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Abstract

Background: Mass spectrometry has become the analytical method of choice in metabolomics research. The

identification of unknown compounds is the main bottleneck. In addition to the precursor mass, tandem MS

spectra carry informative fragment peaks, but the coverage of spectral libraries of measured reference compounds

are far from covering the complete chemical space. Compound libraries such as PubChem or KEGG describe a

larger number of compounds, which can be used to compare their in silico fragmentation with spectra of

unknown metabolites.

Results: We created the MetFrag suite to obtain a candidate list from compound libraries based on the precursor

mass, subsequently ranked by the agreement between measured and in silico fragments. In the evaluation

MetFrag was able to rank most of the correct compounds within the top 3 candidates returned by an exact mass

query in KEGG. Compared to a previously published study, MetFrag obtained better results than the commercial

MassFrontier software. Especially for large compound libraries, the candidates with a good score show a high

structural similarity or just different stereochemistry, a subsequent clustering based on chemical distances reduces

this redundancy. The in silico fragmentation requires less than a second to process a molecule, and MetFrag

performs a search in KEGG or PubChem on average within 30 to 300 seconds, respectively, on an average

desktop PC.

Conclusions: We presented a method that is able to identify small molecules from tandem MS measurements,

even without spectral reference data or a large set of fragmentation rules. With today’s massive general purpose

compound libraries we obtain dozens of very similar candidates, which still allows a confident estimate of the

correct compound class. Our tool MetFrag improves the identification of unknown substances from tandem MS

spectra and delivers better results than comparable commercial software. MetFrag is available through a web

application, web services and as java library. The web frontend allows the end-user to analyse single spectra and

browse the results, whereas the web service and console application are aimed to perform batch searches and

evaluation.

Background
Mass spectrometry has become the analytical method of

choice in metabolomics research [1]. Various ionisation

methods are commonly used, such as electron impact

(EI) used with gas chromatography (GC/MS), or the soft

electrospray ionisation (ESI), which is employed in LC/

ESI-MS systems. The main bottleneck in the interpreta-

tion of metabolomics experiments is the identification of

compounds. In addition to the exact mass, tandem MS

spectra provide additional structural hints, providing a

fingerprint of the measured molecule. In tandem MS,

the molecules are interacting with a collision gas at spe-

cified kinetic energies, hence the name collision induced

dissociation. Large spectral libraries of measured refer-

ence spectra exist for GC/MS, such as the commercial

NIST library ‘08 (Gaithersburg, MD) or the GMD [2],

but for ESI-tandem MS spectral libraries are still few

and comparably small [3,4]. A different approach

towards identification is the interpretation of the mea-

sured spectra, usually with regard to the known (or

hypothetical) molecular structure.

Fragmenter with a rule set like the commercial tools

ACD Fragmenter [5] and Mass Frontier [6] generate
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fragments based on cleavage rules known from the lit-

erature, in both cases the algorithmic details are

not published. For some compounds, MassFrontier 5 is

not able to identify any fragments in negative mode [7].

Hill et al. used Mass Frontier 4 to predict the

tandem MS spectra of 102 test compounds, which were

analysed using a Micromass Q-TOF II in positive mode,

to identify the measured compound and its structure.

Candidate compounds were retrieved from PubChem

using the exact mass. MassFrontier used those struc-

tures as input and generated spectra which were

compared to the measured spectra. Finally, the com-

pounds were ranked according to the peaks common

to both the predicted and measured spectra [8]. Combi-

natorial Fragmenter such as Fragment Identificator

(FiD) proposed by Heinonen et al. [9] try to predict

the fragmentation tree given both a metabolite’s mole-

cular structure and its tandem mass spectrum. Due to

high computational complexity, even for a single med-

ium sized compound (around 300 Da) runtimes can

reach several hours. Another approach is the systematic

bond disconnection method without a rule set as

described in [10]. The resulting product ions from a sin-

gle precursor structure are matched against the

peaks measured with a high-resolution mass spectro-

meter. The software EPIC was tested against two

hand annotated spectra from the literature and is not

publicly available. The runtime was reported to be

around 1 minute to process 1-(3-(5-(1,2,4-triazol-4-yl)-

1H-indol-3-yl)propyl)-4-(2-(3-fluorophenyl)ethyl)pipera-

zine (432 Da).

MetFrag is a combinatorial fragmenter using the bond

disconnection approach, which is fast enough to screen

dozens to thousands of candidates retrieved from e.g.

KEGG, PubChem or ChemSpider compound databases.

We do not attempt to create a mechanistically correct

prediction of the fragmentation processes. Instead, we

want to perform a search in compound libraries using

the measured fragments as additional structural hints.

The paper is structured as follows: in the next section

we describe the architecture and the in silico fragmenta-

tion algorithm, including heuristics to speed up calcula-

tions and to account for molecular rearrangements

upon fragmentation. Afterwards, we explain the scoring

function. In the results section we evaluate MetFrag on

a set of 710 spectra from 151 compounds. The paper

finishes with our conclusions. All detailed results are

available as additional files.

Implementation
The workflow implemented in MetFrag is shown in

Figure 1, and covered in detail in the following sections.

MetFrag is implemented in Java and uses the Chemistry

Development Kit [11], an open source Java library. The

CDK provides algorithms and data structures for struc-

tural Chemo- and Bioinformatics and is able to read

and write common formats such as MDL, CML, InChI,

and many more.

Retrieval of candidates from compound libraries

First we perform a search in a general purpose com-

pound database for candidate molecules based on the

Figure 1 Workflow of a search based on exact mass and tandem MS spectrum. First the upstream compound library is searched using

their respective web service API. The scoring ranks the measured peaks against the in silico fragments.
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exact mass (within an error range given in ppm) of

the neutral and intact molecule. Currently three

compound databases can be queried: KEGG Com-

pound (about 16 021 entries, October 2009) [12], Pub-

Chem (37 million, June 2009) [13] and ChemSpider

(23 million, October 2009) [14]. Optionally, the search

can be restricted to compounds containing only the

elements CHNOPS, commonly occurring in natural

products.

Alternatively, the compound databases can be

searched with the elemental composition if this has

been derived from e.g. exact mass and isotopic pattern

of the precursor. Finally, the set of candidates can be

supplied by simply enumerating all database IDs to

be processed, e.g. obtained by an independent search

for metabolites of a pathway. To query other (local)

libraries, a custom wrapper can be added which contains

the search logic.

The results usually contain dozens to thousands of

hits with a similar (or identical in case of isomeric com-

pounds) mass. The databases are accessed via their web-

service interface and the resulting candidate compounds

are downloaded automatically. Hydrogens are added

explicitly to the structure where necessary.

In silico fragmentation of candidates

MetFrag generates all possible topological fragments of a

candidate compound in order to match the fragment

mass with the measured peaks. The problem of enumer-

ating all possible molecular fragments can be solved by

creating a fragmentation tree. The root consists of the

intact molecule, and each node represents a fragment,

obtained by splitting the molecule at a given bond. We

implemented this as an iterative, breadth-first algorithm.

One major speed determining factor is the number of

fragments generated, because of the combinatorial nat-

ure of the algorithm. Thus, the maximum tree depth

was introduced to improve the performance and specifi-

city. We perform additional application-specific steps to

prune the search space and take care of molecular rear-

rangements, see below. For each candidate structure the

fragments are generated in the following way (Figure 2):

Initially the candidate structure is pushed into an

“unprocessed” queue. The candidate structure is prepro-

cessed using a (small) set of rules, which describe mole-

cular rearrangements during the CID fragmentation that

can not be accounted for by the simple bond disconnec-

tion approach. Each application of these rules results in

one or more derived fragments which are added to the

Figure 2 Algorithm for in silico fragmentation. Each compound is fragmented using the bond dissociation approach. Bonds in ring systems

need special treatment. Every possible structure is generated until a given tree depth is reached. The redundancy heuristics and mass checks

reduce the search space.
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“unprocessed” queue. The actual rules will be described

later in this paper.

Then a structure is dequeued and its molecular graph

is traversed to collect all bonds to be split. A linear

bond (which is not part of a ring system) only needs to

be cleaved and results in two new fragments. Within a

ring system two bonds have to be split simultaneously,

to create the new fragments. Only the fragments larger

than the peak with the smallest mass are created, since

smaller fragments can not explain an experimental peak.

Before proceeding to the next fragment, a redundancy

check is performed to eliminate duplicate fragments.

Redundancy occurs if a fragment A is part of both par-

ent fragments AB and ABC, or the fragment A appears

in different places of the molecule, as in ABA. In both

cases the redundant structures would cause longer run-

times and higher memory consumption without gaining

any information. In addition to full (and time consum-

ing) graph isomorphism checks we describe simpler

heuristics later in this paper.

Finally, the in silico fragments are matched against the

query peaklist. The measured peaks correspond to the

charged fragments, so the matching function adds (posi-

tive mode) or removes (negative mode) a proton (1.007

Da) to the fragment mass. In a few cases, fragment ions

can have an intrinsic charge, where one of the heteroa-

toms is charged. In this case the fragment mass is used

as-is, but a penalty is added to the bond dissociation

energy of this fragment (see below).

The accuracy of a mass measured by an MS instru-

ment is typically expressed relatively in ppm. In practice

we found that especially for low masses, an additional

(absolute) deviation has to be considered. Hence Met-

Frag uses two values mzppm and mzabs respectively, to

calculate the mass error used for fragment matching.

Peaks that have such an explanation are subsequently

removed from the query peaklist and the fragment-peak

pair is saved for the final scoring. If the peak with the

smallest mass has been explained, this will raise the

minimal-mass cut-off, resulting in even fewer fragments

that need to be considered. The “unprocessed” queue is

then populated with the created and filtered fragments

and processed as described above. The fragmentation

terminates if the queue is empty or the maximum tree

depth has been reached. The candidate is then scored

based on all matched fragment-peak pairs as explained

in the following section.

Scoring candidates based on fragments explaining the

measured peaks

The score is an extension of a simple peak count: Si of a

candidate compound i is calculated based on all frag-

ments Fi that explain peaks in the measured spectrum

and the bond dissociation energy (BDE) calculated dur-

ing the in silico fragmentation:
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In general a peak with a high mass and intensity is

more characteristic than peaks with lower mass and

intensity. This is reflected by the weighted peak count

wi, as already proposed by [3,15]. The exponents

m = 0.6 and n = 3 we use are taken from the literature

[15]. The weights wi are scaled by max(w) such that it is

between 0 and 1. We also take the bond dissociation

energy (BDE) into account, the higher the BDE, the less

likely we consider a fragment. We use the standard

enthalpy change upon bond fragmentation from litera-

ture, see e.g. [16]. For each candidate f we sum up BDEb
for all bonds Bf cleaved along the fragmentation tree for

the explained fragments Fi. Afterwards, for each candi-

date the arithmetic mean ei of these BDEs is scaled by 2

max(e) such that it is between 0 and 0.5.

Neutral loss rules account for rearrangements

The ionised molecules typically have a single charge.

After the fragmentation, the charge remains with either

of the resulting fragments, the other is neutral. Because

only charged ions can be measured, the mass difference

between the two charged ions before and after the frag-

mentation is referred to as the “neutral loss” [17].

One example of a common neutral loss is H2O, which

is not a true substructure of any molecule. Instead, H2O

is formed after a hydroxyl group (OH) and a single H

are split off at different (though usually nearby) positions

(see Figure 3, where the distance is three). Because indi-

vidual H atoms are not considered during the in silico

fragmentation, the resulting fragment would never be

found without special treatment. MetFrag is checking

for structural patterns that can lead to such a non-topo-

logical fragmentation. We check within a specified topo-

logical distance of the OH-group for another hydrogen

and remove both OH and H.

This non-topological fragmentation is handled by the

rules shown in Table 1, other neutral losses are covered

by the bond-disconnection approach. Rules can be

added easily, e.g. if the compounds measured belong to
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unusual compound classes. MetFrag reads these during

start up and applies the rules to the initial candidates,

resulting in new (derived) candidate molecules.

Elimination of redundant fragments

We implemented three alternative structure redundancy

checks. Intuitively, a proper graph isomorphism check is

the best approach to eliminate structures with the same

molecular connectivity. In practice, graph isomorphism

checks are not fast enough to process thousands of

structures in reasonable time.

Alternatively we implemented an atom based redun-

dancy check: each atom is labelled with a unique identi-

fier and resulting fragments are compared to others

based on atom IDs. This method will not detect the

redundancy as in ABA mentioned above, because the

atoms in the two identical substructures A carry different

IDs. This method showed the same identification rate at

much lower runtime requirements. To reduce the com-

plexity of the test even further, the molecular formula

redundancy check was introduced, which compares frag-

ments based only on their elemental composition. This

check will detect the ABA redundancy, but will produce

false positives if two structures have the same elemental

composition, but with different bond structure, i.e. con-

nectivity. If two fragments have the same molecular for-

mula, the one that requires the lower bond dissociation

energy is chosen. This way the fragments which are more

likely to occur are considered. The molecular formula

redundancy check is used by default, because the results

are comparable at considerably reduced runtime.

Structure clustering

Depending on the upstream database, the MetFrag

result list can contain many similar structures or stereo

isomers which have identical MetFrag scores. Therefore,

we cluster the hits with tied ranks using the pairwise

Tanimoto [18] distance of the molecular fingerprints, as

implemented in the CDK [11]. All hits with a pairwise

similarity ≥ 0.95 are collapsed into one cluster.

Figure 3 Annotated tandem MS spectrum of Epicatechin. This spectrum for Epicatechin was measured on a Bruker-micrOTOFQ mass

spectrometer and manually annotated by an expert. The measured peaks and corresponding fragments for the major signals are depicted. In

addition, the non-topological water loss is highlighted in blue.

Table 1 Neutral loss rules

Ion Modea Exact Massb Topological Fragmentc Neutral Lossd Maximum Distancee

+ - 18.0106 OH H2O 3

+ - 27.0109 CN HCN 3

+ - 17.0266 NH2 NH3 3

+ - 30.0106 COH CH2O 3

+ 46.0055 COOH HCOOH 3

These rules are applied to the initial candidate structures to account for rearrangements during the tandem MS fragmentation, i.e. neutral losses of unconnected

fragments: aionisation mode where this rule can be applied, bexact mass in Da of the neutral loss, cmolecular formula of the characteristic fragment, dall atoms

that are removed, e maximum number of bonds traversed to match neutral loss.
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User interface and available APIs

Our MetFrag application features an user friendly

web interface, http://msbi.ipb-halle.de/MetFrag/. The

required input includes the tandem MS peaklist with

intensities (Figure 4, top left), selection of the upstream

compound database and respective search parameters

(top right). Alternatively, a list of database IDs can be

provided explicitly. This allows e.g. to select the candi-

dates based on their occurrence in specific pathways.

Figure 4 also shows the results browser. A feedback

form allows to store all input data, user rating of the

hypotheses, and further comments. This helps to collect

user-provided test- and training data. Spectra will not be

saved unless explicitly granted. The web interface is

based on Java Server Faces (JSF) [19], using the Apache

MyFaces [20] implementation, ICEfaces [21] (a compo-

nent library with AJAX capabilities) in an Apache Tom-

cat [22] servlet container. Thus, MetFrag is platform

independent and accessible using most javascript

enabled browsers.

We also provide a BioMoby [23] web service, which

can be called from other software, including the Taverna

workflow engine. Finally, the actual MetFrag algorithms

are available as Java library, which can be used to per-

form batch searches and evaluation.

Results and Discussion
In this section we give an example of MetFrag results

for an exemplary compound, and describe the full test

data sets and evaluation criteria. We evaluate MetFrag

on two data sets, measured on different instruments,

using either KEGG or PubChem as compound library.

For the evaluation we use the merged spectra from

different collision energies of compounds where the

database id is known. If MetFrag returns multiple

hypotheses with tied ranks, we report the most pessi-

mistic position: even if the correct solution has the high-

est observed score, if 9 other candidates also have the

same score, then we assign rank 10.

In addition to the worst case rank we report the clus-

ter rank. Clusters of compounds having a structural

Tanimoto similarity ≥ 0.95 are collapsed and treated as

one compound cluster. Again, this measure is quite con-

servative, because ranks are collapsed only within results

having identical scores, and still the worst case cluster

rank is reported. The standard deviation of both the raw

and cluster ranks for a larger benchmark data set can be

quite high, therefore we report not only the average

rank, but also the median and 75% quantile.

Example: Spectrum of Naringenin

As an example we show the analysis of a tandem MS

spectrum of Naringenin (C15H12O5, KEGG C00509)

with MetFrag. Using KEGG as compound library with a

realistic 10 ppm window around the exact mass of

272.068 Da will return 15 hits. Each candidate structure

is retrieved and fragmented as described in the previous

section.

After scoring each structure, the first three results can

be seen in Figure 4. The details window shows the frag-

ments that can be explained by the spectrum. The same

query in PubChem yields 736 candidates, and Figure 5

shows the 9 top ranked solutions, including the correct

compound at worst case rank 8. The similarity would

collapse the isomers into two clusters, resulting in a

cluster rank 5.

Benchmark data sets

Two data sets were used for evaluation, together con-

sisting of 710 spectra of 151 known compounds. Cur-

rent instruments allow the acquisition of so called ramp

spectra, which combine a range of collision energies in

one measurement. In both data sets the compounds

were measured at different collision energies. Depending

on the compound, informative fragmentation might

occur only at higher energies. For other compounds,

even low collision energies can lead to a very high

degree of fragmentation. For this reason we use compo-

site spectra: two peaks p1 and p2 from different collision

energies are merged mz = avg(mz1, mz2) if |mz1 - mz2|

≤ 0.01 Th, retaining the higher intensity max(int1, int2).

Data set I with compound library KEGG

The first data set consists of 200 spectra from 49 com-

pounds obtained on the API QSTAR Pulsar I in positive

mode at several different collision energies, e.g. 10, 20,

30 and 40 eV. The spectra were measured at the IPB

and are publicly available in the MassBank database

http://msbi.ipb-halle.de/MassBank/, see additional file 1

for a list of accession numbers.

MetFrag was used to identify the compounds using

the 49 composite spectra within KEGG. Fragments are

generated until a tree depth of two is reached. The

instrument specific deviation was set to mzabs = 0.01

and mzppm = 50.

The initial list of candidates obtained from KEGG

contained on average 10.3 compounds. The correct

compound has a median of 3 in the MetFrag result list.

25 of the correct compounds were ranked in the top 3

hits and 11 of these are ranked first. MetFrag is a great

improvement over a mass-only library search. With 16

021 entries KEGG is a comparably small library. How-

ever, the compounds are highly relevant to metabolo-

mics research.

Data set II searched against PubChem

For the second data set we used the PubChem database,

with a much larger collection of natural and synthetic

compounds. A collection of 102 compounds with an

average mass of 372.5 Da has been measured on a
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Figure 4 MetFrag web interface. The web interface with the search parameters at the top and the result list below. The extra window can be

opened for each result and shows details such as the spectrum and matching fragment structures.
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Micromass Q-TOF II in positive mode and published by

Hill et al. in [8]. Each compound was measured at five

different collision energies: 10, 20, 30, 40 and 50 eV, for

an overall of 510 spectra. All spectra are available from

MassBank as well, see additional file 2 for a list of acces-

sion numbers. For the spectra from this instrument we

used 10 ppm (mzabs = 0) as mass deviation and a maxi-

mum tree depth of two. Based on a PubChem snapshot

(June 2009) we retrieved on average 2508 candidate

compounds.

After the MetFrag scoring, the correct candidate

occurred at median rank 31.5, with the structure clus-

tering the median decreased to 14.5. The complete

results are shown in additional file 2.

We were also interested in the effect of a larger tree

depth: raising the tree depth to three increases the aver-

age runtime 5-fold, and worse, the prediction accuracy

decreases. The median of the correct compound

degraded to 39 (cluster rank 18). This behaviour can be

explained with the positive predictive value (PPV):

PPV 


TP

TP FP

where

TP

FP




peaks explained by correct compound

peaks explained byy other candidates.

Figure 5 Top candidates for Naringenin against PubChem. The 9 top ranked compounds where the correct solution (CID 932) is reported at

(tied) rank 8. Two clusters of structures (green and blue) are identical apart from their stereochemistry, the remaining three structures (yellow)

that explain all six tandem MS peaks have a Tanimoto similarity < 0.95. After clustering with a similarity ≥ 0.95 the stereoisomers are collapsed

into one cluster, resulting in a cluster rank 5 for the correct solution.
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The more (smaller) fragments are generated, the more

peaks can be matched, which leads to more false posi-

tive hits. This dependency is the reason to include the

exponent mass f
3 in the scoring function. The higher

number of false positives results in a PPV of only 0.017

(tree depth three) versus 0.028 using tree depth of two.

Similarly, we applied the neutral loss rules (Table 1) to

every generated fragment, not just the initial candidates.

Again, we obtained more matching fragments, and the

PPV decreased from 0.028 to 0.017, with an even higher

median of the correct compound cluster of 67.

Another aspect of the evaluation was to use individual

spectra instead of the composite spectra. MetFrag

showed a poor performance resulting in a median of 43

using 10 ppm. An interesting observation is that the

median improved to 39.5 if the allowed mass deviation

is increased from 10 ppm to 20 ppm. Because the mer-

ging (and averaging) of peaks in the composite spectra

usually results in a more accurate mass, some peaks in

individual spectra with a deviation beyond 10 ppm are

only matched after relaxing the allowed error window to

20 ppm.

Finally, we interpreted some of the cases where Met-

Frag did not return good results. Table 2 shows many

top 10 hits, but also several cases where MetFrag is not

able to rank the correct compound even among the top

100. Some of the problematic compounds are Ormeto-

prim, Strychnine N-oxide and Tetramisole. One reason

is the high number of very similar candidate structures,

and the difficulty to distinguish them based on the pre-

dicted spectra. Another example where many similar

structures occur is Tetracycline, but here the rather

high rank decreased from 92 to cluster rank 10. Even

these large result lists with many similar entries will still

give a very good estimation of the possible compound

class, which simplifies the subsequent (manual) interpre-

tation and identification.

We also evaluated data set I (measured on the API

QSTAR Pulsar I) against PubChem 2009. Because this

older mass spectrometer has a much lower mass accu-

racy than the Micromass Q-TOF II, both the candidate

search and the scoring found more false positive

matches. Within the 3896 (average) candidates, the

median of the correct solution is only 91. This leads to

the conclusion that a good mass accuracy of ≤10 ppm is

required. Almost all current QTOF instruments are spe-

cified at 5 ppm or less, and even higher accuracies are

available from Orbitrap or FTICR-MS instruments.

Comparison between MetFrag and MassFrontier

In their paper [8] Hill et al. evaluate the prediction per-

formance of MassFrontier 4.0 with an approach similar

to MetFrag, using PubChem (in the version from Febru-

ary 2006, with 6·106 entries) as compound database. We

added a constraint to our candidate search to include

only compounds added in or before February 2006. Our

simulated PubChem snapshot returns on average 338

candidates, the previous study only 272 structures.

Nevertheless, we use following results to compare Met-

Frag and MassFrontier. Both MetFrag and the search

procedure by Hill consider only compounds containing

the elements CHNOPS and ignore molecules which

consist of C, H only. The previous study reports two

separate evaluation strategies: the first combines the

automatic ranking with the manual a-posteriori selection

of the best spectrum, obtaining the correct result on a

median rank 2.5. In practice, this knowledge will not be

readily available. The more realistic results are presented

in the supplementary material of [8], where a heuristic

was used to select one spectrum per compound. The

heuristic rule chooses the spectrum with the lowest col-

lision energy which has at most 22% of the precursor

ion intensity. In this case the median drops to 4 (3rd

quantile at 17.5).

The median for MetFrag is 8 (3rd quantile at 19), and

decreases to 4 (3rd quantile at 11.75) if the 95% similar-

ity criterion is used. If the results are compared in more

detail, this improvement is significant (p = 0.01), tested

with a one-tailed, paired Wilcoxon signed rank test. The

results for both systems are available as additional file 3.

It would be interesting to evaluate the MassFrontier

approach with composite or ramp spectra, where neither

automatic nor manual spectra selection would be

required.

Empirical runtime evaluation

The naïve and recursive bond-disconnection approach

has very high theoretical complexity. We evaluated the

real-world runtime by sampling 5900 compounds (unre-

lated to the test sets) from PubChem with a mass

between 100 and 1000 Da. In metabolomics research,

only few compounds exceed a mass of 1000. Each com-

pound was fragmented (minimum fragment mass 30

Da) to a given tree depth of two and three. Figure 6

shows the runtime of MetFrag on a PC with Intel

Q9400 CPU at 2.66 Ghz and 8 Gb RAM with Ubuntu

8.04, and JVM Sun Java 1.6.0_16-b01. Each point shows

the time needed to compute all fragments above 30 Da.

The yellow and red lines show the non-linear runtime

for tree depth two (on average 0.2 s) or three (on aver-

age 3.4s), respectively. In practice a tree depth of two

has the best prediction accuracy (see above) and is fast

enough to analyse compounds on demand, even with

masses up to 1000 Da.

Conclusions
We have presented an algorithm which is able to identify

small molecules from tandem MS measurements among

a large set of candidate structures. The scoring function
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Table 2 Results for data set II searched against PubChem

Compound Candidates MassFrontier Rank Candidates MetFrag Rank Cluster Rank

Thioridazine 849 1 1091 1 1

Bumetanide 619 10 768 1 1

Piperacetazine 494 1 626 1 1

Sufentanil 445 1 512 1 1

Diphenoxylate 333 4 369 1 1

Tetracaine 308 22 362 1 1

Remifentanil 246 1 286 1 1

Hydroxybutorphanol 180 2 201 1 1

Alfentanil 134 1 162 1 1

Etamiphylline 100 3 104 1 1

Ergoloid Mesylate 7 1 10 1 1

Gallamine 10 1 8 1 1

Thonzide 4 1 4 1 1

Spectinomycin 310 1 361 2 1

Methionine Enkephalin 66 1 68 2 1

Leucine Enkephalin 53 2 60 2 1

Dihydroergotamine 35 1 38 2 1

Thiothixene 726 1 909 3 1

Etodolac 420 1 580 3 1

Prednisolone Tebutate 143 4 165 3 1

Oxybutynin 114 6 156 3 1

Apramycin 54 1 60 3 1

Tenoxicam 28 1 34 3 1

Vecuronium 3 1 4 3 1

Methylergonovine 515 1 629 6 1

Rolitetracycline 105 1 151 6 1

Oxytetracycline 483 4 614 11 1

Tetracycline 529 5 673 19 1

Thiethylperazine 569 2 671 2 2

Acetophenazine 435 1 546 2 2

Mebeverine 96 2 112 2 2

Salmeterol 32 1 37 2 2

Terfenadine 34 1 35 2 2

Boldenone Undecylenate 21 2 32 2 2

Buspirone 36 1 31 2 2

Gingerol 182 2 195 3 2

Betaxolol 190 5 259 4 2

Fenoterol 370 5 521 6 2

Taurocholate 59 4 65 9 2

Aminophylline 94 21 176 3 3

Sulfadimethoxine 94 18 145 3 3

Adiphenine 623 6 796 4 3

Perindopril 102 2 119 6 3

Sulfasalazine 106 5 116 6 3

Anileridine 563 251 668 7 3

Prednisolone 269 13 363 8 3

Adenosine Diphosphate 32 3 46 9 3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Tetramisole 120 1 123 85 79

Oxaprozin 461 101 607 143 94
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does not require a set of fragmentation reactions or an

actual simulation of the fragmentation process. MetFrag

is able to query KEGG, PubChem and ChemSpider, and

local databases can be integrated with little effort.

In comparison to the system described in [8] (which

included human expertise), MetFrag achieves better

results than MassFrontier.

For dedicated metabolite databases such as KEGG, the

correct identification is generally among the first few

candidates. Given the sheer size of generic compound

libraries such as PubChem, it is no surprise that the

result lists contain many structurally highly similar

compounds. Hence, an unambiguous identification is

generally not possible, but usually the compound class

can be derived from the results. A principal limitation is

the inability to distinguish stereoisomers which is not

possible from MS data alone. The final identification

according to MSI recommendations [24] requires the

comparison against spectra of authentic standards, or

even complementary analysis methods such as NMR.

Our tool MetFrag improves the identification of

unknown substances from tandem MS spectra. It is

fast enough to be used in the interactive web applica-

tion, and has a user-friendly interface and result

browser.

Availability and Requirements
• Project home page: http://metware.org/

• Operating system(s): Platform independent

• Programming language: Java

• Other requirements: Java ≥ 1.6, Tomcat ≥ 6.0

• License: GNU LGPL v3 (or later)

Additional file 1: MassBank_KEGG_results. Full list of mass spectra and

compounds used in section “Data set I searched against KEGG”. This

includes accession numbers in the MassBank system. For each

compound the number of candidates and the rank of the correct

solution is given.

Additional file 2: HillData_PubChem2009. Full list of mass spectra and

compounds used in section “Data set II searched against PubChem”. This

includes accession numbers in the MassBank system. For each

compound the number of candidates and the rank of the correct

solution is given.

Additional file

3: Comparison_MassFrontier_MetFrag_PubChem2006. This file

includes the full results from table 2 in section “Data set II searched

against PubChem”. The candidate search was restricted to the PubChem

as of February 2006. For convenience, we also include the results

reported in [8].
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February 2006 (we retrieved slightly more candidates than reported by Hill et. al.). Only the best 47 and eight worst Metfrag results are shown, the full table is
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