown that they are able to improve nutrient adsorption in plant roots (Sachdev and Cameotra, 

2013). The emulsifying properties of rhamnolipids make them an ideal tool for the bioremediation of 

oil spills. Rhamnolipids are extremely effective in aiding removing oil from contaminated soil and 

facilitating its breakdown and dispersal in aqueous environments (Chen et al, 2013; Kosaric, 2001). 

Due to their low toxicity, high bio-degradability and environmental compatibility rhamnolipids are 

used efficiently in microbial enhanced oil recovery (MEOR) and are invaluable tool in 

bioremediation efforts (Amani, 2015).  

Perhaps one of the most interesting applications of rhamnolipids is within cosmetic and 

pharmaceutical industries. Rhamnolipids show potential to be used in a range of cosmetics such as 

moisturizers, shampoo, lubricants and anti-wrinkle creams (Randhawa and Rahman, 2014). Research 

has shown rhamnolipids to have antimicrobial activities against a host of human pathogens such as 

Gram-negative bacteria (Salmonella typhimurium, Escherichia coli, Enterobacter aerogenes, Serratia 

marcescens, and Klebsiella pneumoniae), Gram-positive bacteria (Listeria monocytogenes, 

Staphylococcus aureus, S. epidermidis, Bacillus cereus and B. subtilis) and fungi (Phytophthora 

infestans, Phytophthora capsici, Botrytis cinerea, Fusarium graminearum, Mucor spp., Cercospora 

kikuchii, Cladosporium cucumerinum, Colletotrichum orbiculare, Cylindrocarpon destructans, and 

Magnaporthe grisea (Rodrigues et al., 2006; Magalhães and Nitschke, 2013). In addition to this, 

patents have been obtained for the use of rhamnolipids to treat organ transplants rejection, 



 

4 

atherosclerosis, depression, schizophrenia, burn shock, wound healing (Piljac and Piljac 2007). The 

use of rhamnolipids in these industries may make their commercialization economically viable. The 

higher profits that could be made per gram of rhamnolipids produced when compared with other 

industries such as cleaning products or bioremediation mean that the high costs of production and 

low yields would be less significant. This would come with a whole new set of challenges, as 

rhamnolipids being produced for pharmaceuticals would need to be of an extremely high purity.  

Several factors affect the quality and quantity of rhamnolipids produced and the most important 

being the carbon source and the nutrient medium. Carbon sources such as glycerol, glucose, sucrose, 

mannitol, aliphatic and aromatic hydrocarbons have been successfully used for rhamnolipid 

production by Pseudomonas spp. (Silva S, N et al., 2010; Puskarova et al., 2013). Although the use 

of low-cost materials is usually considered to solve the cost problem; selection of substrate 

compatible with cell growth is very important. 

 

The aim of this study is to investigate the metabolic capabilities of P. putida for rhamnolipids 

biosynthesis using multi-omics modelling, statistical, metabolic and biosynthetic engineering 

approaches. We explore the techniques used by Wittgens et al., (2011) and Tiso et al., (2016) by 

introducing the RhlA and RhlB genes from P. aeruginosa to reconstruct an engineered genome-scale 

model of P. putida. Genome-scale constraint-based models have been constructed and applied 

extensively to a range of problems: genome annotation (Ganter et al., 2014), comparative analyses 

(Oberhardt et al., 2011; Monk et al., 2013; Bartell et al., 2014; Babaei et al., 2014; van Heck et al., 

2016; Koehorst et al., 2016), analyses of omics data (Colijn et al., 2009; Chandrasekaran and Price 

2010; Zur et al.,  2010; Vijayakumar et al., 2017), disease (and cancer) characterization (Eyassu et 

al., 2017, Aurich et al., 2017, Angione, 2018), drug discovery (Plata et al., 2010) and metabolic 

engineering (Puchałka et al., 2008; McAnulty et al., 2012; Kim et al., 2015).  

 

We simulate single objectives using linear programming, focusing on biomass and rhamnolipids 

production. We further investigate the flux distributions using statistical and machine learning 

techniques to elucidate the role of the individual reactions and pathways in determining the predicted 

phenotype. Our predictions can be used in synthetic biology to suggest optimal steps for engineering 

microorganisms and for analyzing complex omic networks. We finally present a methodological 
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framework to integrate and analyze gene expression data in the contest of the metabolic model, in 

order to closely investigate the pathways and reactions involved in the production of rhamnolipids. 

To the best of our knowledge, this is the first study that uses multi-omics in silico modelling of P. 

putida for optimizing rhamnolipids synthesis.  

 

METHODS  

Reconstruction of the engineered constraint-based genome-scale metabolic model 

To reconstruct a metabolic engineered model of P. putida for rhamnolipids production, following 

Wittgens et al. (2011) and Tiso et al. (2016), we introduced two pathways for rhamnolipids 

biosynthesis by collating the full list of reactions catalyzed by RhlA and RhlB to an existing genome-

scale model of P. putida, iJP962 (Oberhardt et al., 2011) (Figure 1A). The RhlA and RhlB genes 

produce rhamnolipids by three sequential reactions (Figure 1A). RhlA is involved in the synthesis of 

HAA (Déziel et al., 2003), and is loosely bound to the inner membrane (Rahim et al., 2001). The next 

reaction is catalyzed by the membrane-bound RhlB rhamnosyltransferase and uses dTDP-L-

rhamnose and an HAA as precursors, yielding mono-rhamnolipids (Rahim et al., 2001). The RhlA 

and RhlB genes are clustered with rhlR and rhlI, which encode proteins involved in their 

transcriptional regulation through the quorum-sensing (QS) response and they are arranged as an 

operon. RhlI and LasI synthesize the QS autoinducer molecules butanoyl-homoserine-lactone (C4-

HSL) and 3-oxo-dodecanoyl-homoserine-lactone (3-oxo-C12-HSL), respectively. When their 

concentration reaches a threshold, they bind to the regulator proteins and induce the expression of the 

Rhl-genes (Whittgen A et al., 2017). QS response regulates the production of rhamnolipids (Van 

Delden and Iglewski 1998), as well as hundreds of additional genes (Hentzer et al., 2003; Schuster et 

al., 2003; Wagner et al., 2003).  

The full set of known biochemical reactions for rhamnolipids biosynthesis were added from the P. 

aeruginosa model (Oberhardt et al., 2008) to the P. putida model iJP962. Where appropriate, 

stoichiometrically balanced reactions of the rhamnose pathway from KEGG (Kanehisa and Goto; 

2000), MetaCyc (Caspi et al., 2016) and BRENDA (Schomburg et al., 2013) were added. Table 1 

shows the reactions for rhamnolipids biosynthesis that were added to the P. putida model. Reactions 

RHLA, RHLB and RHLC represent the rhamnosyltransferase chain A, rhamnosyltransferase chain B 

and rhamnosyltransferase 2 respectively. Reactions 3H3H and PHAC are involved in the poly(3-
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hydroxyalkanoic acid) synthase (Oberhardt et al., 2008). The reaction flux across inner and outer 

membranes was carried out by transport reactions, which were modelled as reactions converting 

intracellular into extracellular compounds. A transport reaction was also added for the export of 

rhamnolipids across the cell membrane. For the full list of reactions for rhamnolipids synthesis, 

exchange and transport see Additional file 1.  

 

The model was then manually curated to establish that the new reactions were fully integrated. This 

was achieved by evaluating metabolite specificity and metabolite charges accordingly, as well as 

reaction directionality to confirm that each reaction carried a flux. Gene-protein-reaction rules of the 

added reactions were also curated from literature (for the final metabolic model see Additional file 

2). To run the model, a linear optimization for rhamnolipid-production was then carried out, and flux 

balance analysis (see the following subsections for a detailed description) was used to analyze the 

newly reconstructed engineered model. 

 

Geometric flux balance analysis   

Flux balance analysis (FBA) is a widely used mathematical approach for modelling large-scale 

metabolic networks (Orth et al., 2010). Because FBA assumes the homeostasis of a system, it does 

not require knowledge of metabolite concentrations and enzyme kinetics. This differentiates FBA 

from other modelling techniques that require kinetic parameters, usually difficult to obtain. In FBA, 

the set of biochemical reactions is represented mathematically in the form of a stoichiometric matrix 

(S) with dimensions of m × n, where the metabolites (m) are represented in rows and the reactions (n) 

are represented as columns. The stoichiometric matrix is a numerical matrix of stoichiometric 

coefficients for each metabolite participating in a reaction. The stoichiometric coefficient for every 

metabolite consumed and produced in the system has a negative and positive coefficient respectively. 

A zero stoichiometric coefficient is given for every metabolite that does not take part in a given 

reaction. It is assumed that the system is at a pseudo-steady state 𝑆 ∙ 𝑣 = 0 that holds for internal 

metabolites, whose are reactants and products of the chemical reactions constituting the model, but 

cannot be imported or exported directly. The vector 𝑣 represents the flux distribution of the 𝑛 

reactions. Exchange metabolites can be imported and exported from the system, so they do not 
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satisfy the steady state assumption. This flux distribution 𝑣 therefore represents a feasible flux of 

metabolites through the reaction network, where under the principle of mass conservation the total 

amounts of internal metabolite consumed and internal metabolite produced are equal to zero.  

Constraints such as directionality and capacity (based on enzyme activity, Gibbs free energy change, 

and uptake rates from the literature) are placed on individual reactions by defining the upper (𝑉𝑚𝑎𝑥) 

and lower (𝑉𝑚𝑖𝑛) bounds on the range of values that the flux of each reaction can hold (𝑉𝑚𝑖𝑛 ≤ 𝑣 ≤ 𝑉𝑚𝑎𝑥). These constraints define the space of allowable flux distributions at which every metabolite is 

consumed or produced by each reaction in the system. Despite these constraints, the system is still 

underdetermined (there are more unknowns than equations), and therefore infinite possible solutions 

exist. A flux distribution can be obtained by defining an objective function that is a scalar product of 

the vector of flux rates 𝑣, and a vector of weights 𝑐, measuring how each component in the network 

contributes to the production of a biologically desirable phenotype. The set of all possible solutions 

to the FBA problem is given by the equation and constraints:  max  𝑐 ∙ 𝑣,   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑆 ∙ 𝑣 = �̇� 

  𝑥�̇� = 0     𝑖𝑓   𝑀𝑖 ∈ 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠 𝑥�̇� ∈ ℝ     𝑖𝑓   𝑀𝑖 ∈ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠 𝑉𝑚𝑖𝑛  ≤ 𝑣 ≤ 𝑉𝑚𝑎𝑥 ,                                                                                            (1) 

where in our case the vector 𝑐 allows  to select either the biomass or rhamnolipids as the objective 

function.  

In our pipeline, we use the geometric flux balance approach to define a unique flux balance solution 

(Smallbone and Simeonidis, 2009). Geometric FBA is based on a geometric representation of a FBA 

problem. In particular, every FBA problem defines a polyhedron which can be naturally decomposed 

as the sum of a convex hull and a pointed cone; FBA solutions are to be found within the hull. Since 

the vertices of the hull and the rays of the cone are uniquely defined, the center of the solution hull 

(i.e., the final FBA solution) is uniquely defined.  Using the geometric FBA algorithm allows us to 

choose a unique and well-defined flux from the space of all possible solutions. The solution provided 

also satisfies a number of additional constraints. Indeed, the model assumes that flux correlates with 
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enzyme levels, which is equivalent to the cell minimizing the amount of enzyme required to satisfy 

this objective. Moreover, the algorithm removes any fluxes representing thermodynamically 

infeasible internal cycles and it selects the solution required to satisfy the given objective from the 

remaining set of solutions. Hence, the chosen unique solution flux is in a sense ‘‘central’’ and can be 

considered unbiasedly representative of all possible FBA solutions. 

 

Objective function and uptake rates for optimal rhamnolipids synthesis 

Consistent with the reference model iJP962, we used the uptake of glucose at 10 millimoles per gram 

dry weight per hour (mmol/gDW/hr) as a control growth condition. To determine the best carbon 

source for optimal rhamnolipids synthesis, we investigated alternative carbon sources separately: 

fructose, sucrose, glycerol, benzoate and myristic acid. We simulated the growth medium with a 

single carbon source by setting to 10 mmol/gDW/hr the uptake of the carbon source under 

investigation and to zero the uptake of the other sources.  

Our P. putida model was optimized to maximize the production and export of rhamnolipids. Hence, 

we used maximum rhamnolipids production as the objective function in our engineered model. 

Geometric FBA was used to calculate the optimal flux distribution that maximizes the objective 

function. Simulations were carried out in MATLAB (version R2016a) using the COBRA toolbox 

(Schellenberger et al., 2011),  with the linear programming solver GLPK (the Matlab script is 

provided as Additional file 3). 

 

Using gene expression data to build condition-specific metabolic models 

Understanding how the transcriptomic alterations change the metabolic phenotype can provide an 

effective method for data interpretation and analysis (Vijayakumar et al., 2018; Stephens et al., 

2015). To this end, we also used the P. putida metabolic model to investigate the transcriptomic 

effects on different pathways and reactions by including gene expression data into the proposed 

model.  
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GEMsplice (Angione, 2018) was used to merge gene expression data with the P. putida metabolic 

model. The main idea is to create a profile-specific metabolic model for each single gene expression 

profile. This is done by defining the constraints on fluxes in Eq. (1) as 𝑉𝑚𝑖𝑛 𝜑(𝜃) ≤ 𝑣 ≤ 𝑉𝑚𝑎𝑥 𝜑(𝜃),                                                        (2)     
where the function 𝜑 maps the expression level 𝜃 of each gene to a coefficient for the lower- and 

upper- bounds of the corresponding reactions, and is defined as 

         𝜑(𝜃) = [1 +  𝛾|log 𝜃|]𝑠𝑔𝑛(𝜃−1),               (3)     
where the sgn operator returns a vector of ±1 (signs of  𝜃 − 1). The constant 𝛾 sets the weight of the 

gene set expression level as an indicator of the rate of production of the associated enzyme (Angione, 

2018). We ran our model with 𝛾 = 1 in order to ensure a linear effect of the transcriptomic value on 

the flux bounds of the metabolic model.  

We used the integrated model to investigate the relation between gene-expression data and 

rhamnolipids production in P. putida. We downloaded the expression data of P. putida from GEO 

(accession number: GSE28257). The dataset provides the expression levels 𝜃 of 5547 genes for 40 

samples of the P. putida wild type and 40 samples of P. putida Tn5 mutants. For each sample, a 

condition specific model was created by using Eq. (2) as constraint in the geometric FBA problem. 

We used maximum rhamnolipids production as the objective function in our engineered condition-

specific models in order to maximize the production and export of rhamnolipids.  

 

Elastic-net regression identifies key genes driving metabolic alterations 

After running the condition-specific models, we compared the predicted flux rates (i.e., the FBA 

solution vector v) of the two groups (wild type and Tn5 mutant) to identify a set of differentially 

active reactions (DARs), i.e., reactions with an adjusted p-value < 0.05. The identified reactions 

represent disrupted metabolic pathways that carry a significantly different flux between the wild type 

samples and the Tn5 mutant samples when the rhamnolipids production is maximized. To further 
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investigate those disrupted metabolic pathways and identify the genes responsible for the DARs in 

the two groups, we applied the variable selection regression method described below. The idea is to 

identify the genes that are highly predictive of the rhamnolipids production rate.  

Let t be the number of observations (samples) with p predictors (genes). Let y = (y1,…, yt)
T be the 

response (the FBA solution vector) and  X = (x1|… | xp) be the model matrix (gene expression 

matrix), where xj = (x1j,…, xtj)
T, j= 1,…, p are the predictors. For any fixed non-negative 𝜆1and 𝜆2, 

we use the elastic-net regularization criterion (Zou and Hastie, 2005), namely a linear combination of 

lasso and ridge regression penalties: 

                                          L(𝜆1, 𝜆2, 𝛽) = ‖𝒚 − 𝑿𝜷‖2 + 𝜆1‖𝜷‖1 + 𝜆2‖𝜷‖2                             (4) 

where 𝜷 = ( 𝛽1,…, 𝛽𝑝) is the vector of coefficients to be estimated, ‖𝜷‖1 = ∑ |𝛽𝑗|𝑝𝑗=1  and  ‖𝜷‖2 =∑ 𝛽𝑗2𝑝𝑗=1 . The elastic-net estimator �̂� is the minimizer of Eq. (4): 

                                                             �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{L(𝜆1, 𝜆2, 𝛽)}.                                                       (5) 

Let 𝛼 =  𝜆2/(𝜆1 + 𝜆2) and 𝜆 =  𝜆1 + 𝜆2; then solving �̂� in Eq. (5) is equivalent to the optimization 

problem 

                                            �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝒚 − 𝑿𝜷‖2 + 𝑃𝛼,𝜆(𝜷),                                          (6) 

where 𝑃𝛼,𝜆(𝜷) is the elastic-net penalty function defined as 

                                              𝑃𝛼,𝜆(𝜷) =  𝜆[(1 − 𝛼)‖𝜷‖1 + 𝛼‖𝜷‖2].                                           (7) 

In our analysis, the model matrix X was set equal to the normalized gene expression matrix, with t = 

80 observations (expression profiles) and p = 5547 predictors (genes). The response variable y was 

set equal to the vector of flux rates of the DAR to be analyzed (y is a vector with dimension t × 1). 

Hence, y is the vector with the flux rates of a given reaction resulting from running each of the t = 80 

FBA condition-specific models. For each DAR, we set the regularization parameter α = 0.5 to 

achieve a balance between lasso and ridge regression. We used a ten-fold cross validation to identify 
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the optimal λ. Simulations were carried out in R version 3.5.1 using the glmnet package 2.0-16 

(Friedman et al., 2010). 

 

RESULTS  

To implement the maximization of rhamnolipids production, we started from a genome-scale model 

of P. putida, iJP962 (Oberhardt et al., 2011). To enable the production of rhamnolipids, we 

engineered the iJP962 model by introducing the genes and reactions responsible for rhamnolipids 

biosynthesis from P. aeruginosa. Figure 1B shows the maximum production of biomass and 

maximum production and export of rhamnolipids. Using the reference condition (uptake of glucose at 

10 mmol/gDW/hr), our model predicted a production of 0.74 mmol/gDW/hr of biomass, in 

agreement with the genome-scale model iJP962.  

Figure 1B shows the rate of biomass and rhamnolipids production from the P. putida model 

simulated under different carbon sources (fructose, sucrose, glycerol, benzoate and myristic acid). 

We found that biomass synthesis and rhamnolipids production increased linearly with the rate of 

metabolite uptake. Our simulation-based predictive results are in keeping with our lab-based 

fermentation work previously carried out with Pseudomonas strains (Rahman et al., 2002; Rahman et 

al., 2009; Rahman et al., 2010; Joy et al., 2017; Parthipan et al., 2018).  In addition, we also 

identified that myristic acid (C-14) provided optimal growth rate and rhamnolipids production 

compared to the other carbon sources in this study.  

To pinpoint the key intermediates contributing to the formation of rhamnolipids, we assessed the 

pathways in the engineered model. Specifically, rhamnolipids utilize glucose-6-phosphate and acetyl-

CoA (intermediates of central metabolism) to drive the biosynthetic pathway through two distinct 

routes: the rhamnose pathway and FA pathway (Figure 1A). Glucose-6-phospate generated from 

degradation of glucose, fructose, sucrose and glycerol, when provided as a main carbon source, fed to 

the rhamnose pathway subsequently forming dTDP-rhamnose, a precursor of rhamnolipid. Consistent 

with the findings of Tiso et al., (2016), fluxes from the degradation of glucose, fructose and benzoate 

generated rhamnolipids via the rhamnose pathway. On the other hand, provision of myristic acid and 
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benzoate entered FA degradation pathway, generating intermediates for RhlA to form HAA. 

Benzoate enters central metabolism via actyl-CoA and succinyl-CoA. This is in agreement with the 

report by Abdel-Mawgoud et al., (2014). Subsequently, the RhlB formed rhamnolipids, which was 

then exported to the extracellular compartment (Figure 1A). To determine the routes of rhamnolipids 

production by the P. putida model, we evaluated the flux distribution of the rhamnose and FA 

pathway. Simulation under all different carbon growth medium revealed that the flux through the 

rhamnose pathway was dominant in producing maximum amount of rhamnolipids compared to the 

FA pathway.  

 

Rhamnolipids synthesis by the engineered model of P. putida 

To determine the maximum rhamnolipids production by the engineered in silico model, we 

investigated several carbon sources and evaluated the metabolic network comprehensively (Figure 

1B). When the P. putida model was optimized for biomass and rhamnolipids production, the amount 

of rhamnolipids production increased with the uptake of each metabolite. Metabolism of myristic 

acid (C-14), followed by fructose and sucrose/glucose, provided the best condition for optimal 

rhamnolipids synthesis. As expected, rhamnolipids synthesis increased in a linear relationship with 

the increased uptake of various carbon sources (Figure 1B). Our results also suggest that most of the 

rhamnolipids production derives from the rhamnose pathway rather than from the FA degradation 

pathway (Figures 1A and 1C). Interestingly, when myristic acid was supplied as a carbon source, 

both pathways contributed to rhamnolipids production to a similar degree. Figure 1D shows 

rhamnolipids synthesis and biomass by the engineered model under each carbon source. To 

determine whether a mixture of metabolites increased rhamnolipids production, we increased the 

uptake of mixed metabolites simultaneously. When glucose and glycerol or glucose and myristic acid 

were supplied as combinations of metabolites simultaneously, rhamnolipids production increased to 

2.19 mmol/gDW/hr and 4.50 mmol/gDW/hr respectively, compared to when each metabolite was 

supplied individually. In our previous study, a mineral salt medium used for growing biosurfactant 

producers was initially supplemented with 2 g/L glucose to initiate biomass production. This was 

followed by the addition of glycerol to test their influence on biosurfactant production. Pseudomonas 



 

13 

aeruginosa  DS10-129 produced a maximum of 1.77 g/L rhamnolipid with glycerol at 288 h 

(Rahman et al., 2002).  

 

Comparison between P. putida and P. aeruginosa for production of rhamnolipids 

Figure 1E shows the comparison between our model and the Pseudomonas aeruginosa PAO1 model 

(Oberhardt et al., 2008) in terms of rhamnolipids production under six different carbon sources 

(glucose, fructose, sucrose, glycerol, benzoate and myristic acid). The transport reactions for the 

export of rhamnolipids across the cell membrane were added to the P. aeruginosa model. In order to 

compare the two models under the same carbon sources, the transport reactions across inner and 

outer membranes for sucrose and benzoate were also included in the P. aeruginosa  model (see 

Additional file 4 for the full list of reactions).  

To analyze the different production rates of rhamnolipids, we investigated the alternative carbon 

sources separately by setting an uptake rate of 10 mmol/gDW/hr for the carbon source under 

investigation, and zero uptake for the other sources. Both models show a high production rate of 

rhamnolipids when either glucose, fructose or sucrose is provided, consistent with previous results 

(Bahia et al., 2018). Glycerol provides enough nutrients for P. putida and P. aeruginosa for the 

production of rhamnolipids in accordance with Rahman et al., (2002) and Silva et al., (2010). When 

benzoate or myristic acid were provided as sole carbon source, the production rate of rhamnolipids 

was 1.967 mmol/gDW/hr in P. putida and null in P. aeruginosa,  which might be due to the unrelated 

genome codon index and codon adaptation index profiles of the two bacteria (Weinel et al., 2002). 

However, if we used the uptake of glucose at 10 mmol/gDW/hr as a control growth condition 

(Oberhardt. et al., 2011), the production rate of rhamnolipids was 1.818 mmol/gDW/hr in both 

models. 

 

Principal Component Analysis reveals biomarkers of rhamnolipids production in P. putida 

Principal Component Analysis (PCA), a form of unsupervised machine learning, identifies data 

similarities from multidimensional biological datasets (Brunk et al., 2016). More specifically, PCA is 
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a statistical technique that uses a multi-dimensional space to convert a set of correlated variables into 

linear uncorrelated latent variables called principal components. In our case, it is based on the 

singular value decomposition (SVD) of the matrix of flux rates, and is therefore equivalent to finding 

the system of axes in the space of flux rates such that the covariance matrix is diagonal. 

We investigated the individual reactions and identified the key components that drive change in the 

growth and rhamnolipids production in the engineered model. We applied PCA on our observed flux 

dataset generated under different growth media; glucose, fructose, sucrose, glycerol, benzoate and 

myristic acid. To characterize the unique features of individual reactions and variables in the 

observed flux datasets, we plot the first two singular vectors of PCA (Figure 2A and 2B). We found 

that the first two eigenvectors sum to 88% of the variance in the observed flux. These findings 

suggest that changes in reaction fluxes correlate with the availability of various carbon sources for 

growth and rhamnolipids production. Figure 2A shows the variable correlation plot of each variable 

and the contribution for the corresponding carbon source. We found that the first component 

correlates highly with the variables fructose and sucrose, while the second component correlates with 

the variables myristic acid and benzoate. Table 2A shows the detailed contribution of each carbon 

source on the principal components. These variations are driven by changes in the amount of carbon 

sources used for growth, indicating the network adaptation, particularly in the rate of core metabolic 

reactions.  

Figure 2B shows the top-30 individual reactions, with the highest mean scores on the components, 

mapped on the first two principal components (for the full list of contributions see Additional file 5). 

ATP synthase (reaction id: RR08593) and cytochrome-c oxidase (reaction id: IR10022), together 

with the uptake of oxygen, H2O and H2O transport (reaction ids: EX_EC0001, EX_EC0007 and 

RR08674), scored highly with the first component, indicating the energy demand for growth and 

rhamnolipids synthesis (Table 2B).  The utilization of cytochrome-c oxidase is a common feature of 

several proteobacteria (Osamura et al., 2017); it is involved in the production of ATP via the 

respiratory electron transport chain and contributes to the production of the necessary enzymes 

subsequently used for ATP production by the ATP synthases (Tremblay and Déziel, 2010). One of 

the reactions that scored highly with the second component is succinate dehydrogenase (reaction id: 

RR04368). This reaction is involved both in the tricarboxylic acid cycle (TCA) and in respiration via 
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the electron transport chain linked to rhamnolipid production (Wittgens et al., 2011). Figure 2C 

reports the correlation matrix of the six variables under investigation (the distribution of each 

variable, the absolute value of the correlation, the result of the correlation test, and the bivariate 

scatterplots with a fitted line). The plot shows that the results of this preliminary analysis are in 

accordance with the results reported in the PCA variables factor map (Figure 2A).  

In order to analyze the quality of our PCA analysis, we report the scree plot (Figure 2D) and the cos2 

correlation map (Figure 2E). The first two components retain 88.8% of the information (variances) 

contained in the data, which allows us to focus only them for the statistical analysis of the model. 

Moreover, the correlation plot of cos2 (Figure 2E) indicates a good representation of the variables on 

the first two principal components. This also explains the position of the six variables in Figure 2A 

(they are close to the circumference of the correlation circle). 

In conclusion, the PCA analysis shows that our results are in agreement with those obtained by 

Wittgens et al., (2011) and Tiso et al., (2016). Indeed, the high cos2 value of glucose and fructose 

shows that they both play a key role in the metabolic pathway of rhamnolipids synthesis. Hence, 

fluxes from the degradation of glucose and fructose generate rhamnolipids via the rhamnose 

pathway. 

 

Regression analysis identifies disrupted pathways and genes  

We integrated gene expression profiles into the proposed metabolic model of P. putida to investigate 

disrupted metabolic reactions and pathways using GEMsplice (Angione, 2018). We compared 40 

samples of the P. putida wild type with 40 samples of P. putida Tn5 mutants. We simulated the 

growth medium using the single carbon source that allowed the highest production of rhamnolipids, 

i.e., myristc acid (Figure 1C). Hence, we set the uptake of myristic acid equal to 10 mmol/gDW/hr 

while the uptake of the other sources was set equal to zero. Table 3 reports the list of the pathways 

associated with the top-5 differentially active reactions (DARs), i.e., reactions with an adjusted p-

value < 0.05 (for the list of 15 DARs see Additional file 6).  
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Purine metabolism and fatty acid biosynthesis are the two pathways associated with the top-2 DARs 

with adjusted p-value of 0.0042 and 0.0043 respectively. Both pathways play a key role in the 

rhamnolipids production (Rehm et al., 2001) and bacterial membrane biogenesis (Zhang et al., 2012). 

The benzoate degradation via hydroxylation pathway (adjusted p-value = 0.0066) has also been 

previously linked to the rhamnolipids pathways (Procópio et al., 2012). Indeed, the genes encoding 

enzymes involved in the rhamnolipids productions also encode enzymes for the benzoate degradation 

via hydroxylation pathway.  It is noteworthy that the identified DARs reflect the disruption of 

metabolic pathways from the interaction between gene expression profiles (integrated through 

GEMsplice) and metabolic networks (represented by the P. putida metabolic model). As a 

consequence, these results are complementary to the outcomes obtained through metabolic network 

analysis alone, which does not take into account specific transcriptomic profiles. 

Regression analysis (elastic-net, see Methods) was then applied to identify the key genes in the 

DARs. Figure 3 shows the distribution of the top-10 genes (genes with the highest| 𝛽|) in the most 

disrupted pathway (i.e., purine metabolism) for the wild type and Tn5 mutant samples. By analyzing 

these distributions it is possible to characterize the metabolic diversity of the different samples and 

predict their behavior under different conditions. For example, the different distribution of the gene 

PP2431 might reveal a different cellular adaptation (Fernández et al., 2013). Moreover, the gene 

PP4355 has been identified as a gene involved in the encoding process of diverse flagellar 

components in Tn5 mutants samples, which might explain the different distributions in the two types 

of samples (Sharma et al., 2014). We stress that the procedure proposed here is a single case study, 

and it can be adapted and extended to identify or compare any two different types of P. putida 

samples. 

 

DISCUSSION 

The growing demand for biosurfactants requires rapid, efficient and innovative approaches for its 

synthesis, including the use of microorganisms. However, native bacterial cells are very inefficient at 

maximizing the production of industrially-relevant products. Bioengineering of such cells can 

improve the yield, but the number of potential metabolic and genetic interventions is enormous in 
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practice (Kell, 2012). At the same time, the emergence of in silico modelling enables us to metabolic 

engineer microbial networks in silico, and to predict their efficiency in a variety of growth 

conditions.  

Machine learning tools coupled with computational modelling of metabolism can rapidly identify 

ways of increasing the productivity of these cells towards maximum production of biosurfactants 

while maximizing the growth rate of the cultures. In this study we genetically engineered P. putida 

KT2440, officially classified as a “generally recognized as safe” (GRAS) strain and used in the 

production of diverse natural products, including rhamnolipids (Loeschcke and Thies, 2015). In 

particular, P. putida was observed to have resistance to higher rhamnolipid concentrations (90 g/L) in 

the production medium when compared to other microbial hosts of industrial importance like E. coli, 

B. subtilis and C. glutamicum (Wittgens et al., 2011).  

Recombinant rhamnolipid production has many industrial advantages including the opportunity to 

use non-pathogenic production strains and the ability to produce rhamnolipids independent of the 

complex quorum sensing regulation. Non-pathogenic bacterial strains have been genetically 

engineered to express P. aeruginosa rhl-genes for the heterologous rhamnolipid production (Beuker 

et al., 2016). Ochsner et al. (1995) studied rhamnolipid synthesis by recombinant P. fluorescens, P. 

putida, P. oleovorans and E. coli with the rhlAB operon from P. aeruginosa and observed 

rhamnolipid production by P. fluorescens (0.25 g/L) and P. putida (0.6 g/L). But no rhamnolipids 

were produced by recombinant E. coli and P. oleovorans, despite the detection of an active 

rhamnosyltransferase. Recombinant E. coli strains were also used by Wang et al. (2007) and Cabrera-

Valladares et al. (2006) for heterologous expression of P. aeruginosa rhlAB genes. Cha et al. (2008) 

and Cabrera-Valladares et al. (2006) reported rhamnolipid production by a recombinant P. putida 

(7.3 g/L) and recombinant E. coli HB101 (52 mg/L) with soybean oil and oleic acid as substrates 

respectively. As the production of high yields of rhamnolipids is dependent upon precursors provided 

by the metabolic flux within the bacterium, it is unlikely that simply implanting the necessary genes 

in a bacterium will be sufficient to make that organism produce rhamnolipids in higher 

concentrations (Marchant R and Banat IM, 2012). Genetic alterations can however be an important 

part of organism selection for fermentation processes, and computational tools can help finding the 

best experimental setting to maximize their production. 
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In this study, we have taken a genome-scale approach to investigate the metabolic potential of P. 

putida to produce rhamnolipids by optimizing multiple cellular functions. Figure 1B shows the rate 

of biomass and rhamnolipids production by P. putida model simulated under different carbon sources 

such as fructose, sucrose, glycerol, benzoate and myristic acid. Biomass synthesis and rhamnolipids 

production increased linearly with the rate of metabolite uptake, and myristic acid (C-14) supported 

optimal growth rate and rhamnolipids production compared to the other carbon sources. When the P. 

putida model was optimized for biomass and rhamnolipids production, the amount of rhamnolipids 

production increased with the uptake of each metabolite. Quorum sensing, namely the mechanism by 

which bacteria engage in cell-to-cell signaling communication using diffusible molecules based on a 

critical cell density, might be one of the reasons why rhamnolipid synthesis is associated with 

exponential stage of the biomass (Dusane et al., 2010).  

These outcomes support previous studies involving rhamnolipid production on sugars and sugar-

containing wastes. Sugar-containing wastes are gaining prominence due to their lower cost when 

compared to the oil- or glycerol-contain wastes despite the lower rhamnolipid yields (Henkel et al., 

2012). Agro-industrial wastes are rich in carbohydrates and lipids and hence can be used as a carbon 

source for microbial growth and rhamnolipid synthesis (Gudina EJ et al., 2015). Among them, 

molasses has a high sucrose concentration in the range of 50-55% by weight. Raza et al. (2007) 

obtained a maximum of 1.45 g/L rhamnolipid yield after 96 h of incubation with P. aeruginosa EBN-

8 mutant on 2% blackstrap molasses. Similarly, Onbasli and Aslim (2009) used 5% sugar beet 

molasses and obtained a maximum rhamnolipid yield after a 12-h incubation with P. luteola B17 and 

P. putida. Li et al. (2011) and Gudiña et al. (2015) observed the highest biosurfactant production 

yield of 2.6 g/L and 3.2 g/L by P. aeruginosa using molasses distillery wastewater and a culture 

medium containing corn steep liquor and molasses, respectively. 

We observed that the metabolism of myristic acid provided the best condition for optimal 

rhamnolipids synthesis, followed by fructose and sucrose/glucose. Plant oils are a rich source of 

myristic acid and these long chain fatty acids have been successfully used as carbon source for 

rhamnolipid biosynthesis. For instance, Radzuan et al. (2017) showed that P. aeruginosa PAO1 can 

grow and produce 0.43 g/L of rhamnolipids using palm fatty acid distillate under batch fermentation. 

Cha et al. (2008) studied the growth of P. aeruginosa EMSI and P. putida 1067 in mineral salt 
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medium with 2% soybean oil as the sole carbon source. They detected rhamnolipid productions of 

about 5.18 g/L and 6.97 g/L, respectively. This shows that P. putida 1067 is more efficient than P. 

aeruginosa EMSI in using plant oils as carbon source. Vegetable oils are more efficient in inducing 

rhamnolipid production when compared to the hydrophilic substrates like glucose, fructose and 

sucrose; this may be due to their water-soluble nature that facilitates the ease of uptake. However, 

vegetable oils are hydrophobic, and this stimulates the bacterial rhamnolipid production to increase 

their solubility (Cha et al., 2008).  

When we investigated the metabolic reactions and pathways that are disrupted by integrating the 

gene expression profiles into the proposed metabolic model of P. Putida, the top two pathways 

observed were that of purine metabolism and fatty acid biosynthesis, followed by benzoate 

degradation, pyrimidine metabolism, folate biosynthesis and porphyrin and chlorophyll metabolism. 

These results highlight the essential role of nucleic acid metabolic pathways in rhamnolipid 

biosynthesis. This might be due to the fact that under exponential growth conditions bacterial 

replications leads to the activation of purine and pyrimidine pathways. Moreover, porphyrin and 

chlorophyll metabolism play an important role in the biosynthesis of tetrapyrroles like hemes, 

chlorophylls and cobalamin. They serve as prosthetic group of many proteins involved in 

fundamental biological processes like respiration, metabolism and transport of oxygen. Further, heme 

acts as essential cofactor for enzymes such as catalases, peroxidases and cytochromes. 

Nikel PI and de Lorenzo V (2018) have recently published an updated genome annotation of P. 

putida KT2440, which includes novel catabolic pathways for 32 carbon sources, 28 nitrogen sources, 

29 phosphorus sources and 3 carbon and nitrogen sources. This unique metabolic architecture of P. 

putida will be harnessed for future studies. While FBA only allows for one objective function 

(usually the growth rate), multi-target optimization algorithms have been developed and applied to 

genome-scale metabolic models of microorganisms to optimize multiple cellular functions (Costanza 

et al., 2012; Angione and Lió, 2015). We specifically envisage the use of multi-level optimization for 

industrial biotechnology. For instance, one can engineer a microorganism to maximize the export of 

selected chemicals out of the cellular membrane, while ensuring biomass production and 

simultaneously minimizing byproduct formation. Taken together, our findings clearly show the 
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potential use of engineered strains coupled with metabolic modelling and machine learning tools for 

rhamnolipids production. 

CONCLUSION 

We engineered a genome-scale model of P. putida for optimization of rhamnolipids production as a 

high-end secondary metabolite. Our in silico model was engineered to produce rhamnolipids by 

utilizing two key enzymes: RhlA and RhlB. All corresponding biochemical reactions for 

rhamnolipids biosynthesis were added from the P. aeruginosa model (Oberhardt et al., 2008); where 

appropriate, KEGG, MetaCyc and BRENDA were used to add new reactions for the rhamnose 

pathway. Our engineered in silico model was designed to synthesize and export rhamnolipids; the 

transport mechanisms for rhamnolipids export were modelled as a reaction step that carried out 

fluxes from the intracellular to the extracellular compartment across the cell membrane. The 

engineered model was manually curated and multi-level FBA was used to reproduce the flux of 0.74 

mmol/gDW/hr of biomass, consistent with the iJP962 model (Oberhardt et al 2011).  

A further statistical analysis based on principal component analysis was performed to further 

elucidate the metabolic behavior, and to identify roles of individual nutrients and reactions in shaping 

the response of the engineered cell. Finally, transcriptomic data was integrated into our model, which 

allowed building condition-specific models of P. putida to exploit and predict the metabolic and 

genetic engineering steps needed for maximizing rhamnolipids production. These models were 

investigated with elastic-net regression with the aim of identifying latent pathways and genes 

correlated with enhanced production of rhamnolipids in P. putida. 

When experimental data on the engineered organism become available, we envisage three directions 

for extension of the model. (i) Multi-step optimization algorithms can be used to maximize the 

growth rate and rhamnolipids synthesis, and simultaneously minimize byproduct formation in a 

multi-target fashion (Angione et al., 2015). The proposed in silico design of P. putida can then be 

assessed using advanced sensitivity techniques, robustness and control analysis. (ii) If more than one 

omic-level information is available, methods from network theory (Angione et al., 2016) can be 

adapted to give insights into the model and predict the behavior of the microorganism in untested 

conditions. (iii) Alterations to the regulatory genes RhlI and RhlR could influence overall yield. In 
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addition to this, the RhlC gene, which codes for a rhamnosyl transferase responsible for mono- to di-

rhamnolipid conversion, could be regulated (partial knockdown or overexpression) to ensure the 

production of a specific type of rhamnolipid. 

The ability to adapt to such conditions across multiple omic levels can for instance be assessed by 

evaluating the changes in the proteins of the outer membrane, key players in the adaptation of 

Pseudomonas to environmental perturbations and in the production of rhamnolipids (Wilhelm et al., 

2007; Bouffartigues et al., 2011). Taken together, our findings give strong basis for metabolic 

engineering of P. putida for rhamnolipids production and provide a framework and a working model 

for further studies involving optimization of biosurfactant production. 
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Tables and Figures 

Table 1. List of reactions for rhamnolipids biosynthesis added to the P. putida model. Reactions 

RHLA, RHLB and RHLC represent the rhamnosyltransferase chain A, rhamnosyltransferase chain 

B and rhamnosyltransferase 2 respectively. Reactions 3H3H and PHAC are involved in the poly(3-

hydroxyalkanoic acid) synthase. 

  Code Reaction Formula Reversibility 

RHLA 
 

(3R)-3-Hydroxydecanoyl-acyl-carrier protein + Coenzyme A ⇒ 

(S)-3-Hydroxydecanoyl-CoA + acyl carrier protein 

Irreversible  

RHLB 
 

 

3-hydroxydecanoyl-3-hydroxydecanoate + dTDP-4-dehydro-6-

deoxy-L-mannose + H+ ⇒ dTDP + L-rhamnosyl-3-

hydroxydecanoyl-3-hydroxydecanoate 

Irreversible 

  RHLC dTDP-4-dehydro-6-deoxy-L-mannose + H+ + L-rhamnosyl-3-

hydroxydecanoyl-3-hydroxydecanoate ⇒ dTDP + L-rhamnosyl-

Lrhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate 

Irreversible 

  3H3H 2 beta-hydroxydecanoyl-beta-hydroxydecanoyl-S-CoA + H2O ⇒ 

3-hydroxydecanoyl-3-hydroxydecanoate + Coenzyme A  

Irreversible 

  PHAC (S)-3-Hydroxydecanoyl-CoA ⇒ 2 beta-hydroxydecanoyl-beta-

hydroxydecanoyl-S-CoA + Coenzyme A 

Irreversible 
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Table 2. Contribution of variables and individual reactions on the principal components. (A) 

Fructose and sucrose are highly correlated with the first component (PC1), compared to benzoate or 

myristic acid. This variation is driven by the activity of core metabolic reactions for energy demand 

towards growth and rhamnolipid synthesis. (B) The individual reactions driving rhamnolipid 

synthesis scored highly on the first two principal components; these include ATP synthase (reaction 

id: RR08593), cytochrome-c reductase and succinate dehydrogenase (reaction id: IR10022 and 

RR04368).  

(A) 
     

  PC1 PC2 PC3 PC4 PC5 

Glucose 17.733 10.669 0.001 56.157 15.396 

Fructose 19.748 4.086 0.463 4.852 3.273 

Sucrose 19.167 1.467 4.929 34.892 29.010 

Benzoate 11.431 46.868 34.473 3.889 3.100 

Glycerol 18.208 10.804 0.978 0.101 48.304 

Myristic acid 13.713 26.106 59.157 0.108 0.917 

 

(B) 
     

  PC1 PC2 PC3 PC4 PC5 

RR08593 23.878 0.683 0.878 0.575 0.040 

RR08674 22.980 9.956 2.130 3.316 0.376 

EX_EC0001 17.651 7.972 2.223 0.260 0.772 

EX_EC0007 5.952 8.456 0.015 0.201 0.096 

IR10022 5.758 0.401 17.861 0.124 0.569 

RR04368 0.963 9.394 10.448 0.323 0.162 
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Table 3. Top-5 differentially active reactions (DARs) in wild type and Tn5 mutant P. putida 

samples. The first column reports the list of the top-5 DARs (reactions with adjusted p-value < 0.05). 

The second column report the pathways associated to each disrupted reaction. The adjusted p-value is 

reported in the third column.  

Top-5 Differentially Active Reactions Pathways p-value 

L-Alanine:3-oxopropanoate aminotransferase Purine metabolism  0.0042 

3-Aminopropanoate:2-oxoglutarate 

aminotransferase 
Fatty acid biosynthesis 0.0043 

4a-hydroxytetrahydrobiopterin dehydratase Benzoate degradation via hydroxylation 0.0066 

NADH:6,7-dihydropteridine oxidoreductase Pyrimidine metabolism 0.0341 

L-Phenylalanine,tetrahydrobiopterin:oxygen 

oxidoreductase(4-hydroxylating) 
Folate biosynthesis 0.0341 
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Figure 1. Biosynthesis of rhamnolipids from the metabolic engineered model of Pseudomonas 

putida. (A) Rhamnolipids biosynthesis pathway. The figure depicts central carbon metabolism, 

glycolysis and the tricarboxylic acid (TCA) cycle, and two rhamnolipids precursor pathways: fatty 

acid (FA) degradation pathway and the rhamnose pathway. Two genes (rhlA and rhlB) and their 

corresponding reactions from P. aeruginosa were incorporated into the P. putida model. Myristic 

acid is metabolized through the FA degradation pathway, generating intermediates, where RhlA and 

RhlB sequentially generate rhamnolipids. On the other hand, RhlB synthesizes rhamnolipids through 

the rhamnose pathway at a higher flux rate (depicted by the line thickness) whereby the uptake of 

glucose, fructose, sucrose and glycerol was used as the main carbon sources. Dotted lines represent 

multistep reactions, while the line thickness represents the relative flux carried by the corresponding 

pathway. (B) Rate of biomass and rhamnolipids production from the P. putida model simulated under 
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different carbon sources. Biomass and rhamnolipids production increase linearly with the rate of 

substrate uptake. Myristic acid (C-14) provided maximum biomass and rhamnolipids production 

compared to the other carbon sources. (C) Rhamnolipids production by the P. putida model from the 

rhamnose pathway and fatty acid (FA) pathway. Under all conditions, the rhamnose pathway 

generates maximum amount of rhamnolipid.  (D) Optimization for biomass and rhamnolipids 

production by P. putida model. Under each carbon source, high rate of rhamnolipids was synthesized 

through the rhamnose pathway. (E) Comparison of rhamnolipids production in the P. putida and P. 

aeruginosa. Under each carbon source, the rate of rhamnolipids production was higher in P. putida 

than P. aeruginosa. 
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Figure 2. Principal Component Analysis of flux rates of the engineered P. putida. (A) Variables 

factor map. The distribution of each carbon sources used for growth correlates differently with the 

principal components. Fructose and sucrose correlate positively with the first component (Dim1), 

while the second component (Dim2) correlates highly with benzoate and myristic acid. (B) 

Individuals factor map. Key reactions of the central metabolism are drivers of growth and 

rhamnolipids production in the engineered P. putida model. Each component, RR08593 (ATP 

synthase) and IR10022 (cytochrome-c reductase) are distinguishable between the different 

conditions. The names of the top-30 reactions with the highest contributions have been reported in 

the factor map. (C) Correlation histogram. The distribution of each variable is shown in the diagonal 

panel representing the main carbon sources: glucose, fructose, sucrose, benzoate, glycerol and 
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myristic acid. In the top panels, the absolute value of the correlation is shown with the result of the 

correlation test (p-value < 0.001). In the bottom panels, the bivariate scatter plots are displayed, with 

a fitted line. (D) Scree plot generated from eigenvalue versus component number.  (E) Correlation 

matrix illustrating the correlation between each variable and the PCA latent dimensions. Blue color 

represents positive correlation, while the color intensity and size of the circles are proportional to the 

correlation coefficients. The reader is referred to Table 2 for individual reaction scores, and to the 

main text for further interpretation of the results. 
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Figure 3. Top-10 genes in the most disrupted metabolic pathway (purine metabolism pathway). 

The boxplots report the distribution of the 10 genes with the highest |𝛽| resulting from the elastic-net 

regression analysis in both wild type and Tn5 mutant P. putida samples. 

 


