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Abstract 

Objective: Mitragynine is the main active compound of Mitragyna speciose (Kratom in Thai). The understanding of 

mitragynine derivative metabolism in human body is required to develop effective detection techniques in case of 

drug abuse or establish an appropriate dosage in case of medicinal uses. This in silico study is based upon in vivo 

results in rat and human by Philipp et al. (J Mass Spectrom 44:1249–1261, 2009).

Results: Gas-phase structures of mitragynine, 7-hydroxymitragynine and their metabolites were obtained by 

quantum chemical method at B3LYP/6-311++G(d,p) level. Results in terms of standard Gibbs energies of reaction for 

all metabolic pathways are reported with solvation energy from SMD model. We found that 7-hydroxy substitution 

leads to changes in reactivity in comparison to mitragynine: position 17 is more reactive towards demethylation and 

conjugation with glucuronic acid and position 9 is less reactive towards conjugation with glucuronic acid. Despite 

the changes, position 9 is the most reactive for demethylation and position 17 is the most reactive for conjugation 

with glucuronic acid for both mitragynine and 7-hydroxymitragynine. Our results suggest that 7-hydroxy substitution 

could lead to different metabolic pathways and raise an important question for further experimental studies of this 

more potent derivative.
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Introduction
Mitragynine is the alkaloid derived from Kratom (Mitrag-

yna speciose), a plant commonly found in Thailand and 

throughout the South East Asia region [1, 2]. Like many 

other opioid plants, there are claims of medical uses [3, 4] 

but these plants are also potentially illegal drugs of abuse 

[5, 6]. In additional to natural sources, mitragynine and 

its derivative may be obtained by total syntheses reported 

by researchers in Japan [7] and United States [8]. One of 

the more potent but naturally occurring derivatives of 

mitragynine is 7-hydroxymitragynine [9]. To establish 

an appropriate dosage in case of medicinal uses or to 

develop detection techniques in case of drug abuse, the 

understanding of mitragynine derivative metabolism in 

human body is needed.

There were a number of experimental attempts to 

investigate metabolites of mitragynine and similar com-

pounds in living organisms [10–12]. The most complete 

metabolic pathways of mitragynine were proposed from 

LC–MS study of rats and human urine samples by Philipp 

et al. [11] (see Fig. 1). Two different sample preparation 

techniques were used in Phase I and II metabolite extrac-

tion from urine. Missing intermediates were proposed 

and differences between compounds found in human and 

rats were attributed to physiological difference and/or 

differences in dosage/sampling time. The chemical reac-

tions involved in the metabolic pathways are 

• Hydrolysis of the only methyl ester at position 16,

• O-demethylation of the 9-methoxy group,

• O-demethylation of the 17-methoxy group, which 

may proceed via an aldehyde intermediate and result 

in corresponding carboxylic acid or alcohol by oxida-

tion or reduction respectively,

• Subsequent conjugation with glucuronic acid at one 

of the three position above,
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• Subsequent conjugation with sulfate only at the 

9-methoxy group, and

• Combination of the steps above.

Figure  1 is the basis of this study and our aim is to 

complement the experimental findings with results from 

quantum chemical calculation. For comparison pur-

pose, 7-hydroxymitragynine, a representative of naturally 

occurring and more potent derivatives of mitragynine is 

also included in our in silico investigation.

Conformers of mitragynine derivatives were theoreti-

cally studied by Liu et al. [13] using MMFF94s force field 

and B3LYP density functional theory method. Lowest 

energy structures were confirmed with crystal structures 

[14–17]. We used the lowest energy structures shown 

in Additional file  2: Figure S1 as the representative for 

our metabolic study. According to the figure, from left 

to right, the first and second rings are planar because of 

their aromaticity but the third and the fourth rings are 

both in chair conformer. The nitrogen atom between the 

third and fourth rings is above the plan of the molecule as 

described by Liu et al. [13].

Main text
All quantum chemical calculations were performed using 

the Q-Chem 5.1 program package [18]. Gas-phase struc-

tures were obtained at B3LYP/6-311++G(d,p) level and 

were confirmed to be minima on the electronic poten-

tial energy surface by frequency calculations. Solvation 

energy in water from SMD model [19] was obtained from 

gas-phase geometries. The energies were corrected to 

standard state in solution condition of 1  M at 298.15  K 

with an exception of water in which case 55.34  M was 

used. Shell script, spreadsheet template and Mathematica 

[20] notebook are modified from our previous work [21]. 

All output files and other associated codes to obtain the 

standard Gibbs energies of reaction are provided in Addi-

tional file 1. For reporting purpose, metabolites are coded 

by molecular formula and abbreviated names as shown in 

Fig. 1 and Table 1.

Permutations of all possible substitutions at position 9 

(m,d,g,s), position 16 (m,d,g) and position 17 (m,d,o,r,G) 

leads to 4 × 3 × 5 = 60 possible metabolites, and (3 × 3 × 

5) + (4 × 2 × 5) + (4 × 3 × 4) = 133 possible steps. How-

ever, here we only consider compounds shown in Fig. 1 

Fig. 1 Metabolic pathways of mitragynine in rat and human was proposed by Philipp et al. [11] from LC-MS experiments in 2009 (Refer to Table 1 

for abbreviated name convention. Compounds in brackets are not found experimentally but are assumed to be intermediates. Left, right and down 

arrows are for reactions at positions 17, 16 and 9 respectively. Metabolites found in rat or human are indicated by R or H respectively)
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(18 structures and 21 possible steps) and their 7-hydroxy 

derivatives.

To compute reaction energy from Fig. 1, relevant addi-

tional reagents (water, sulfate ion, hydronium ion, pro-

tonated nicotinamide [22], glucuronic acid, oxygen) 

and products (water, methanol, reduced nicotinamide) 

were also added to the scheme to complete the thermo-

dynamic calculation. These compounds are commonly 

found in biological systems and are likely to be reason-

able energy reference point for these demethylation, 

oxidation/reduction of aldehyde and conjugation with 

glucuronide/sulfate reactions.

All calculations were completed with no imaginary 

frequency. The lowest energy structures of mitragynine 

and 7-hydroxymitragynine are shown in Additional file 2: 

Fig.  S1. The detailed result for all reactions is listed in 

Additional file 2: Table S1 by type of reaction, number of 

steps from the parent compound and by position of reac-

tion (Additional files 1, 2)

• Gas-phase Gibbs energies of reaction show similar 

trend to aqueous-phase energies. The differences 

between gas-phase and aqueous-phase energies for 

conjugation with sulfate and reduction reactions are 

considerably large due to the presence of charged 

species on the reactant and/or product sides.

• The major determining factor for the energy of reac-

tion is the type of reaction. Conjugation with sulfate, 

oxidation and reductions are highly exergonic and 

should occur easily. However, demethylation and 

conjugation with glucuronic acid have mixed results. 

The positions therefore play an important role in 

these cases to determine which pathway is more 

energetically favorable.

• The average standard Gibbs energies of reaction 

for each reaction-position pair is shown in Addi-

tional file 2: Figure S2. As far as the three positions 

are concerned, position 9 is the most reactive for 

demethylation and position 17 is the most reactive 

for conjugation with glucuronic acid.

• There are no conclusive trends from the number of 

steps from the parent compound.

• The effect of 7-hydroxy substitution can be seen in 

Additional file  2: Figure S2 (decreases in d17, g17 

and an increase in g9 average reaction energies) 

and Fig. 2 (lower position of H_mmd, H_dmd and 

H_mmG, significantly lower position of H_dmr 

and slightly higher position of H_gmr). Despite 

the decreases and increase, the general conclusion 

above that position 9 is the most reactive for dem-

ethylation and position 17 is the most reactive for 

conjugation with glucuronic acid are still true for 

both mitragynine and 7-hydroxymitragynine.

Based on existing experimental evidence [11, 16], 

gas-phase structures of mitragynine, 7-hydroxymi-

tragynine and their metabolites (in total 36 com-

pounds) were obtained by quantum chemical method 

Table 1 Abbreviated compound names used in this study

Parent compound Position 9 (methyl ether of benzene) Position 16 (methyl ester of alkene) Position 17 (methyl ether of alkene)

M for mitragynine
H for 7-hydroxymitragynine

m for original methyl group
d for demethylation
g for glucuronidation after d
s for sulfation after d 

 
(4 possible groups and 3 possible 

steps)

m for original methyl group
d for demethylation
g for glucuronidation after d 

 
(3 possible groups and 2 possible 

steps)

m for original methyl group
d for demethylation
o for oxidation after d
r for reduction after d
G for glucuronidation after r 

 
(5 possible groups and 4 possible 

steps)
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at B3LYP/6-311++G(d,p). Standard Gibbs energies of 

reaction in solution-phase were calculated by SMD sol-

vation model. Four factors, type of reaction, number of 

steps from the parent compound, position of reaction 

and 7-hydroxy substitution effect were studied in this 

work. When compared to mitragynine, the 7-hydroxy 

substitution makes demethylation and conjugation 

with glucuronic acid at position 17 more favorable and 

makes conjugation with glucuronic acid at position 

9 less favorable. Our results can be a basis for further 

experimental investigation of physiological effects of 

the compounds and/or detection of Kratom use.

Limitations
During the preparation of this paper, relevant work 

[23–25] emerged in the literature. Readers may be 

interested to see a recent in  vivo pharmacokinetics 

study of mitragynine in rats [23] and in  vitro conver-

sion of mitragynine to 7-hydroxymitragynine [24, 25]. 

The importance of 7-hydroxymitragynine was raised as 

there is clear evidence that it can be formed by in vivo 

metabolism. This is different from the basic premise in 

this manuscript that 7-hydroxymitragynine is obtained 

from Kratom as a minor alkaloid component. However, 

this fact does not materially change our conclusion 

in the current study. Also, cytochrome P450 enzymes 

were identified as the key mediator of the process [23, 

25] and molecular docking studying could provide a 

further insight into the process.

A recent paper [23] describes a putative metabolic 

pathways from mitragynine to 14 metabolites. Unlike 

[11] which we used as a basis of our study, structures 

of all metabolites except one (Met2) are not available 

in the paper. Metabolites in the paper [23] can be com-

parable to ours as follow: Met5 is M_dmd, Met2 is pos-

sibly H-mmm, Met1 is possibly H_dmd, and Met8 is 

possibly M_mmd or M_mdm.

Additional files

Additional file 1. All output files and other associated codes to obtain the 

standard Gibbs energies of reaction are provided. 

Additional file 2. Table S1, Figures S1 and S2 for the molecular structures 

and energies of reaction.
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