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Abstract: New psychoactive substances (NPSs) have concerned authorities worldwide, and monitor-
ing them has become increasingly complex. In addition to the frequent emergence of new chemical
structures, the composition of adulterants has changed rapidly. Reliable reference data on NPS are
not always available, and identifying them has become an operational problem. In this study, we
evaluated the infrared spectral data of 68 seized samples suspected of containing a synthetic cathinone
(N-ethylpentylone). We used quantum chemistry tools to simulate infrared spectra as a benchmark
and obtained infrared spectra for different cathinones, structurally analogous amphetamines, and
possible adulterants. We employed these in silico data to construct different chemometric models
and investigated the internal and external validation and classification requirements of the models.
We applied the best models to predict the classification of the experimental data, which showed
that the seized samples did not have a well-defined profile. Infrared spectra alone did not allow
N-ethylpentylone to be distinguished from other substances. This study enabled us to evaluate
whether experimental, in silico, and applied statistical techniques help to promote forensic analysis
for decision-making. The seized samples required in-depth treatment and evaluation so that they
could be correctly analyzed for forensic purposes.
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1. Introduction

New psychoactive substances (NPSs) are compounds that are not controlled by the
1961 (Single Convention on Narcotic Drugs) or the 1971 (Convention on Psychotropic
Substances) conventions in their respective pure forms or in mixtures. Because there is no
indication of control, they have become a threat to public health, in many countries [1–3].
Some NPSs have been known for over 30 years, so the term “new” does not necessarily
refer to novel drugs but rather to drugs that have recently become a threat to public
health [3,4]. NPSs include different compounds, and synthetic cathinones (SC) are the
second-most detected. Between 2009 and 2021, the United Nations Office on Drugs and
Crime (UNODC) reported 1127 NPSs and identified 17.8% (201) of them as SC [1,3]. In
Brazil, N-ethylpentylone is the most seized SC, and therefore, its correct identification is
important for law enforcement agencies.

The rapid emergence of these different structures demands techniques that provide
information faster and nondestructively, to aid decision-making. Spectroscopy has proven
suitable for detecting and identifying NPSs [5]. Spectroscopic techniques (transmission,
absorption, or reflection) are based on the interaction of matter with radiant energy [6].
Among spectroscopic techniques, near and middle infrared (NIR and MIR, respectively)
spectroscopy stands out: NIR and MIR are easy to implement and have short response
times [7–9]. NIR and MIR are based on the alteration of the dipole moment of molecules
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(overtones), which allows their vibrations to be analyzed [10,11]. Compared with other
techniques, NIR and MIR provide results rapidly, are nondestructive, and require low-cost
instrumentation. In addition, sample preparation is simple, and these techniques can be
applied to analyze samples in the liquid, semisolid, and solid states [12,13].

In the forensic domain, the Scientific Working Group for the Analysis of Seized Drugs
(SWGDRUG) recommends that these techniques be classified in the highest category
(category A) because they are selective and provide structural information [14,15]. Because
of this selectivity, these techniques have been miniaturized, which has made them portable
and allowed them to be directly applied to places of interest [16–21]. There are other, more-
robust methods that can provide structural information on isomers, such as NMR [22–26],
GC-MS [27–29], and LC-MS [30–32].

Chemometrics is a mathematical approach that can complement and amplify spectro-
scopic interpretation given that it can add information for decision-making [33]. Together,
chemometric and spectroscopic techniques improve our understanding of instrumental
data and can be applied in different areas of forensic science [34]. Chemometric studies have
been carried out on blood traces [35], urine traces for sex discrimination [36], soils [37], biological
traces [38], textile fibers [39], and vehicle bumper fragments [40], among others [41–45]. The
combination of chemometric and spectroscopic methods applied to experimental analyses
of classic illicit drugs is already being widely used [7,35,37,38,43,46].

Nevertheless, identifying NPSs remains challenging. In the case of cathinones, homolo-
gous amphetamines can impair correct recognition because of structural similarities [47–49].
More costly techniques are usually applied to resolve this situation [50–53]. According
to the UNODC, 23 signatory countries have generic legislation for controlling NPSs, but
not all of them distinguish between amphetamines and cathinones. Another point that
deserves attention is interferents, which make spectroscopic characterization even more
complex. Interferents and drugs can have similar appearances (in the case of diluents) and
physiological properties (in the case of adulterants), which can make investigations difficult
and pose unpredictable health risks [54–56].

Here, we investigated the combination of computational and chemometric methods to
evaluate Fourier-transform infrared (FTIR) spectroscopy experimental data. We used only
computational methods to obtain benchmarks for detecting N-ethylpentylone in seized
samples. The idea was to demonstrate that in silico methods can offer a protocol for
decision-making and an alternative for assessing unknown samples for which no analytical
standard was available or accessible.

2. Materials and Methods
2.1. Part I—Experimental Analyses

Sixty-eight samples suspected of containing N-ethylpentylone (Figure 1), a synthetic
cathinone, were seized in Brazil and analyzed in investigations coordinated by the Federal
Police (PF) in 2017.
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Figure 1. Structure of the molecule known as N-ethylpentylone or Ephylone, IUPAC nomenclature 
1-(2H-1,3-benzodioxol-5-yl)-2-(ethylamino)pentan-1-one, CAS 727641-67-0 with molecular weight 
of 249.31 (base) or 285.77 (HCl salt form). 

The samples were ground and homogenized before being inserted into the attenu-
ated total reflectance (ATR) accessory. The FTIR spectra were recorded on a Thermo 
Fisher Scientific Nicolet 380 spectrometer (Madison, WI, USA) equipped with a Smart Or-
bit (Madison, WI, USA) single-ATR reflection diamond crystal. However, the ATR acces-
sory is known to distort the spectrum—bands with higher wave numbers are “under-
sized”, and bands with lower wave numbers are “oversized” [8]. Thus, ATR was corrected 
by using OMNIC software version 7.2a, also by Thermo Fisher Scientific (Thermo Electron 
Corporation, now Thermo Fisher Scientific, Madison, WI, USA). To reduce noise, the av-
erage spectra of the samples obtained after 32 readings were evaluated. 

Gaussian distribution was employed to ensure that the experimental data and the 
simulated data had the same dimension. The results ranged from 4000 to 525 cm−1; the 
resolution was 2 cm−1. The generated data were organized in a spreadsheet (Excel, Mi-
crosoft Office 365, Redmond, Washington, DC, USA), and their resolution was resized to 
be consistent with the routine analysis (4 cm−1). In addition, these data later underwent 
statistical analysis and prediction. The variables were not pretreated. 

2.2. Part II—Computational Analyses 
Different NPSs were simulated, namely N-ethylpentylone; N-ethylpentylanoamine 

(an amphetamine homologous to N-ethylpentylone); 21 amphetamines (Figure 2A); 21 
cathinones homologous to amphetamines (Figure 2B), available in Table S1 of Supplemen-
tary Materials; and 12 other possible interferents (creatine, phenacetin, lidocaine, LSD, pa-
racetamol, procaine, psilocin, 25H-NBOMe, benzocaine, caffeine, metoclopramide, and 
theobromine). 
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Figure 2. Schematic representation of the molecular structures of the class of (A) amphetamines and 
(B) cathinones. 

On the basis of previous results [57], the functional DFT B3LYP [58] with the TZVP 
base [59–61], implemented in ORCA software version 4.2.1 [62], was selected for conduct-
ing this stage of the work and describing the structures. This combination was used to 
optimize the structures and to obtain the frequencies. For the analyses, chloroform was 
considered an implicit solvent; the conductor-like polarizable continuum model (CPCM) 

Figure 1. Structure of the molecule known as N-ethylpentylone or Ephylone, IUPAC nomenclature
1-(2H-1,3-benzodioxol-5-yl)-2-(ethylamino)pentan-1-one, CAS 727641-67-0 with molecular weight of
249.31 (base) or 285.77 (HCl salt form).

The samples were ground and homogenized before being inserted into the attenuated
total reflectance (ATR) accessory. The FTIR spectra were recorded on a Thermo Fisher
Scientific Nicolet 380 spectrometer (Madison, WI, USA) equipped with a Smart Orbit
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(Madison, WI, USA) single-ATR reflection diamond crystal. However, the ATR accessory
is known to distort the spectrum—bands with higher wave numbers are “undersized”,
and bands with lower wave numbers are “oversized” [8]. Thus, ATR was corrected by
using OMNIC software version 7.2a, also by Thermo Fisher Scientific (Thermo Electron
Corporation, now Thermo Fisher Scientific, Madison, WI, USA). To reduce noise, the
average spectra of the samples obtained after 32 readings were evaluated.

Gaussian distribution was employed to ensure that the experimental data and the
simulated data had the same dimension. The results ranged from 4000 to 525 cm−1;
the resolution was 2 cm−1. The generated data were organized in a spreadsheet (Excel,
Microsoft Office 365, Redmond, Washington, DC, USA), and their resolution was resized to
be consistent with the routine analysis (4 cm−1). In addition, these data later underwent
statistical analysis and prediction. The variables were not pretreated.

2.2. Part II—Computational Analyses

Different NPSs were simulated, namely N-ethylpentylone; N-ethylpentylanoamine (an
amphetamine homologous to N-ethylpentylone); 21 amphetamines (Figure 2A); 21 cathinones
homologous to amphetamines (Figure 2B), available in Table S1 of Supplementary Materials; and
12 other possible interferents (creatine, phenacetin, lidocaine, LSD, paracetamol, procaine,
psilocin, 25H-NBOMe, benzocaine, caffeine, metoclopramide, and theobromine).
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Figure 2. Schematic representation of the molecular structures of the class of (A) amphetamines and
(B) cathinones.

On the basis of previous results [57], the functional DFT B3LYP [58] with the TZVP
base [59–61], implemented in ORCA software version 4.2.1 [62], was selected for conducting
this stage of the work and describing the structures. This combination was used to optimize
the structures and to obtain the frequencies. For the analyses, chloroform was considered an
implicit solvent; the conductor-like polarizable continuum model (CPCM) [63,64] was em-
ployed. A correction (scaling factor) of the theoretical data compared with the experimental
data was performed for the selected method; the scaling factor was 0.9650 [65].

After the calculation, the data referring to the spectra in the infrared region were
organized in a spreadsheet (Excel, Microsoft Office 365). As in the case of the experimental
data, Gaussian distribution was applied to fit the simulated data from 4000 to 525 cm−1,
with a resolution of 4 cm−1. This approach allowed the spectra to be combined, to obtain a
set of mixtures that will serve as input for creating statistical models.

2.3. Part III—Statistical Analyses

Statistical analyses and/or data validation were used in each previous step. This
approach ensured the practical construction of forecast models that were later applied to
the samples of interest. Thus, a similarity analysis was carried out by employing a heat
map as a tool to understand the possible divergences between the nature of the compounds
present in the seized samples [66].
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2.3.1. Experimental Data

The 68 samples that were experimentally analyzed by ATR-FTIR contained hetero-
geneous errors that were not constant, because the synthesis of the compounds was not
standardized. Because of the complexity of these samples, evaluation started with a simple
exploratory analysis. In this step, the intensities at each wavelength were evaluated by
using Pearson’s correlation coefficient (Equation (1)):

r =
∑i(xi − x).(yi − y)√

∑i(xi − x)2. ∑i(yi − y)2
(1)

This coefficient allows the strength of the two variables to be quantified. If r = 1, the
relationship is positive and the variables are directly proportional. If r = −1, the association
indicates that the variables are inversely proportional [66]. The responses obtained through
this correlation were analyzed by employing a heat map and a histogram to quantify the
occurrences of correlation between the spectra and by using separatrices (quartiles). These
analyses were performed in a spreadsheet (Excel, Microsoft Office 365).

2.3.2. Models with the Computational Data

For the computational analysis step, the obtained data were used to formulate models
to investigate whether N-ethylpentylone was present in the seized samples. The partial least
squares discriminant analysis (PLS-DA) technique was employed to develop these models.

PLS-DA performs classification through multivariate regression, in which the depen-
dent variable consists of a vector that divides the samples into target classes (numerically
identified as +1 and −1). PLS-DA decomposes the data matrix X, which contains n samples
and m variables (matrix X(n,m)). In this case, the independent variables are the computation-
ally obtained data corresponding to the vibrations in the infrared region. Decomposition of
the data matrix gives rise to new axes (latent variables) that gather information from the
original variables [5,33]. This technique consists of a multivariate classification analysis
implemented in Pirouette software version 4.5 (Infometrix, Bothell, Washington, DC, USA).

Leave-one-out (LOO) cross-validation was applied in this stage of model construc-
tion [67,68]. LOO cross-validation consists of removing a sample and then reassessing the
model to predict the sample that was removed. This occurs systematically until all the
samples have been subjected to the process. The parameters used to evaluate the PLS-DA
results are Q2, internal correlation coefficient of the cross-validation model (Equation (2));
R2, correlation coefficient for calibration (Equation (3)); RMSEV, root mean square error
validation (Equation (4)); and RMSEC, root mean square error calibration (Equation (5)):

Q2 = 1 − ∑i(yi − ycv)
2

∑i

(
yi −

¯
yi

)2 (2)

R2 = 1 − ∑i(yi − ycal)
2

∑i=1

(
yi −

¯
yi

) (3)

RMSEV =

√√√√√∑I
i=1

(
yi −

^
yi

)2

I
(4)

RMSEC =

√√√√√∑I
i=1

(
yi −

^
yi

)2

v
(5)
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These parameters are evaluated independently and through the relations R2 > Q2

and RMSEC < RMSEV [69]. More specifically, the high value of R2 represents low data
variability, resulting in low root mean square error calibration (RMSEC) because few data
are unexplained by the model.

After the models were constructed by using the computationally obtained spectra, the
datasets were evaluated by employing the methodology of internal and external validation,
which started with leave-N-out (LNO) cross-validation, where N varied from 1 to 10 for
all the models. The mean (Q2

LNO, N = 10), the variation between LOO and LNO, and the
standard deviation were evaluated. For the model to be robust, the difference between
Q2

LNO and Q2
LOO must be minimal [70].

For external validation, the computationally obtained datasets were divided into
submodels by applying the Kennard–Stone algorithm [71], available in Dataset Division
1.2 software (Jadavpur, Kolkata, West Bengal, India). This method calculates the Euclidean
distances from the dataset, and the two most-distant samples, most dispersed in space, are
selected to group the others. We defined that a subgroup would gather 75% of the original
data and another 25%, so the algorithm generates training and test sets. This approach
assesses the prediction ability of the models, as well as their stability and robustness [72,73].

2.3.3. Assessing the Predictive Capacity of Models

The models were analyzed by using the computationally obtained data (validated
internally and externally) to evaluate performance, sensitivity, specificity, precision, and
accuracy. Experimental infrared data from monographs available in the SWGDRUG library
version 2.1 (available at https://www.swgdrug.org/ir.htm, JCAMP Format, accessed on
21 March 2022) were used. The monographs of 20 amphetamines and 20 cathinones
(available in Table S2 of Supplementary Materials) were selected because these compounds
are analogous to the compound of interest in the study. All these new data were submitted
to the same procedure of resizing the wavelengths to adjust the matrix for the chemometric
processes. The models were used to evaluate not only the NPSs but also 20 adulterants
with similar structures (available in Table S3 of Supplementary Materials).

In this evaluation, the values related to each class, either + 1 or −1, were employed as
cutoff limits. The samples that showed a positive and a negative value were considered to
belong entirely to the class indicated as +1 and −1, respectively. The cutoff limit was used
because it allowed the responses to be evaluated through figures of merit (FOMs).

This way, these known spectra obtained from the SWGDRUG libraries were submitted
to the prediction model. Thus, the answers with (i) false-positive (FP), samples of class α
erroneously assigned to class β; (ii) false-negative (FN), samples of class β wrongly assigned
to class α; (iii) true-negative (TN), samples of class α correctly assigned to class α; and
(iv) true-positive (TP), samples of class β correctly assigned to class β were inserted [56].
With this information, the parameters’ sensitivity (Equation (6)), specificity (Equation
(7)), precision (Equation (8)), and accuracy (Equation (9)) were employed to assess the
robustness of the created models [74–76].

TP
TP + FN

(6)

TN
TN + FP

(7)

TP
TP + FP

(8)

TN + TP
TN + FP + TP + FN

(9)

This analysis enables the qualitative methods to be validated and ensures better relia-
bility for the statistical procedure applied to the samples of interest. Thus, this evaluation

https://www.swgdrug.org/ir.htm
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more safely indicates the probability that a new sample (characteristics resembling the
characteristics used to create the model) belongs or not to classes [5].

2.3.4. Predicting the Samples of Interest

After the models were validated and their precision was evaluated, the experimental
data of the 68 samples seized by the Federal Police and suspected of being N-ethylpentylone
were used. Figure 3 summarizes the entire experimental procedure used here.
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Figure 3. Schematic summary of the procedures used in this work: red for experimental data; blue
for computational data; and purple for experimental data obtained from the SWGDRUG library
of monographs.

3. Results
3.1. Part I—Experimental Analyses

The analyzed samples had been seized by the Brazilian Federal Police in 2017. They
were initially identified as possibly being the synthetic cathinone known as N-ethylpentylone
because their spectral profile resembled the spectral profile of N-ethylpentylone in the
monograph available in the SWGDRUG library (Figure 4) [77]. The seized samples initially
had labels on their packages indicating that they were food for dogs and cats (Figure 5),
with different delivery destinations.

We analyzed the seized samples by spectroscopy in the infrared region without ap-
plying any analytical preparation to obtain the spectra. We ground, homogenized, and
inserted the samples into the ATR accessory. We collected spectra from 4000 to 525 cm−1,
with spectral resolutions of 4 cm−1. To reduce noise, in this analysis, we used the average
spectra obtained after 32 readings, a standard protocol used by the Brazilian Federal Police.

We did not use the 400–525 cm−1 range, because the diamond employed in the
equipment absorbs in this region. We analyzed 68 samples and obtained the average
spectrum of each of them. Figure 6 groups the superposition of these average spectra
obtained by the described methodology. We will use the nomenclature indicated in this
figure throughout sample processing.
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We observed that the samples had similar spectra. We used descriptive statistics,
Pearson’s correlation coefficient (Equation (1)), to assess the initial similarity of these
data [78].

Additionally, we employed the peaks between 800 cm−1 and 1700 cm−1 and between
2788 cm−1 and 3480 cm−1 for this evaluation because the spectra had these regions in
common. We removed these regions from the data because they could introduce a doubtful
aspect to the responses if we were to use them [79]. Figure 7 illustrates the relationships between
the experimentally evaluated samples (available in Table S4 of Supplementary Materials).

Psychoactives 2023, 2 9 
 

 

  
Figure 7. Heat map obtained by Pearson’s correlation coefficient for samples suspected of being N-
ethylpentylone. 

Figure 7 shows very similar samples and divergent samples. No comparison was less 
than zero, indicating that all the samples were correlated. More objectively, Figure 8 sum-
marizes these comparisons through a histogram. The red line represents the cumulative 
variation of these occurrences for each segment of the evaluated spectral range. We ob-
served that most samples were around similarity (0.5–0.6), and a few samples, less than 
20%, had high likeness. 

Figure 7. Heat map obtained by Pearson’s correlation coefficient for samples suspected of being
N-ethylpentylone.



Psychoactives 2023, 2 9

Figure 7 shows very similar samples and divergent samples. No comparison was
less than zero, indicating that all the samples were correlated. More objectively, Figure 8
summarizes these comparisons through a histogram. The red line represents the cumula-
tive variation of these occurrences for each segment of the evaluated spectral range. We
observed that most samples were around similarity (0.5–0.6), and a few samples, less than
20%, had high likeness.
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tal spectral data.

This analysis showed that the experimental spectra of the samples suspected of contain-
ing N-ethylpentylone and the spectrum available for N-ethylpentylone in the SWGDRUG
library of monographs had some similarity. However, we did not evaluate the samples
for possible interferences or the presence of other compounds that may have the same
response. Figure 9 indicates the correlation between the spectra of the 68 samples seized
by the Federal Police and the reference spectrum for N-ethylpentylone deposited in the
SWGDRUG library of monographs.
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Figure 9. Pearson’s correlation applied to compare the seized samples—circles in black—and the
spectrum in the infrared region deposited in the SWGDRUG library of monographs—square in
red—used as a reference for N-ethylpentylone by forensic entities.

On the basis of Figure 9, the values ranged from 0.09 to 0.80. More specifically,
about 83% (57 of 68) of the samples had values between 0.20 and 0.75. This wide range
indicated uncertainties and the need for a detailed analysis of which samples were similar
or different [80]. We better explored this range (Figure 9) on the basis of the data presented
in Table 1. These results gather the numerical values for the quartiles and allow the dataset
to be analyzed more accurately.
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Table 1. Maximum, minimum, and quartile values for the experimental data compared with the
spectrum available on the SWGDRUG platform.

Descriptive Statistical Used Quartile Value Description

Minimum 0.0863 Lowest value within the set
Maximum 0.8041 Highest value within the set
1st quartile 0.5944 25% of the data are found below this value
2nd quartile 0.6856 Median or 50% of the data are found below this value
3rd quartile 0.7304 75% of the data are found below this value
4th quartile 0.8041 Maximum value or 100% of the data are found below this value

From the analysis summarized in Table 1, 50% of the dataset correlated up to 0.6856,
and 75% of the evaluated spectra correlated up to 0.7304. Given the need for analytical
standards, we used a spectral survey through computational analysis to identify which
spectra could contain N-ethylpentylone.

3.2. Part II—Computational Analyses

We simulated 21 amphetamines, 21 cathinones [45], and 12 adulterants. We obtained
all these results by using chloroform as the implicit solvent and the functional DFT B3LYP
with the TZVP base. All the obtained data resulted in structures with positive vibra-
tional frequencies, which ensured that the structures were in a structural conformation of
minimum energy [81].

Because the theoretical spectra use harmonic approximations and do not consider
some anharmonic effects in the calculations, the wavelengths obtained in the simulation
were shifted [82]. To correct these responses, we used the scaling factor 0.9650, available at
NIST (National Institute of Standards and Technology) [65].

We applied the Gaussian distribution [83] to the obtained frequency data. This ap-
proach fit the simulated data in the experimental data dimension. For this, we used the
wavelengths from 520 to 1700, from 2788 to 3156 cm−1, and from 3316 to 3480 cm−1 with
resolution resembling the resolution of the experimental data, totaling 431 wavelengths.

Additionally, we combined the frequency for each pair of simulated compounds to
acquire the resulting spectrum of the mixture. The proposal was to simulate the addition of
adulterants to the spectra of the different NPSs studied here. This combination allowed
us to construct data matrixes for use during chemometric analyses. Table 2 shows the
resulting mixtures.

Table 2. Composition of the chemometric models obtained from the combination or not of computa-
tionally obtained spectra.

Combination Group 1 Group 2 Samples

1 Individual amphetamines Individual cathinones 42
2 Amphetamines with adulterants Cathinones with adulterants 504
3 Amphetamines with N-ethylpentylone Cathinones with N-ethylpentylone 42
4 Amphetamines with N-ethylpentylanoamine Cathinones with N-ethylpentylanoamine 42
5 Individual amphetamines Adulterants with N-ethylpentylone 24
6 Individual adulterants Adulterants with N-ethylpentylanoamine 24
7 Individual amphetamines Amphetamines with N-ethylpentylone 42
8 Individual amphetamines Amphetamines with N-ethylpentylanoamine 42
9 Individual cathinones Cathinones with N-ethylpentylone 42

10 Individual cathinones Cathinones with N-ethylpentylanoamine 42

11 Individual amphetamines with
N-ethylpentylone

Individual cathinones and with
N-ethylpentylone 84

12 Individual amphetamines with
N-ethylpentylanoamine

Individual cathinones and with
N-ethylpentylanoamine 84
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3.3. Part III—Statistical Analysis

We used the combinations shown in Table 2 to create the PLS-DA models. More
specifically, the data matrixes contained 431 variable wave numbers, referring to the
computationally obtained spectroscopic results. We grouped the values obtained for each
of the models in Table 3.

Table 3. Parameters of the developed PLS-DA models.

Models Principal Components %Information R2 Q2 ∆(R2−Q2) RMSEC RMSEV

M1 3 71.8776 0.9253 0.8936 0.0317 0.2840 0.3278
M2 4 71.9650 0.7763 0.7593 0.0170 0.4748 0.4908
M3 3 94.3680 0.9008 0.8181 0.0827 0.3268 0.4324
M4 3 93.3712 0.9624 0.9132 0.0492 0.2041 0.2978
M5 6 67.9705 0.7322 0.0189 0.7133 0.5977 1.1309
M6 7 77.2237 0.7264 0.2588 0.4676 0.6219 0.9778
M7 3 85.0025 0.9249 0.8003 0.1246 0.2846 0.4488
M8 6 92.5215 0.9204 0.6357 0.2848 0.3047 0.6119
M9 6 94.6613 0.8709 0.7627 0.1082 0.3881 0.4948

M10 3 88.5391 0.8647 0.8292 0.0355 0.3820 0.4149
M11 3 78.9113 0.7660 0.7252 0.0408 0.4936 0.5278
M12 3 83.4734 0.8444 0.8243 0.0201 0.4019 0.4201

On the basis of the results in Table 3, the parameters varied for each model. The
principal components varied from 3 to 7, with accumulated information from 67.9705%
(M5) to 94.6613% (M9). The correlation coefficient for calibration (R2) ranged from 0.7264
(M6) to 0.9624 (M4). We obeyed the other parameters according to the relationship exposed
in Equations (2) to (5). Furthermore, the difference between the values of R2 and Q2 varied
between 0.0170 (M2) and 0.7133 (M5) [84,85].

We applied the leave-n-out (LNO) test to assess the stability of the cross-validation
coefficient (Q2) of the models. In addition, we grouped the results on Q2

LNO variations in
Table 4.

Table 4. Cross-validation test result of models M1 to M12.

Model Q2
LOO (N=1) Q2

LNO
(Average, N = 10) |∆(Q2

LOO−Q2
LNO)| S (St. Desv.) Maximum Variation

M1 0.8936 0.8934 0.0002 0.0092 Q2
L6O = 0.9055

M2 0.7593 0.7982 0.0389 0.0140 Q2
L6O = 0.8071

M3 0.8181 0.8024 0.0157 0.0258 Q2
L5O = 0.8271

M4 0.9132 0.9035 0.0097 0.0170 Q2
L6O = 0.9197

M5 0.0189 0.0712 0.0523 0.0539 Q2
L6O = 0.1671

M6 0.2588 0.2063 0.0525 0.0506 Q2
L6O = 0.2938

M7 0.8003 0.8079 0.0076 0.0224 Q2
L2O = 0.8462

M8 0.6357 0.6175 0.0182 0.0344 Q2
L6O = 0.6901

M9 0.7627 0.7543 0.0084 0.0107 Q2
L4O = 0.7689

M10 0.8292 0.8315 0.0023 0.0161 Q2
L6O = 0.8491

M11 0.7252 0.7294 0.0042 0.0126 Q2
L8O = 0.7485

M12 0.8243 0.8245 0.0002 0.0109 Q2
L7O = 0.8380

We observed that the responses for Q2
LNO in the models ranged from 0.0712 (M5) to

0.9035 (M4), with standard deviations of 0.0506 and 0.0170, respectively. LOO and LNO
differed from 0.0002 (M1 and M12) to 0.0525 (M6) units. This information allowed us to
observe the stability of the models given that a high standard deviation and an extensive
range of values between Q2

LOO and Q2
LNO indicate internal problems in the validated

dataset. Thus, we conducted external validation to evaluate the robustness of the models
and how adjusted they were. Table 5 gathers the resulting parameters for this validation.
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Table 5. Parameters obtained with external validation by using the Kennard–Stone method for
dividing datasets.

Model Training Set Test Set SEP PRESS R2 % Hit

M1 31 11 0.4076 1.8277 0.9196 100.0%
M2 378 126 0.5591 39.3867 0.7083 90.5%
M3 30 12 0.9103 9.9434 0.1739 66.7%
M4 30 12 1.1510 15.8975 0.0020 50.0%
M5 18 6 1.52 × 105 1.39 × 1011 0.0307 66.7%
M6 18 6 1.17 × 105 8.16 × 1010 0.0008 66.7%
M7 30 12 0.8640 8.9586 0.4143 75.0%
M8 30 12 0.7638 6.9998 0.4580 91.7%
M9 30 12 0.3862 1.7901 0.8510 91.7%

M10 30 12 0.7670 7.0597 0.4784 91.7%
M11 62 22 0.8914 17.4794 0.2064 72.7%
M12 62 22 0.9912 21.6154 0.0635 54.5%

The submodels obtained by the Kennard–Stone method provided the parameters
described in Table 5. The R2 values ranged from 0.9196 (M1) to 0.0008 (M6), indicating that
the models with the lowest correlation were very well adjusted to the dataset. Moreover,
the SEP and PRESS values also provided information about the modeling error: the higher
the value, the greater the residual error.

We validated the predictions on the basis of the consistency between the evaluated
and validated (both internally and externally) models and the dataset obtained by the
simulation. For this approach, we used experimental spectra in the infrared region of
known structures available on the SWGDRUG platform. The procedure consisted of
predicting the classification of amphetamines (20), cathinones (20), and adulterants (20)
known in the models. We used the figures of merit to evaluate these responses. With
the responses obtained by applying the logical tests, we received information about the
sensitivity, specificity, precision, and accuracy of the model. Table 6 gathers the results for
the logical tests applied to the predictions and robustness percentages.

Table 6. Responses of the figures of merit and the robustness of the models obtained by using
computationally obtained data.

Model FP TN FN TP Sensitivity Specificity Precision Accuracy

M1 0 20 3 17 85.0% 100.0% 100.0% 92.5%
M2 2 18 3 17 85.0% 90.0% 89.5% 87.5%
M3 0 20 3 17 85.0% 100.0% 100.0% 92.5%
M4 2 18 2 18 90.0% 90.0% 90.0% 90.0%
M5 17 3 0 20 100.0% 15.0% 54.1% 57.5%
M6 17 3 0 20 100.0% 15.0% 54.1% 57.5%
M7 2 18 1 19 95.0% 90.0% 90.5% 92.5%
M8 9 11 7 13 65.0% 55.0% 59.1% 60.0%
M9 13 7 11 9 45.0% 35.0% 40.9% 40.0%

M10 20 0 17 3 15.0% 0.0% 13.0% 7.5%
M11 0 20 8 12 60.0% 100.0% 100.0% 80.0%
M12 1 19 2 18 90.0% 95.0% 94.7% 92.5%

We used the parameters indicated by Equations (6) to (9) to evaluate these predictions.
We observed that models M1, M2, M3, M4, M7, and M12 presented values above 85% for
sensitivity, specificity, precision, and accuracy. The other models either proved to be very
specific and not very sensitive or very sensitive and not very specific. Furthermore, these
different models did not have adequate accuracy.

We included N-ethylpentylone in the group of cathinones used to verify the predictive
capacity. Because N-ethylpentylone is the structure of interest in this work, we included
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its spectrum, made available by the SWGDRUG library of monographs, in this dataset.
Thus, we included this molecule in the group used to evaluate the predictive capacity of the
models by using known NPS structures. Table 7 combines the values and classes predicted
for N-ethylpentylone by the models.

Table 7. Prediction value for the experimental spectrum of N-ethylpentylone in the different models
developed in this work and the class indicated as correct.

Model Forecast Value for N-ethylpentylone (c15) Expected Classes

M1 −0.46 Individual cathinones
M2 −0.18 Cathinones with adulterants
M3 −0.71 Cathinone with N-ethylpentylone
M4 −1.27 Cathinone with N-ethylpentylanoamine
M5 −2.06 Adulterants with N-ethylpentylone
M6 −1.64 Adulterants with N-ethylpentylanoamine
M7 −1.38 Amphetamines mixed with N-ethylpentylone
M8 −0.58 Amphetamines mixed with N-ethylpentylanoamine
M9 0.13 Individual cathinones
M10 0.27 Individual cathinones
M11 0.13 Individual and mixed amphetamines with N-ethylpentylone
M12 −0.70 Individual cathinones and mixed with N-ethylpentylanoamine

Only two models (M6 and M8) were not able to predict the spectrum of N-ethylpentylone
itself or a homologous cathinone correctly. The other models predicted the correct class.

From the same ideal of evaluating the predictive capacity of the models, we used
the experimental data available in the SWGDRUG library of monographs for adulterants.
We expected that the models would not indicate the presence of NPSs, because the data
concerned only adulterants. However, the models were not able to predict the 20 spectra of
the adulterants in the infrared region, as illustrated in Figure 10.
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Figure 10. Prediction of the spectra in the infrared region of 20 adulterants obtained from the
SWGDRUG library of monographs. The black bars group together the ratings for the model that
contained the 21 amphetamines (+1) and cathinones (−1) mixed with adulterants (model M2). The
blue bars gather the predictions by using the models containing only the pure adulterants (+1) and
combine them with N-ethylpentylone (−1) (model M5). Finally, the red bars illustrate the predictions
by using the model that contained the pure adulterants (+1) and their mixture with the amphetamine
homologous to N-ethylpentylone (model M6).



Psychoactives 2023, 2 14

For the most part, we observed that the classification of adulterants was erroneously
predictive. The models indicated that they belonged to classes that contained some NPSs
and not just individual adulterants. We observed that models M5 and M6 correctly pre-
dicted only samples d01, d10, and d17. Model M1 (in black) foresaw five possible adulter-
ants (d01, d06, d07, d11, and d16) in the class of amphetamines mixed with adulterants
(positive values in this model) and 15 possible adulterants in the class of cathinones with
adulterants (negative values in this model).

Finally, Table 8 summarizes all the information obtained during the performed valida-
tions and evaluations. The symbol 3 indicates that the modeling or validation parameters
or the figures of merit were obeyed. If the parameters were not reached, they are shown
with the symbol x.

Table 8. Summary of evaluations carried out on the basis of the modeling parameters, validations,
and figures of merit for the developed models.

Model PLS-DA Models Cross-Validation External Validation Figure of Merit
M1 3 3 3 3

M2 3 3 3 3

M3 3 3 x 3

M4 3 3 x 3

M5 X x x X
M6 X x x X
M7 X 3 x 3

M8 X x x X
M9 X 3 3 X
M10 3 3 x X
M11 3 x x X
M12 3 3 x 3

Cells in red represent models that did not meet the minimum assessment requirements; those in green indicate
the models that satisfactorily met the evaluated parameters.

Models M1 and M2 presented the best responses for all the analyses. We understand
that external validation is a crucial step in evaluating the dataset. Therefore, we disregarded
models M3 and M4 in the subsequent analyses.

3.4. Forecasting Seized Samples by PLS-DA

On the basis of the modeling carried out with the computationally obtained data
(Table 3), the internal (Table 4) and external (Table 5) validations, and the analysis of figures
of merit (Table 6), we submitted the experimental data originating from the arrests of
the Federal Police Brazilian to the forecast. In the first stage of this work, we analyzed
68 samples suspected of containing the N-ethylpentylone in their composition (Figure 6).
Thus, we used models with adequate sensitivity, specificity, precision, and accuracy for the
prediction, to reduce the rate of false positives or false negatives, as indicated in Table 8.

We performed the prediction of these samples, and interpretation of the results fol-
lowed the principle. The more positive or negative, the greater the correspondence with
the class indicated in that model. In Figure 11, we summarized the ranking results for the
two best models (numerical values in Table S5 of Supplementary Materials).

The prediction provided by these two models indicated the presence of some structure
resembling amphetamines in the seized samples. In Figure 11a, model M1 predicted that
32 of the 68 samples were individual amphetamines and that the others were individual
cathinones (36 of 68). As expected, model M2 indicated that all the samples belonged to
classes containing amphetamines with adulterants and not cathinones.

We used the percentile function to return the k-th values in a range. As described in
Table 9, we explored the percentages from 10% to 100%.
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Figure 11. Prediction of samples suspected of being N-ethylpentylone in the models: (a) M1—individual
amphetamines and cathinones; and (b) M2—amphetamines and cathinones with adulterants.

Table 9. Summary of percentiles for the classification of seized samples suspected of being N-
ethylpentylone in models M1 and M2.

Percentile M1 M2 Description

10% −0.10 0.15 10% of the results are below this value.
30% −0.06 0.22 30% of the results are below this value.
50% −0.01 0.28 50% of the results are below this value.
60% 0.02 0.35 60% of the results are below this value.
70% 0.07 0.38 70% of the results are below this value.
80% 0.14 0.49 80% of the results are below this value.
90% 0.35 0.82 90% of the results are below this value.

100% 0.80 1.52 All responses are below this value.

On the basis of the responses summarized in Table 9, we observed that model M1
classified 50% of the seized samples as cathinones (negative values) and the remaining
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samples as amphetamines (positive values). We observed dispersed results regarding
model M2, indicating that the samples may have various constitutions.

4. Discussion

When we analyzed the experimental data by comparing Figures 4 and 6, we observed
that the samples had similar profiles. However, in Figure 7, we observed that some samples
were not correlated, indicating that the compositions were not homogeneous. Figure 8
reinforced this observation, as most samples showed similarity of less than 0.6. Only
less than 20% of the samples showed similarity higher than 0.8. Interpreting spectra
in the infrared region is not trivial and cannot be done by direct comparison (match),
because the two spectra might be considerably similar while the compounds have different
compositions. Indeed, infrared spectroscopy indicates bands of chemical groups, which
may belong to different molecules [10]. These similarity metrics do not discriminate against
structural differences in that there may be instrumental problems or sample impurities [86].

Given that there is no quality control for drugs, interferents may have a similar infrared
profile, possibly generating uncertainties in the analyses. These interfering compounds can
be (i) adulterants, compounds added to mimic some of the effects expected for these drugs,
or (ii) diluents, compounds that do not produce psychoactive effects but can increase the
bulk [87,88].

To reproduce this condition, we also computed the spectra of possible adulterants,
21 amphetamines, and 21 other cathinones, N-ethylpentylone, and its similar amphetamine.
We used these data to prepare the training sets that were the basis of the models described
in Table 2.

Table 3 indicated that the relations R2 > Q2 and RMSEC < RMSEV were respected in
all cases. Moreover, the difference between R2 and Q2 suggests that the possibility of the
models being overfitted to the data will be minimum, so this value should be the minimum
possible [85]. Thus, the cutoff criterion used for this evaluation corresponded to values
lower than 0.1 [84].

Tables 4 and 5 refer to internal (crossed) and external validations (using the Kennard–
Stone algorithm). We observed that the models that contained only the adulterants could
not specifically indicate the compounds. The responses in Figure 11 reinforced this obser-
vation and suggested that the spectroscopic characteristics of the adulterants were diffuse,
so this group of compounds could be more significant or would need to be mixed. This
group did not provide cohesion for the adequate modeling of the classes. Furthermore,
the responses indicated that other studies to evaluate mixtures by computational means
are possible.

Table 6 allowed us to evaluate the predictive capacity of the models, as a validation of
the prediction, through figures of merit. With this approach, we were able to observe the
sensitivity, specificity, prediction, and accuracy of detecting samples resembling the study
system. By using spectral data from known samples, which are already employed as refer-
ences in several forensic laboratories, we validated the predictive capacity of the models
developed with computationally obtained data. In this evaluation with real experimental
data, models M1, M2, M3, M4, M7, and M12 provided the best rates of correct classification.
Table 7, which shows the predictions for the N-ethylpentylone spectrum available in the
SWGDRUG library of monographs, reinforced this observation.

Table 8 allowed us to analyze all the responses together and to make more-assertive
decisions when choosing the best model. Thus, we conducted the other analyses by using
only models M1 and M2, which presented sensitivity, specificity, and accuracy values above
85%. In addition, these models were under the other evaluated parameters.

Finally, we predicted samples suspected of being N-ethylpentylone, seized by the
Brazilian Federal Police. The responses showed that the presence of amphetamines could
be identified in most samples. In model M1, 47.1% and 52.9% of the samples belonged to
the class of pure amphetamines and cathinones, respectively. When the presence of possible
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adulterants was considered, as in the case of model M2, all the samples were classified as
belonging to the class of amphetamines with adulterants.

Given that the infrared spectroscopy technique allows functional groups and some
intra- and intermolecular interactions to be analyzed, the technique was not enough to
identify the single structures of amphetamines or cathinones in the samples. In models
M1 and M2, most samples presented nominal values very close to the limit, around zero.
Therefore, the identity of the compound as amphetamine or cathinone must be confirmed
by ancillary techniques.

Different studies have applied spectroscopy in the infrared region to identify illicit
drugs in seizures or to aid in harm reduction. Dixon et al. evaluated three techniques
(FTIR, 1H NMR, and GC-MS) for obtaining information on the drug composition of seized
samples [89]. The authors concluded that analyzing response acquisition time and precision
is important. If the objective involves quick responses, FTIR is the most appropriate
technique. If accurate analysis is targeted, GC-MS is chosen. GC-MS is widely accepted
as the gold standard for monitoring drug supply [90,91]. However, the method cannot
provide timely information for consumers to make a decision or for police to seize samples.
Thus, other techniques, such as infrared spectroscopy with Fourier-transform, ultraviolet-
visible spectroscopy, or Raman spectroscopy, would be necessary. In all cases, two (or more)
analytical methods are needed to validate the presence or absence of a substance [14,90].
Wallace et al. proposed implementing multiple techniques to indicate the composition
of drugs consumed in the context of a party [92]. For infrared analysis, they evaluated
fentanyl-like drugs and compared them with the SWGDRUG library. The evaluations were
limited to the available database. Green et al. also used different techniques, including FTIR,
to analyze fentanyl drugs obtained from seizures. However, one of the main criticisms of
using this technique is the need for updated sample libraries [93].

According to these results, although SWGDRUG classifies spectroscopy in the infrared
region as Category A for pure or high-purity samples [14], specific conditions still need to
be discussed. Issues related to spectroscopic analysis can occur because of (i) the resolution,
(ii) linearity corrections, (iii) the absence of analytical standards for NPSs, (iv) the type
of mathematical corrections used to collect interferograms, and (v) the amount of the
sample [7,86], which justifies the use of interpretation through chemometric methods in
conjunction with spectroscopic analysis [7].

Developing chemical drug profiles through modeling allows (i) the more assertive
comparison of samples to be made, (ii) the geographic origin to be identified, (iii) drug
trafficking and distribution to be tracked, (iv) the chemical reagents used in production
to be assessed, and (v) interferences (diluents and/or adulterants) to be identified [94]. In
addition to that, the structural alterations of psychoactive compounds are frequently found
in the context of NPSs. Clandestine laboratories have no control, insecurity factors, and
possible cross-contamination [4].

The results obtained here are essential because seized NPSs are becoming increas-
ingly diverse and contain countless possible adulterants. However, as much as there is
an information gap that needs to be filled for fast decision-making, a new discussion on
spectroscopy in the infrared region is needed. This technique has been recently consol-
idated because of its instrumental facility and potential for providing faster responses
than other methods. However, differentiating between similar structures or characterizing
contaminated samples must be considered.

The information obtained and analyzed here needs to be combined into a larger
context of forensic intelligence, where the data are put into perspective [95–99]. This
procedure allows the problem to be understood with alternative information from different
methodologies to solve crimes and to support decision-making [100–102].

5. Conclusions

We applied spectroscopy in the infrared region to obtain prompt information in
the repressive context and for harm reduction. The proposed computational approach
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can identify amphetamines and/or cathinones in seized samples. The combination of
computational simulation and statistical methods adequately sets a benchmark for new
psychoactive substances. PLS-DA can predict the unknown samples in the modeled classes.
However, infrared spectroscopy cannot differentiate between N-ethylpentylone and its
homologous amphetamine. The reason for this behavior must be assessed so that the real
influence of adulterants on the spectra can be determined. A more detailed study of the
interferents may also be required. Other techniques, such as GC-MS, must provide more-
assertive identification in a forensic laboratory. Literature shows similar conclusions [89–93].
Nevertheless, this study can give presumptive information and be a first step toward using
computer simulation to compose benchmarks for in situ comparison. A more robust dataset
can aid in decision-making in a multidisciplinary and integrated context of NPS forensics.

Creating a comprehensive dataset to follow international surveillance trends can be
meaningful. The methodology studied in this work provides essential and adaptable
information to identify new substances or harmful contaminants. The main advantage
is that these benchmarks dismiss the need for laboratory supplies and regulatory autho-
rizations. Using computational standards associated with chemometrics can be helpful
for law enforcement and human rights in that these standards reduce the time needed for
conducting the experimental tests.
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9. Beć, K.B.; Grabska, J.; Huck, C.W. NIR Spectroscopy of Natural Medicines Supported by Novel Instrumentation and Methods for
Data Analysis and Interpretation. J. Pharm. Biomed. Anal. 2021, 193, 113686. [CrossRef]

10. Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy, 4th ed.; Cengage Learning: Boston, MA, USA,
2008; ISBN1 10: 0-495-11478-2; ISBN2 13: 978-0-495-11478-9.

11. Levine, I.N. Quantum Chemistry; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009; p. 751.
12. Ning, Y.-C. (Ed.) Yong-Cheng Ning Interpretation of Infrared Spectra. In Interpretation of Organic Spectra; Wiley: Hoboken, NJ,

USA, 2011; pp. 129–146.
13. Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.:

Chichester, UK, 2006.
14. Scientific Working Group for the Analysis of Seized Drugs, (SWGDRUG). SWGDRUG Recommendations Version 7.1; United States

Departament of Justice: Washington, DC, USA, 2016.
15. Magalhães, D.F.; Santos, F.J.V.; Barbosa, D.M.D. Aplicações Da Espectroscopia de Infravermelho Próximo Na Monitorização de

Processos Farmacêuticos. Master’s Thesis, Faculdade de Ciências da Universidade de Lisboa: Lisboa, Portugal, 2014.
16. Kranenburg, R.F.; Weesepoel, Y.; Alewijn, M.; Sap, S.; Arisz, P.W.F.; van Esch, A.; Keizers, P.H.J.; van Asten, A.C. Dataset of

Near-Infrared Spectral Data of Illicit-Drugs and Forensic Casework Samples Analyzed by Five Portable Spectrometers Operating
in Different Wavelength Ranges. Data Brief 2022, 45, 108660. [CrossRef]

17. Kranenburg, R.F.; Weesepoel, Y.; Alewijn, M.; Sap, S.; Arisz, P.W.F.; van Esch, A.; Keizers, P.H.J.; van Asten, A.C. The Importance
of Wavelength Selection in On-Scene Identification of Drugs of Abuse with Portable Near-Infrared Spectroscopy. Forensic Chem.
2022, 30, 100437. [CrossRef]

18. Kranenburg, R.F.; Ou, F.; Sevo, P.; Petruzzella, M.; de Ridder, R.; van Klinken, A.; Hakkel, K.D.; van Elst, D.M.J.; van Veldhoven,
R.; Pagliano, F.; et al. On-Site Illicit-Drug Detection with an Integrated Near-Infrared Spectral Sensor: A Proof of Concept. Talanta
2022, 245, 123441. [CrossRef]

19. Kranenburg, R.F.; Ramaker, H.; Sap, S.; van Asten, A.C. A Calibration Friendly Approach to Identify Drugs of Abuse Mixtures
with a Portable Near-infrared Analyzer. Drug Test Anal. 2022, 14, 1089–1101. [CrossRef]

20. Alonzo, M.; Alder, R.; Clancy, L.; Fu, S. Portable Testing Techniques for the Analysis of Drug Materials. WIREs Forensic Sci. 2022,
4, e1461.

21. Kranenburg, R.F.; Ramaker, H.-J.; van Asten, A.C. Portable near Infrared Spectroscopy for the Isomeric Differentiation of New
Psychoactive Substances. Forensic Sci. Int. 2022, 341, 111467. [CrossRef] [PubMed]

22. Trinklein, T.J.; Thapa, M.; Lanphere, L.A.; Frost, J.A.; Koresch, S.M.; Aldstadt, J.H. Sequential Injection Analysis Coupled to
On-Line Benchtop Proton NMR: Method Development and Application to the Determination of Synthetic Cathinones in Seized
Drug Samples. Talanta 2021, 231, 122355. [CrossRef] [PubMed]

23. Zhao, Y.; Wu, B.; Hua, Z.; Xu, P.; Xu, H.; Shen, W.; Di, B.; Wang, Y.; Su, M. Quantification of Cathinone Analogues without
Reference Standard Using 1H Quantitative NMR. Anal. Sci. 2021, 37, 1577–1582. [CrossRef] [PubMed]

24. Groombridge, C.J. NMR Spectroscopy in Forensic Science. In Annual Reports on NMR Spectroscopy; Academic Press: Cambridge,
MA, USA, 1996; pp. 215–297.

25. Hulme, M.C.; Hayatbakhsh, A.; Brignall, R.M.; Gilbert, N.; Costello, A.; Schofield, C.J.; Williamson, D.C.; Kemsley, E.K.; Sutcliffe,
O.B.; Mewis, R.E. Detection, Discrimination and Quantification of Amphetamine, Cathinone and nor -ephedrine Regioisomers
Using Benchtop 1H and 19F Nuclear Magnetic Resonance Spectroscopy. Magn. Reson. Chem. 2021. mrc.5156, early view. [CrossRef]

26. Seibert, E.; Kunert, O.; Pferschy-Wenzig, E.-M.; Schmid, M.G. Characterization of Three Novel 4-Methylaminorex Derivatives
Applied as Designer Drugs. Molecules 2022, 27, 5770. [CrossRef]

27. Kranenburg, R.F.; Stuyver, L.I.; de Ridder, R.; van Beek, A.; Colmsee, E.; van Asten, A.C. Deliberate Evasion of Narcotic Legislation:
Trends Visualized in Commercial Mixtures of New Psychoactive Substances Analyzed by GC-Solid Deposition-FTIR. Forensic
Chem. 2021, 25, 100346. [CrossRef]

28. Laposchan, S.; Kranenburg, R.F.; van Asten, A.C. Impurities, Adulterants and Cutting Agents in Cocaine as Potential Candidates
for Retrospective Mining of GC-MS Data. Sci. Justice 2022, 62, 60–75. [CrossRef]

29. Md Ghazi, M.G.; Lee, L.C.; Sino, H.; Abdul Halim, M.I. Review of Contemporary Chemometric Strategies Applied on Preparing
GC–MS Data in Forensic Analysis. Microchem. J. 2022, 181, 107732. [CrossRef]

http://doi.org/10.1080/10408347.2018.1439724
http://www.ncbi.nlm.nih.gov/pubmed/29437467
http://doi.org/10.21577/0103-5053.20200205
http://doi.org/10.7324/JAPS.2019.90319
http://doi.org/10.1016/j.jpba.2020.113686
http://doi.org/10.1016/j.dib.2022.108660
http://doi.org/10.1016/j.forc.2022.100437
http://doi.org/10.1016/j.talanta.2022.123441
http://doi.org/10.1002/dta.3231
http://doi.org/10.1016/j.forsciint.2022.111467
http://www.ncbi.nlm.nih.gov/pubmed/36154979
http://doi.org/10.1016/j.talanta.2021.122355
http://www.ncbi.nlm.nih.gov/pubmed/33965022
http://doi.org/10.2116/analsci.21P048
http://www.ncbi.nlm.nih.gov/pubmed/33994416
http://doi.org/10.1002/mrc.5156
http://doi.org/10.3390/molecules27185770
http://doi.org/10.1016/j.forc.2021.100346
http://doi.org/10.1016/j.scijus.2021.11.004
http://doi.org/10.1016/j.microc.2022.107732


Psychoactives 2023, 2 20

30. Boronat Ena, M.D.M.; Cowan, D.A.; Abbate, V. Ambient Ionization Mass Spectrometry Applied to New Psychoactive Substance
Analysis. Mass Spectrom. Rev. 2021, 42, mas.21695. [CrossRef]

31. Waldman, W.; Kała, M.; Lechowicz, W.; Gil, D.; Anand, J.S. Severe Clinical Toxicity Caused by 25I-NBOMe Confirmed Analytically
Using LC-MS-MS Method. Acta Biochim. Pol. 2018, 65, 567–571. [CrossRef]

32. Fogarty, M.F.; Papsun, D.M.; Logan, B.K. Analysis of Fentanyl and 18 Novel Fentanyl Analogs and Metabolites by LC-MS-MS,
and Report of Fatalities Associated with Methoxyacetylfentanyl and Cyclopropylfentanyl. J. Anal. Toxicol. 2018, 42, 592–604.
[CrossRef]

33. Ferreira, M.M.C. QUIMIOMETRIA—Conceitos, Métodos e Aplicações, 1st ed.; Editora da Unicamp: Campinas, Brazil, 2015.
34. Roux, C.; Bucht, R.; Crispino, F.; de Forest, P.; Lennard, C.; Margot, P.; Miranda, M.D.; NicDaeid, N.; Ribaux, O.; Ross, A.; et al.

The Sydney Declaration—Revisiting the Essence of Forensic Science through Its Fundamental Principles. Forensic Sci. Int. 2022,
332, 111182. [CrossRef] [PubMed]

35. Mistek-Morabito, E.; Lednev, I.K. Discrimination of Menstrual and Peripheral Blood Traces Using Attenuated Total Reflection
Fourier Transform-Infrared (ATR FT-IR) Spectroscopy and Chemometrics for Forensic Purposes. Anal. Bioanal. Chem. 2021, 413,
2513–2522. [CrossRef] [PubMed]

36. Sharma, S.; Kaur, H.; Singh, R. Sex Discrimination from Urine Traces for Forensic Purposes Using Attenuated Total Reflectance
Fourier Transform Infrared Spectroscopy and Multivariate Data Analysis. Int. J. Leg. Med. 2022, 136, 1755–1765. [CrossRef]
[PubMed]

37. Newland, T.G.; Pitts, K.; Lewis, S.W. Multimodal Spectroscopy with Chemometrics for the Forensic Analysis of Western Australian
Sandy Soils. Forensic Chem. 2022, 28, 100412. [CrossRef]

38. Takamura, A.; Ozawa, T. Recent Advances of Vibrational Spectroscopy and Chemometrics for Forensic Biological Analysis.
Analyst 2021, 146, 7431–7449. [CrossRef] [PubMed]

39. Aljannahi, A.; Alblooshi, R.A.; Alremeithi, R.H.; Karamitsos, I.; Ahli, N.A.; Askar, A.M.; Albastaki, I.M.; Ahli, M.M.; Modak, S.
Forensic Analysis of Textile Synthetic Fibers Using a FT-IR Spectroscopy Approach. Molecules 2022, 27, 4281. [CrossRef] [PubMed]

40. Qiu, W.; Li, W. Non-Destructive Characterization and Discrimination of Vehicle Bumpers Fragments in Forensic Science Using
Molecular Spectral Fusion Analysis and Chemometrics. Microchem. J. 2021, 167, 106299. [CrossRef]

41. Sauzier, G.; van Bronswijk, W.; Lewis, S.W. Chemometrics in Forensic Science: Approaches and Applications. Analyst 2021, 146,
2415–2448. [CrossRef]

42. Popovic, A.; Morelato, M.; Roux, C.; Beavis, A. Review of the Most Common Chemometric Techniques in Illicit Drug Profiling.
Forensic Sci. Int. 2019, 302, 109911. [CrossRef]

43. Risoluti, R.; Materazzi, S.; Gregori, A.; Ripani, L. Early Detection of Emerging Street Drugs by near Infrared Spectroscopy and
Chemometrics. Talanta 2016, 153, 407–413. [CrossRef] [PubMed]

44. Salonen, T.; Ahrens, B.; Bovens, M.; Eliaerts, J.; Huhtala, S.; Nordgaard, A.; Alberink, I. Chemometrics in Forensic Chemistry—Part
II: Standardized Applications—Three Examples Involving Illicit Drugs. Forensic Sci. Int. 2020, 307, 110138. [CrossRef] [PubMed]

45. Bruni, A.T.; de Carvalho, P.O.M.; Rodrigues, C.H.P.; Leite, V.B.P. In silico Methods in Forensic Science: Quantum Chemistry and
Multivariate Analysis Applied to Infrared Spectra of New Amphetamine- and Cathinone-Derived Psychoactive Substances.
Forensic Chem. 2018, 9, 21–34. [CrossRef]

46. Braz, A.; Santos Silva, C.; Peixoto, A.C.; Pimentel, M.F.; Pereira, G.; Caixeta Castro Souza Braga, P.; Martini, A.L.; Lino Fernandes
Alcântara, T. Preliminary Study on the Identification of Synthetic Cathinones in Street Seized Samples by Raman Spectroscopy
and Chemometrics. J. Raman Spectrosc. 2021, 52, 901–913. [CrossRef]

47. Tcharkhetian, A.E.G.; Bruni, A.T.; Rodrigues, C.H.P. Combining Experimental and Theoretical Approaches to Study the Structural
and Spectroscopic Properties of Flakka (α-Pyrrolidinopentiophenone). Results Chem. 2021, 3, 100254. [CrossRef]

48. Rodrigues, C.H.P.; Leite, V.B.P.; Bruni, A.T. Can NMR Spectroscopy Discriminate between NPS Amphetamines and Cathinones?
An Evaluation by in silico Studies and Chemometrics. Chemom. Intell. Lab. Syst. 2021, 210, 104265. [CrossRef]

49. De Santana, D.C.A.S.; de Santana, F.J.M. A Brief Overview on the Importance of Analyzing Drug Adulterants in the Treatment of
Non-Fatal Overdose and Substance Use Disorder of Street Cocaine. Forensic Toxicol. 2021, 39, 275–281. [CrossRef]

50. Dragan, A.-M.; Parrilla, M.; Feier, B.; Oprean, R.; Cristea, C.; de Wael, K. Analytical Techniques for the Detection of Amphetamine-
Type Substances in Different Matrices: A Comprehensive Review. TrAC Trends Anal. Chem. 2021, 145, 116447. [CrossRef]

51. Campos, E.; de Martinis, E.; de Martinis, B. Forensic Analysis of Illicit Drugs and Novel Psychoactive Substances in Wastewater:
A Review of Toxicological, Chemical and Microbiological Aspects. Braz. J. Anal. Chem. 2021, 9, 15–34. [CrossRef]

52. Harper, L.; Powell, J.; Pijl, E.M. An Overview of Forensic Drug Testing Methods and Their Suitability for Harm Reduction
Point-of-Care Services. Harm Reduct. J. 2017, 14, 52.
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