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Transcription and translation use raw materials and energy generated metabolically to create 

the macromolecular machinery responsible for all cellular functions, including metabolism. 

A biochemically accurate model of molecular biology and metabolism will facilitate 

comprehensive and quantitative computations of an organism’s molecular constitution as a 

function of genetic and environmental parameters. Here we formulate a model of metabolism 

and macromolecular expression. Prototyping it using the simple microorganism Thermotoga 

maritima, we show our model accurately simulates variations in cellular composition and 

gene expression. Moreover, through in silico comparative transcriptomics, the model allows 

the discovery of new regulons and improving the genome and transcription unit annotations. 

Our method presents a framework for investigating molecular biology and cellular physiology  

in silico and may allow quantitative interpretation of multi-omics data sets in the context of an 

integrated biochemical description of an organism. 
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A 
goal of systems biology is to provide comprehensive bio-
chemical descriptions of organisms that are amenable to 
mathematical enquiry1. �ese models may then be used 

to investigate fundamental biological questions1, guide industrial 
strain design2 and provide a systems perspective for analysis of 
the expanding ocean of omics data3. Over the past decade, there 
has been steady progress in developing genome-scale models of 
metabolism (M-Models) for basic research and industrial appli-
cations4–6. M-Models are stoichiometric representations of the 
enzymatic and spontaneous biochemical reactions associated with 
an organism’s metabolic network at the genome scale; however,  
M-Models do not quantitatively describe gene expression (Fig. 1a). 
�e lack of an explicit representation for enzyme production pre-
cludes quantitative interpretation of omics data and can result in 
biologically implausible predictions7,8. Because M-Models do not 
contain chemical representations of transcription and translation,  
to date, it has only been possible to use omics data as ad hoc  
constraints for enzyme activities9–12.

A modelling approach that accounts for the production and deg-
radation of a cell’s macromolecular machinery will provide a full 
genetic basis for every computed molecular phenotype (Fig. 1b).  

Such computations in turn enable the direct comparison of simula-
tion to omics data and the simulation of variable expression and 
enzyme activity13,14. In other words, an integrated model of metab-
olism and macromolecular expression (ME-Model) a�ords a genet-
ically consistent description of a self-propagating organism at the 
molecular level and moves us substantially closer to establishing a 
systems-level quantitative basis for biology.

Here, we developed an ME-Modelling approach for the relatively 
simplistic microorganism, Thermotoga maritima, which metabolizes 
a variety of feedstocks into valuable products including H2 (ref. 15).  
T. maritima possess a number of characteristics conducive to systems-
level investigations of the genotype–phenotype relationship: a com-
pact 1.8-Mb genome16, wealth of structural proteome data17, a lim-
ited repertoire of transcription factors (TFs)18 and reduced genome 
organizational complexity compared with other microbes (H.L. et al., 
Unpublished data). Taken together, T. maritima’s small set of TFs and 
reduced genome complexity impose a narrowed range of viable regu-
latory and functional states (H.L. et al., unpublished data). �e exist-
ence of few regulatory states may simplify the addition of synthetic 
capabilities and facilitate metabolic engineering e�orts by reduc-
ing unexpected and irremediable side-e�ects arising from genetic  
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Figure 1 | Genome-scale modelling of metabolism and expression. (a) Modern stoichiometric models of metabolism (M-models) relate genetic loci 

to their encoded functions through causal Boolean relationships. The gene and its functions are either present or absent. The dashed arrow signifies 

incomplete and/or uncertain causal knowledge, whereas blue arrows signify mechanistic coverage. (b) ME-Models provide links between the biological 

sciences. With an integrated model of metabolism and macromolecular expression, it is possible to explore the relationships between gene products, 

genetic perturbations and gene functions in the context of cellular physiology. (c) Models of metabolism and expression (ME-Models) explicitly account 

for the genotype–phenotype relationship with biochemical representations of transcriptional and translational processes. This facilitates quantitative 

modelling of the relation between genome content, gene expression and cellular physiology. (d) When simulating cellular physiology, the transcriptional, 

translational and enzymatic activities are coupled to doubling time (Td) using constraints that limit transcription and translation rates as well as enzyme 

efficiency. τmRNA, mRNA half-life; kcat, catalytic turnover constant; ktranslation, translation rate; ν, reaction flux.
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manipulation19. A combination of metabolic versatility and genomic 
simplicity make T. maritima a promising candidate for investigating 
fundamental relationships between molecular and cellular physi-
ology, both in silico and in vivo, and for the creation of a minimal 
chassis for chemical synthesis20. Our T. maritima ME-Model simu-
lates changes in cellular composition with growth rate, in agreement 
with previously reported experimental �ndings21,22. We observed 
positive correlations between in silico and in vivo transcriptomes and 
proteomes for the 651 genes in our ME-Model with statistically sig-
ni�cant (P < 1×10 − 15 t-test) Pearson correlation coe�cients (PCC) 
of 0.54 and 0.57, respectively. And, when we used our ME-Model as 
an exploratory platform for an in silico comparative transcriptomics 
study, we discovered putative TF-binding motifs and regulons asso-
ciated with l-arabinose (l-Arab) and cellobiose metabolism, and 
improved functional and transcription unit (TU) architecture anno-
tation. Overall, ME-Models provide a chemically and genetically 
consistent description of an organism, thus they begin to bridge the 
gap currently separating molecular biology and cellular physiology.

Results
Genome-scale modelling of metabolism and expression. We 
developed a network reconstruction and modelling method that 
includes macromolecular synthesis and post-transcriptional 
modi�cations in addition to metabolism (Fig. 1c; Supplementary 
Methods). Speci�cally, our method accounts for the production of 
TUs, functional RNAs (that is, transfer RNAs (tRNAs), ribosomal 
RNAs (rRNAs) and so on) and peptide chains, as well as the 
assembly of multimeric proteins and dilution of macromolecules to 
daughter cells during growth. Based on available genomic, structural 
proteomic and biochemical literature we constructed an ME-Model 
for T. maritima that accounts for the functional activities of 50% of 
the annotated gene products and, more importantly, mechanistically 
links these enzyme activities to the genome.

To accurately model self-replicating cells at the molecular level, it 
is necessary to account for material dilution during cell division as 
a result of volume doubling, and to provide limits on the number of 
proteins that may be translated from an messenger RNA before the 
mRNA decays or is transmitted to a daughter cell. To approximate 
dilution of transcripts and proteins to daughter cells and prevent 
in�nite translation of peptides from an mRNA, we devised a series 
of coupling constraints (Fig. 1d; Supplementary Methods). �ese 
constraints e�ectively provide upper limits on enzyme expression 
and activity and are a function of the organism’s doubling time (Td). 
�ese coupling constraints may be tuned for speci�c mRNAs or 
enzymes if their, respective, degradation rates or catalytic turnover 
constants (kcat) are known.

Applications of M-Models o�en involve simulating log-phase 
cellular growth using �ux balance analysis (FBA)23,24. �e organ-
ism’s gross lipid, nucleotide, amino acid (AA) and cofactors, as well 
as growth-associated and maintenance ATP usage, are experimen-
tally measured. �en, these measurements are integrated with the 
organism’s Td to de�ne a biomass reaction that approximates the 
dilution of cellular materials during formation of daughter cells. 
However, cellular composition is known to vary as a function of Td 
and medium21—with Schaechter et al. indicating that Td is more 
in�uential than growth medium.

Our ME-Model explicitly describes transcription, translation 
and the dilution of gene products to daughter cells, thus it is unnec-
essary to use a gross biomass production reaction when simulat-
ing growth. Instead, ME-Models contain a structural reaction that 
accounts for the dilution of structural materials (that is, DNA, cell 
wall, lipids and so on) during division and the energy cost asso-
ciated with cellular maintenance of the structure (Supplementary 
Table S1). Conceptually, this structural reaction approximates  
the production of a cell whose composition varies as a function of 
environment and growth rate (Fig. 2a).

Molecularly e�cient simulation of cellular physiology. �e RNA-
to-protein mass ratio (r) has been observed to increase as a function 
of speci�c growth rate (µ)21,22 and decreases as a function of trans-
lation e�ciency22. Schaechter et al. also observed an increase in the 
number of ribonucleoprotein particles with increasing µ, whereas 
the translation rate per ribonucleoprotein particle was relatively 
constant21. �e increase in r and ribonucleoproteins may be due to 
the reduced number of translation events mediated by a ribosome 
as Td decreases.

To ascertain whether our ME-Model recapitulated the observed 
increases in r, ribosomal RNA and proteins with increasing µ, we 
simulated a range of growth rates in a de�ned minimal medium25 
(Supplementary Table S2). To simulate the molecular physiology  
of T. maritima for a particular µ, we used FBA24 subject to linear 
programming optimization26 to identify the minimum ribosome 
production rate required to support a given µ (Fig. 2b). Ribosome 
production has been shown to be linearly correlated with growth 
rate in Escherichia coli22,27,28. Assuming that e�cient use of enzymes 
contributes to the �tness of an evolutionarily adapted lineage29, we 
would expect a successful organism to produce the minimal amount 
of ribosomes required to support expression of the proteome.

Consistent with experimental observations21,22, our ME-Model 
simulated an increase in r with increasing µ and with decreasing 
translation e�ciency (Fig. 3a). We observed that the fraction of the 
transcriptome associated with ribosomal RNA in silico increased 
with µ (Fig. 3b). In addition, the ribosomal proteins account for 
a larger proportion of the total proteome as µ increases (Fig. 3c). 
�ese results indicate that it is possible to mechanistically model 
changes in cellular physiology that have only recently yielded to 
phenomenological modelling22.
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assumptions. (a) M-Models simulate constant cellular composition 

(biomass) as a function of specific growth rate (µ), whereas ME-Models 

simulate constant structural composition with variable composition 

of proteins and transcripts. (b) Linear programming simulations with 

M-Models are designed to identify the maximum µ that is subject to 

experimentally measured substrate uptake rates. Only biomass yields are 

predicted as µ enters indirectly as an input through the supplied substrate 

uptake rate (see the measurement column for M-Models). Importantly, 

the substrate uptake rate is derived by normalizing to biomass production. 

Linear programming simulations with ME-Models aim to identify the 

minimum ribosome production rate required to support an experimentally 

determined µ. µ enters into the coupling constraints and so it must be 

supplied (or sampled) as the problem would otherwise be a Nonlinear 

Program (NLP). As all M-Models reactions are contained within the  

ME-Models, ME-Models can simulate all M-Models objectives in 

addition to the broad range of objectives associated with macromolecular 

expression.
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With M-Models, the cellular macromolecular composition is 
constant, ergo they cannot reproduce the observed increases in r or 
ribosomes with increasing µ. Although it is possible to empirically 
determine a relationship between gross biomass composition and  
µ and then use this relationship to study variable composition in 
M-Models30, the M-Models will compute a solution space where the 
range of activity for a number of enzymes may be rather broad and 
even in�nite7, if not speci�cally constrained. �e biologically implau-
sible sections of the M-Model solution space are due, in large part, to 
unconstrained thermodynamically infeasible internal loops that can 
operate at an arbitrary �ux level8. �ese arbitrary activities contra-
dict previous observations that e�cient organisms should maintain 
a minimal total �ux through their biochemical network29,31.

By explicitly accounting for enzyme expression and activity,  
ME-Model simulations should identify the set of proteins that will 
result in optimally e�cient conversion of growth substrates into cells. 
To determine whether our ME-Model was more economic in terms 
of enzyme usage than the M-Model, we compared our ME-Model 
simulation to a random sampling of the M-Model solution space7. 
A�er we �t a normal distribution to the sampled M-Model space, 
we found that there is a small (2.1×10 − 5) probability of �nding an 
M-Model solution as e�cient as the ME-Model solution (Fig. 3d).  
Because ME-Models explicitly account for the costs of enzyme 
expression and dilution to daughter cells, the most e�cient growth 
simulations will minimize the materials required to assemble the cell; 
that is, ME-Models will e�ciently use enzymes when simulating a µ.

To compare the range of permissible, that is, computationally 
feasible, activity for each metabolic enzyme in the ME-Model versus 
the M-Model, we performed �ux variability analysis. Flux variability 
analysis identi�es the �ux range that each reaction may carry given 

that the model must also simulate the speci�ed objective value, such 
as µ, with a set tolerance. �e permissible enzyme activities for sim-
ulating e�cient growth with a 1% tolerance tended to have smaller 
ranges in the ME-Model compared with the M-Model (Fig. 3e; Sup-
plementary Data 1), highlighting the sharply reduced �exibility in 
the ME-Model solution space when simulating optimal growth.

Our ME-Model contains gene products that carry out 142 of 
the 206 functions estimated as essential for a minimal organism32, 
whereas the M-Model contains only 65 of these core functions. With 
the ME-Model, 120 of the 142 functions were essential for ribosome 
production, whereas only 23 of the 65 functions in the M-Model 
were essential for biomass production (Supplementary Data 2). 
�is broader coverage of cellular functions means that ME-Models  
may be used for in silico investigations of phenotypic states that are 
inaccessible to M-Models.

Gene product production and turnover alters pathway activity.  
In addition to simulating variable cellular composition and e�ec-
tively eliminating the in�nite catalysis problem, there are a number 
of metabolic activities that are required for optimally e�cient 
growth with the ME-Model but not with the M-Model (Fig. 4). 
�ese di�erences are due to the ME-Model producing small metab-
olites as by-products of gene expression and explicitly accounting 
for the material and energy costs of macromolecule production and 
turnover. �e ME-Model includes metabolic activities for recycling 
S-adenosylhomocysteine, which is a by-product of rRNA and tRNA  
methylation, and guanine, which is a by-product of queuosine mod-
i�cation of various tRNAs (Fig. 4a). �e ME-Model, also, produces 
CTP from CMP that is produced during mRNA degradation (Fig. 4b).  
Interestingly, the M-Model does not require CDP production to  
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Figure 3 | Simulation of variable cellular composition and efficient use of enzymes. (a) With our ME-model, the RNA/protein ratio increases linearly 

with growth rate and with a slope proportional to translational capacity in amino acids per second (circles: 5 AA/s, squares: 10 AA/s, triangles: 20 AA/s). 

(b) Ribosomal RNA (rRNA) synthesis increases, relative to total RNA synthesis, with growth rate (symbols as in a). (c) Ribosomal protein promoter 

activity increases, relative to total RNA synthesis, with growth rate (symbols as in a). (d) Random sampling of the M-Model solution space indicates that 

the M-Model solution space contains numerous internal solutions with a broad range of total network flux. The probability of finding an M-Model solution 

as efficient as an ME-Model simulation is 2.1×10 − 5; the probability was calculated from a normal distribution constructed from the M-Model sample 

space. The M-Model sample contains 5,000 flux vectors randomly sampled from the M-Model solution space. (e) Smooth estimate of the density of the 

flux ranges for the metabolic enzymes that may be simulated while maintaining the objective for efficient growth with a 1% tolerance (M-Model: red line, 

ME-Model: blue line). The shaded area denotes biologically unrealistic flux values. All simulations were performed with an in silico minimal medium with 

maltose as the sole carbon source.
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simulate growth, whereas CDP production is essential in the  
ME-Model. �e ME-Model exhibits frugality with respect to cen-
tral metabolic reactions (Fig. 4c) and proposes the canonical  
gylcolytic pathway during e�cient growth, whereas the M-Model 
indicates that alternate pathways are as e�cient. When the e�ciency 
requirement is relaxed these less-e�cient pathways may be active in 
the ME-Model solution space (Supplementary Data 1). �e genes 
associated with optimal activities tended to be strongly expressed 
(approximately 60th–90th percentile) in transcriptome data.

�ese di�erences highlight the interplay between macromolecular 
synthesis and degradation, metabolism and salvage, and optimal use 
of the proteome. �e ME-Models allow a �ne resolution view of these 
processes and their simultaneous reconciliation. Not only can one 
analyse speci�c pathways in isolation, such as the three examples given 
above, but it is now possible to investigate in detail the coordination of 
functions within an organism’s biochemical repertoire.

Simulation of systems-level molecular phenotypes. To assess our 
ME-Model’s ability to simulate systems-level molecular phenotypes, 
we compared model predictions to substrate consumption, prod-
uct secretion, AA composition, transcriptome and proteome meas-
urements. With the only external constraints for the ME-Model 
being the experimentally determined µ during log-phase growth 
in maltose minimal medium at 80 °C, our model accurately pre-
dicted maltose consumption and acetate and H2 secretion (Fig. 5a;  
Supplementary Table S3). Predicted AA incorporation was lin-
early correlated (0.79 PCC; P < 4.1×10 − 5 t-test) with measured AA  
composition (Fig. 5b).

FBA simulates reaction �uxes, whereas transcriptomics and 
proteomics technologies provide semiquantitative measurements 
of expressed gene product abundance. �us, the simulated �uxes 
through the transcriptome and proteome do not directly approximate 
the respective omics measurements; however, for macromolecules  
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Figure 4 | Metabolic reactions required for efficient growth with the ME-Model but not the M-Model. (a) Recycling of by-products of RNA 

modifications. Adenosylhomocysteinease (SAHase) hydrolyses S-adenosylhomocysteine (SAH) to L-homocysteine (L-HCys) and adenosine. Purine 

nucleoside phosphorylase (PNP) phosphorylases adenosine to adenine and ribose-1-phosphate (Rib-1-P). Rib-1-P is converted to ribose-5-phosphate 

(Rib-5-P) by phosphopentomutase (PPM). Phosphoribosylpyrophosphate synthetase (PRPPS) phosphorylates Rib-5-P to produce 5-phosphoribosol-1-

pyrophosphate (PRPP). Guanine phosphoribosyltransferase (GPT) produces GMP from the reaction of PRPP and guanine, which is a by-product of tRNA 

metabolism. (b) CMP produced during mRNA degradation is recycled to CTP using cytidylate kinase (CMPK) and nucleoside-diphosphate kinase (NDK-

CDP). (c) The ME-model uses the canonical glycolytic pathway, whereas with the M-Model can circumvent portions during optimal growth simulations. 

The canonical pathway involves phosphorylation of D-glucose (D-Glc) to glucose-6-phospate (G6P) by hexokinase (HK1). G6P is isomerized to fructose-

6-phosphate (F6P) by phosphoglucose isomerase (PGI). F6P is phosphorylated to fructose-1,6-bisphosphate (FBP) by phosphofructokinase (PFK). FBP is 

metabolized to glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) by FBP aldolase (FBA). The M-Model can circumvent the 

HK1/PGI portion with glucose/xylose isomerase (GXI) and fructokinase (FRK); however, HK1 or PGI must also be expressed because G6P is an essential 

metabolite. PFK can be circumvented by diphosphate-fructose-6-phosphate 1-phosphotransferase (PPi-PFK). FBA can be circumvented by a pathway 

using 1-phosphofructokinase (FRUK), fructose-1-phosphate aldolase (FPA), alcohol dehydrogenase (ADH(glycerol)), glycerol kinase (GLYK), glycerol-

3-phosphate dehydrogenase (GPDH) and triose phosphate isomerase (TPI). Enzyme commission numbers are provided for each reaction. mRNA and 

protein expression (and quantile) values are provided. Flux variability analysis was performed for simulated growth on maltose minimal medium. Blue 

arrows: reactions required for optimally efficient growth with the ME-Model, but not the M-Model. Green arrows: active reactions in a single maltose 

minimal medium simulation shown to put results into pathway context. Grey arrows: alternate optimal pathways in the M-Model.
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there should be a positive correlation between gene and protein 
synthesis �uxes and the respective gene product abundances during 
log-phase growth. In other words, proteins and genes are relatively 
stable and when an organism is growing at steady state a relative 
increase in expression rate for a protein will e�ectively increase the 
quantity of that protein.

Interestingly, when we compared the simulated transcriptome 
and proteome �uxes to transcriptome and proteome measurements, 
respectively, there were statistically signi�cant (P < 2.2×10 − 16 t-test) 
positive correlations for both the transcriptome (0.54 PCC; Fig. 5c) 
and the proteome (0.57 PCC; Fig. 5d). �is degree of concordance 
was unexpected because the model does not account for transcrip-
tional regulation or transcript-speci�c RNA degradation rates.  
However, this concordance may be the result of our simulation 
objective being aligned with T. maritima’s regulatory programme, 
whereas a decreased concordance would be expected if the regu-
latory network was responding to a stress. We have previously 
observed a tendency to increase the expression of metabolically  
e�cient pathways, and decrease ine�cient alternatives, by E. coli 
a�er adaptive evolution under growth selection pressure31. Also,  
we have observed that T. maritima’s genome is highly active with  
 > 89% of the protein-coding genes expressed in diverse conditions  

(H.L. et al., Unpublished data), which could indicate a general 
eschewal of complex and expensive circuitry within the global  
regulatory strategy.

Approximately 30% of T. maritima’s genome is not functionally 
annotated and 50% of the functionally annotated genes fall outside 
of the scope of our ME-Model. A number of genes not accounted in 
our model were expressed in vivo (Supplementary Fig. S1), and the 
costs of their expression as well as their functional activities may 
contribute to the di�erences between simulation and measurement. 
In addition, unknown regulatory features might be responsible for 
irregularities observed when comparing simulation to the measure-
ment. For instance, ribosomal RNAs and proteins are expected to 
be expressed at stoichiometric ratios, as occurs with the simulation, 
yet there is sizable variability in their measured values (Fig. 5c,d, 
blue colouring). �ese results illustrate that it is possible to sketch a 
molecular description of a replicating organism solely from simple, 
but stoichiometrically accurate, chemical equations represented on 
a genome scale.

In silico gene expression pro�ling drives discovery. With our 
ME-Model it is now possible to compute the gene expression pro-
�le associated with growth in a speci�c condition or for a speci�c 
mutant. �ese gene expression pro�les may then be compared 
to identify genes that are likely di�erentially regulated. �e set of  
di�erentially expressed in silico genes may then be used to drive  
biological discovery or improve our model (Fig. 6).

Towards this end, we computed the transcriptome pro�les for  
T. maritima grown in a minimal medium with either l-Arab or cel-
lobiose as the sole carbon source (Fig. 6a). Our computations iden-
ti�ed genes that were exclusively expressed and essential for growth 
with each carbon source. Because these genes are essential for 
growth on the respective substrate they are conditionally essential 
genes. Conditionally essential genes are o�en subject to transcrip-
tional regulation, however, they may be constitutively expressed. 
To assess whether the genes were di�erentially expressed in vivo, 
we measured the transcriptome of T. maritima growing in mini-
mal medium with l-Arab or cellobiose as the carbon source. �e 
genes with the strongest di�erential expression in vivo were among  
the set of di�erentially expressed genes in silico (Fig. 6b) providing 
supporting evidence for the presence of transcriptional regulation.

Conditionally expressed genes may be regulated by the same TF33. 
�e presence of a common motif in the promoter regions of a set of 
genes may indicate regulation by a common TF. To identify potential 
TF-binding motifs, we scanned the promoter and upstream regions 
of the in silico di�erentially expressed genes with MEME (Multi-
ple Expectation Maximum for Motif Elicitation)34. Surprisingly, 
there was a high-scoring motif for the genes essential for growth on  
l-Arab and a high-scoring motif for the genes essential for growth 
on cellobiose (Fig. 6c). �e motif found upstream of the l-Arab 
upregulated genes is similar to the AraR motif from Bacillus subtilis35  
(Supplementary Fig. S2). Also, the motif upstream of the cellobiose 
upregulated genes bears resemblance to catabolite-responsive ele-
ments (cres), known to have an important global role in catabolite 
repression through the binding of the CcpA protein in B. subtilis36. 
Here, we term the motif the CelR motif, as the regulated genes are 
involved in cellobiose metabolism. �ese discoveries highlight how 
ME-Model simulations can guide discovery of new regulons.

A�er identifying the putative AraR and CelR motifs, we scanned 
T. maritima’s genome for the presence of other members of the 
putative regulons. For the nondegenerate AraR motif 5′-GTACG 
TAC-3′, we identi�ed a single additional instance in an intergenic 
region upstream of the TU-containing genes TM0277, TM0278 
and TM0279 (Fig. 6d). �ese genes were induced when l-Arab was 
the carbon source, but not when cellobiose or maltose serves as 
the carbon source (Supplementary Fig. S3). l-Arab transport is an 
orphaned activity in our model, which means that T. maritima may 
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Figure 5 | The ME-Model accurately simulates molecular phenotypes 

during log-phase growth. (a) The ME-Model accurately simulates H2 

and acetate secretion with maltose uptake when constrained with a 

measured growth rate (n = 2). Experiment: grey bars, simulation: black 

bars. (b) The in silico ribosome incorporates the 20 amino acids at rates 

proportional (Pearson correlation coefficient = 0.79; P <  4.1×10 − 5 t-test) 

to the bulk amino-acid composition of a T. maritima cell as measured 

by high-performance liquid chromatography (n = 1). (c) Simulated 

transcriptome fluxes are significantly (P < 2.2×10 − 16 t-test) and positively 

correlated (Pearson correlation coefficient = 0.54) with semiquantitative 

in vivo transcriptome measurements (n = 4). RNAs containing ribosomal 

proteins (blue) were expressed stoichiometrically in simulations but 

exhibited variability in measurements. (d) Simulated translation fluxes 

are significantly (P < 2.2×10 − 16 t-test) and positively correlated (Pearson 

correlation coefficient = 0.57) with semiquantitative in vivo proteomic 

measurements (n = 3). Ribosomal proteins (blue) were expressed 

stoichiometrically in simulations but exhibited variability in  

measurements.
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import l-Arab, however, the responsible loci are not known. When 
we examined these genes using the SEED RAST server37, TM0278 
and TM0279 were classi�ed as permeases of an ABC transporter 
putatively involved in l-Arab utilization, whereas TM0277 was 
not classi�ed because it was annotated as containing an authentic 
frameshi�38. Recent resequencing of T. maritima’s genome (H.L. 
et al., Unpublished data) refute the initial annotation that TM0277 
contains a frameshi� mutation; and the SEED RAST annotation for 
TM0277 is a predicted sugar-binding protein for an arabinoside ABC 
transporter. Interestingly, the TUs containing ABC transporters for 
maltose and chitobiose are organized in the same manner: a bind-
ing protein followed by two permeases. �e presence of the AraR 
motif, the strong upregulation of the TM0277/TM0278/TM0279 
TU in response to l-Arab in vivo, the SEED RAST classi�cation 
and resequenced genome strongly suggest that we have identi�ed a 

functional l-Arab transport system in this organism. �is discovery 
illustrates how in silico molecular biology at the genome scale can be 
used to expand regulons and improve genome annotation.

When we scanned T. maritima’s genome for matches to the degen-
erate CelR motif TGWAAAYRTTTWCA, the promoter regions of 
TUs associated with cellobiose metabolism were identi�ed. Interest-
ingly, the promoter region of the TU-containing TM1222, TM1221, 
TM1220, TM1219 and TM1218 did not contain a CelR motif  
(Fig. 6c,d). TM1222, TM1221, TM1220 and TM1219 encode for a 
cellobiose ABC transporter, while TM1218 is annotated as a LacI 
family transcription regulator. However, the promoter region of the 
TU for TM1233, which is directly upstream of TM1222, contains 
the CelR motif. TM1233 encodes for the cellobiose-binding protein 
that facilitates cellobiose transport. In the TU architecture of our 
model, there was a predicted Rho-independent terminator following 

Cellobiose transcription flux

(mmol mRNA gDW–1 h–1)

L
-A

ra
b

in
o

s
e

 t
ra

n
s
c
ri
p

ti
o

n
 f
lu

x

(m
m

o
l 
m

R
N

A
 g

D
W

–
1
 h

–
1

 )

0 10–14 10–12 10–8 10–610–10

0

10–14

10–12

10–10

10–8

10–6
TM0276

TM0283

TM0284

TM1469–TM1848
TM1219–TM1223

In silico expression 

> 8-fold

change

L
-A

ra
b

in
o

s
e

 n
o

rm
a

liz
e

d
 m

R
N

A

(L
o

g
2
 (

in
te

n
s
it
y
 u

n
it
s
))

Cellobiose normalized mRNA

(Log2 (intensity units))

2–
8-

fo
ld

 c
ha

ng
e

6 8 10 12 14 16

6

8

10

12

14

16

> 8-fold

change

2–
8-

fo
ld

 c
ha

ng
e

TM1219–TM1223,

TM1848

TM0276 TM0283

TM0284

In vivo  expression
a b

cd

TM0280/0281/0282/0283/0284/0285

GTACGTAC
2

0

1
B

it
s

AraR motif

T
A

A
T

ACTG AAA TTT CATG

2

0

1

B
it
s

CelR motif

TM0276 TM1847/1848

TM1223TM1218/1219/1220/1221/1222

L
o
g

2
 (

I.
U

.) 16

8

0

i. No annotated
L-Arab transporter 

ii. Regulon expansion
with predicted AraR motif

iii. Putative L-Arab
ABC transporter

Transcription unit correction

L-Arabinose

Cellobiose

TM1223TM1218/1219/1220/1221/1222

L-Arab

L-Arab

TM1218/1219/1220/1221/1222/1223

TM0277/0278/0279

Iterative

workflow
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metabolizing L-Arab, whereas TM1219–TM1223, TM1469 and TM1848 are essential for metabolizing cellobiose. (b) In vivo transcriptome measurements 

(n = 2) confirm the in silico transcriptomics predictions for differential expression of genes when metabolizing L-Arab or cellobiose. (c) Two distinct putative 

TF-binding motifs are present upstream of the TUs containing genes differentially expressed in silico when simulating growth in L-Arab versus cellobiose 

minimal media. The motif upstream of the genes upregulated during growth in L-Arab medium is termed AraR, whereas the motif of the genes upregulated 
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however, the CelR motif was present in the promoter of the TU (TM1223) directly upstream of the cellobiose transport operon. Examination of the in vivo 

transcriptome measurement indicates that the cellobiose transporter operon belongs to the same TU as that of TM1223.
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TM1223 that resulted in a new TU starting with TM1222. However, 
no promoter was detected in the intergenic region between TM1223 
and TM1222 using PromBase39. �is result leads us to believe that 
the initial assignment of TM1223 and TM1222 to separate TUs was 
incorrect (Fig. 6d). �e presence of the cellobiose transport system 
in the updated TU, the strong CelR motif and the annotation of 
TM1218 as a TF suggest that TM1218 may encode for CelR.

Discussion
Our ME-Modelling approach represents a fundamental advance in 
the evolution of genome-scale biochemical models of life and sig-
ni�cantly broadens the scope of microbial systems biology. It is now 
possible to ask systems-level questions in silico beyond metabolism 
and quantitatively analyse, in a bottom-up and mechanistic manner, 
a variety of omics data in the context of a growing organism. For 
instance, we can use a systems perspective to identify the minimal 
number of genes required to support homeostasis and replication—
120 of the 142 of the proposed minimal bacterial genome32 were 
essential for ribosome production in maltose minimal medium 
(Supplementary Data 2).

Not only can ME-Models predict global phenotypes that are tra-
ditionally employed with M-Models, such as maximal growth rate 
in a de�ned medium, but they can also be used to calculate whether 
the system has any material and energy reserves available for ancil-
lary functions. For example, the measured maltose consumption 
rate was greater than the one that we calculated for economically 
e�cient growth (Fig. 5a). �is discrepancy between measurement 
and simulation could indicate that T. maritima does not strive 
for economic e�ciency or represent the portion of sugar used to  
support the activities of the unannotated genes or regulatory  
circuitry. Given that the expression levels for the gene products 
associated with the more e�cient pathways were highly expressed 
(Fig. 4c), we are disposed towards the latter. Although the ME-
Model does not account for regulatory events, the presence of a 
strong discordance between simulation and measurement would 
indicate that factors other than economic e�ciency are in�uenc-
ing the expressome, thus informing hypothesis generation. For 
example, if a more expensive isozyme was expressed in vivo than  
in silico, then it would be possible to estimate the improvement in 
kcat required for the expensive isozyme to o�set its higher materials 
and energy costs.

Technological advances have contributed to an expanding ocean 
of omics data that has been under-explored3. Omics data have been 
under-analysed, in part, due to the lack of a mechanistic systems-
level framework for analysing myriad molecular components in the 
context of cellular physiology. To date, with the notable exception 
of C13 metabolic �ux analysis, it has only been possible to perform 
indirect comparative analysis between omics data and M-Models31 
or to neglect the complexity of the genotype–phenotype relation-
ship and use omics data as ad hoc constraints for M-Model enzyme 
activities9–12. Because ME-Models explicitly represent gene expres-
sion, directly investigating omics data in the context of the whole is 
now feasible.

Viewing multi-omics data in the context of biochemically and 
genomically consistent ME-Models may allow us to extract more 
value from legacy and future omics data. Comparing in silico and 
in vitro transcriptomes, or proteomes, can highlight under-explored 
areas of molecular biology. For example, a set of genes highly expressed 
in silico but not expressed in vivo may indicate the presence of tran-
scriptional regulation. Di�erential expression of a class of genes 
may indicate incompleteness in our knowledge of how those gene 
products interact or allude to, heretofore unknown, moonlighting 
functions. For instance, in the case of ribosomal proteins (Fig. 5c,d,  
blue) the model predicts uniform expression, whereas omics mea-
surements exhibit variability. �e model was designed based on  
evidence that ribosomal protein synthesis is highly coordinated40, 

and does not account for feedback circuits a�ecting degradation 
rates that have yet to be fully elucidated40,41.

Although there is a positive correlation between the simulated 
transcriptome �uxes and semiquantitative transcriptome data there 
was still a substantial amount of dispersion (Fig. 5c). When compar-
ing in silico and in vivo transcriptome measurements it is impor-
tant to realize that both are approximations of the transcript levels 
in an organism, and that omics technologies have been inherently 
noisy to date42. Incomplete knowledge, such as a lack of speci�c  
translation e�cacy for each protein and degradation rates for  
each mRNA, and lack of signalling and regulatory circuitry will 
contribute to deviations from reality by ME-Model simulations. 
Similarly, probe-binding and sample-labelling e�cacies, as well 
as other technical issues, serve as barriers to absolute quantitative 
transcriptome measurements43.

Although it is a non-trivial endeavour to identify the source of 
all variation between the simulated and measured transcriptomes, 
it is possible to use the ME-Model for comparative transcriptomics 
approaches similar to two-channel DNA microarray studies. Despite 
the early technological limitations of DNA microarrays, biological 
discovery was enabled by performing comparative transcriptom-
ics44–47. Transcriptome pro�ling has been used extensively to iden-
tify genes that are di�erentially regulated as a function of genetics 
and environment44. Analysis of di�erentially expressed genes has 
contributed to the identi�cation of gene products responsible for 
unannotated enzymatic activities45. In combination with sequence 
analysis, di�erential gene expression data can be used to investigate 
transcriptional regulation46,47.

We devised and implemented a work�ow for in silico compara-
tive transcriptomics, which resulted in the discovery of new regu-
lons and improved both genome and TU annotation (Fig. 6a–d). 
�e similarities between the comparative transcriptomics in silico 
(Fig. 6a) and in vivo (Fig. 6b) studies are striking, given the varia-
tion observed between the simulated and measured transcriptomes  
(Fig. 5c)—this emphasizes that, in spite of its shortcomings, the  
ME-Modelling framework is a powerful tool for biological research.

Finally, ME-Models enable integrated molecular biology on 
a genome scale while accounting for the metabolic requirements, 
which partially ful�lls the challenge of Project K48 and moves us one 
step closer to a molecular representation of CellMap1.

Methods
Network reconstruction procedure. �e detailed procedure and formalism  
are described in detail in the Supplementary Methods. Our method accounts  
for biochemical reactions associated with transcription of TUs, TU degradation, 
translation, protein maturation, RNA processing, protein complex formation, 
ribosomal assembly, rRNA modi�cation, tRNA modi�cation, tRNA charging,  
aminoacyl-tRNA synthetase charging, charging EF-Tu, cleavage of polycistronic 
TUs to release stable RNA products, sources, sinks and tRNA activation (EF-TU) 
as well as metabolism. In our formalism, metabolic reactions are represented as 
multi-step processes including substrate binding by the enzyme and dissociation  
of substrate–enzyme complex to enzyme and products. �e metabolic content for 
our reconstruction was based on the previously published model17, with updates  
to correct errors and incorporate new data (Supplementary Data 3).

�e molecular machinery (for example, proteins, genes, RNAs) involved in 
macromolecular synthesis were identi�ed from the genome annotation16, SEED 
subsystem analysis49, comparative genomics analysis of the E. coli model28 and 
KEGG38. �e functions of each of the 159 proteins associated with macromolecu-
lar synthesis in T. maritima were determined by primary literature when available. 
When no primary literature was available, the Uniprot50 and SEED49 databases 
were used to infer function by homology. All proteins currently believed to be used 
for macromolecular synthesis by T. maritima are enumerated in Supplementary 
Data 4, and 93% of these genes are mechanistically linked in our ME-Model.

�e reactions associated with transcription and translation, including initia-
tion, biopolymerization and termination, were generated from the genome 
sequence and a set of T. maritima template reactions (Supplementary Methods). 
In our modelling formalism, reversible reactions were represented as two unique 
reactions: one for the forward direction and one for the reverse.

Protein complexes. For each functional protein, we used primary literature and 
the RCSB Protein Data Bank51 to determine whether the machine was a monomer 
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or oligomer. �e Protein Data Bank entries provided an opportunity to integrate 
3D structural data into our reconstruction (this model includes structures for 
32 additional open reading frames compared with Zhang et al.). When data for 
multimeric state were unavailable for a protein of interest, state data for orthologs 
from closely related organisms were used; otherwise, the Uniprot database50 was 
consulted. In the absence of data providing insight into the multimeric state of the 
protein, we assumed that the functional protein was a monomer.

Genetic code determination. From inspection of tRNA sequences and structures 
downloaded from the transfer RNA database52, we determined that T. maritima 
uses uniform-GUC decoding with only 46 tRNA genes (see Supplementary Data 
5). In both Archaea and Bacteria, but not in Eukarya, the conversion of C34 
of a CAU-anticodon to lysidine (k2C) or analogue generates an anticodon for 
isoleucine53. TMtRNA-Met-2 was assigned this role based on a strong sequence 
alignment to E. coli tRNAs containing k2C. �e T. maritima genome encodes two 
additional tRNA genes with CAU anticodons, TMtRNA-Met-1 and TMtRNA- 
Met-3. Based on structural similarity54 to those found in a crystal structure of  
E. coli’s formyl-methionyl-tRNAfMet55, TMtRNA-Met-1 may be involved in  
translation initiation, therefore, TMtRNA-Met-3 was designated to participate  
in translation elongation.

TU architecture determination. We assembled a dra� TU architecture (Supple-
mentary Data 6) for T. maritima based on a series of rules (Supplementary Meth-
ods). In short, we assumed all TUs start with a gene start and proceed until one of 
the following conditions is met: (1) two genes are found in convergent orientation 
on di�erent strands, (2) two genes are found in divergent orientation on di�erent 
strands, (3) a high-con�dence Rho-independent transcription terminator is found 
separating two genes oriented in series on the same strand, (4) more than 55 base 
pairs separate two genes in series on the same strand or (5) experimental evidence 
indicates a TU boundary. Finally, to re�ect the possibility of internal transcription 
start sites in TUs reconstructed using the rules above, we added an additional TU 
in cases where a high-con�dence promoter was found in the region separating two 
genes oriented in series on the same strand.

In silico molecular biology. Log-phase growth simulations were performed using 
FBA24. Linear programming was used to identify the maximum µ or minimum 
ribosome production �ux supporting a particular µ from the components of the 
in silico minimal media. Because of the presence of fast (metabolic) and slow 
(macromolecular synthesis) timescale reactions, the parameters in the ME-Model 
span a wide range that can result in inaccurate simulations due to �oating point 
limitations of currently available �oating point linear programming so�ware 
(Supplementary Methods). To remove the possibility of simulation results being 
artefacts arising from �oating point limitations, we used the exact simplex routines 
available in the QSopt_ex package26, with default parameter settings for ME-Model 
simulations. �e predicted transcription level of a gene was determined by sum-
ming across the sink �uxes of TUs containing the gene, which is equivalent to the 
transcription �uxes less the TU degradation �uxes. Translation levels were reported 
as the sum across the relevant translation initiation �uxes, as many TUs can 
contribute to the production of a given protein. �ese values were compared with 
each other in the case of simulated nutrient shi�s or to the abundances reported 
experimentally.

In vivo methods. T. maritima MSB8 (ATCC: 43589) was grown in 500 ml  
serum bottles containing 200 ml of anoxic minimal media with 10 mM maltose, 
l-arabinose or cellobiose as the sole carbon source at 80 °C. All samples were  
collected during log-phase growth. Substrate uptake and by-product secretion 
rates, compositional analyses, and transcriptome and proteome measurements 
were performed as described in the Supplementary Methods. Transcriptome 
data have been submitted to the NCBI Gene Expression Omnibus (accession ID: 
GSE28822) and processed values are in Supplementary Data 7. Proteomics data 
are available through Paci�c Northwest National Laboratory (http://omics.pnl.gov) 
and processed values are in Supplementary Data 8.

RNA modifications. A variety of post-transcriptional modi�cations of rRNAs are 
represented in our model. For 16S rRNA, there was experimental evidence for ten 
modi�cations56 in this organism (Supplementary Table S4). �e locations of pseu-
douridines, which are mass silent, were not available, but an 11th modi�cation,  
U to Y at position 516, was included in the reconstruction based on the fact that 
it is well conserved in bacteria and the alignment (Supplementary Data 9) sup-
ports its inclusion. An unusual derivative of cytidine-designated N-330 has been 
sequenced to position 1,404 (ref. 56) in the decoding region of the 16S rRNA.  
�is modi�ed nucleoside was excluded from the reconstruction as the exact 
chemical composition of the modi�cation is unknown. We were unable to �nd 
organism-speci�c literature supporting modi�cations to the 5S and the 23S rRNA. 
Modi�cations to 5S rRNA are infrequent in bacteria57. Attempting to extrapolate 
23S rRNA modi�cations from E. coli was relatively unsuccessful as alignment via 
ClustalW258 showed signi�cant di�erences near many of the putative modi�cation 
sites (Supplementary Data 10). �e alignment reveals that the 23S rRNA of  
T. maritima is signi�cantly longer ( > 100 bp) than that of E. coli. Only three  
proteins with annotated roles in modifying the 23S rRNA were added to the  

model for a total of six modi�cations (Supplementary Table S5). �ose were 
TM0940, TM0462 and TM1715.

Post-transcriptional modi�cation of tRNA also requires a signi�cant invest-
ment in genes, enzymes, substrates and energy59. We included a variety of 
modi�cations (Supplementary Table S6) in our model based on bioinformatics 
predictions and literature evidence (Supplementary Table S7).

Sensitivity analysis. To explore the in�uence of some of the newly introduced 
parameters on model output, the bulk parameters used for the coupling constraints 
(Supplementary Methods) were varied (two-, four- and eight-fold increases and 
decreases away from the parameter set used). �e results are summarized in  
Supplementary Fig. S4.

File formats. Our �nal model is available as a Systems Biology Markup  
Language (SBML) XML �le (Supplementary Data 11). �e model is also  
available as an LP �le (Supplementary Data 12) for use with linear  
programming solvers. 
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