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In silico modeling identifies CD45 as a regulator of IL-2
synergy in the NKG2D-mediated activation of immature
human NK cells

Sayak Mukherjee,1*† Helle Jensen,2* William Stewart,1,3 David Stewart,4 William C. Ray,1,5,6

Shih-Yu Chen,7 Garry P. Nolan,7 Lewis L. Lanier,2‡ Jayajit Das1,5,6,8‡

Natural killer (NK) cells perform immunosurveillance of virally infected and transformed cells, and their activation
depends on the balance between signaling by inhibitory and activating receptors. Cytokine receptor signaling can
synergize with activating receptor signaling to induce NK cell activation. We investigated the interplay between the
signaling pathways stimulated by the cytokine interleukin-2 (IL-2) and the activating receptor NKG2D in immature
(CD56bright) and mature (CD56dim) subsets of human primary NK cells using mass cytometry experiments and in
silico modeling. Our analysis revealed that IL-2 changed the abundances of several key proteins, including NKG2D
and the phosphatase CD45. Furthermore, we found differences in correlations between protein abundances, which
were associated with the maturation state of the NK cells. The mass cytometry measurements also revealed that
the signaling kinetics of key protein abundances induced by NKG2D stimulation depended on the maturation state
and the pretreatment condition of the NK cells. Our in silico model, which described the multidimensional data
with coupled first-order reactions, predicted that the increase in CD45 abundance was a major enhancer of NKG2D-
mediated activation in IL-2–treated CD56bright NK cells but not in IL-2–treated CD56dim NK cells. This dependence
on CD45 was verified by measurement of CD107a mobilization to the NK cell surface (a marker of activation). Our
mathematical framework can be used to glean mechanisms underlying synergistic signaling pathways in other ac-
tivated immune cells.

INTRODUCTION

Natural killer (NK) cells are lymphocytes of the innate immune system
(1, 2). Unlike lymphocytes of the adaptive immune system, such as
T andB cells, activation ofNK cells is not dominated by a single primary
receptor but by a diverse set of germline-encoded activating and inhib-
itory NK receptors (NKRs) (1, 2). Cognate ligands on target cells (such
as virally infected cells or tumor cells) disrupt the balance between acti-
vating and inhibitoryNKRs that initiate opposing signals and generate a
bias toward activating signals. This results in NK cell activation, which
then leads to the lysis of target cells through the release of the contents of
cytolytic granules (a process called cytotoxicity), the secretion of cyto-
kines such as interferon-g (IFN-g), or both (1, 2).

An intriguing aspect of NK cell activation is the inability of many
activating NKRs to stimulate robust NK cell activation when these re-
ceptors are engaged individually (3).However, pretreatingNKcells with
cytokines, such as interleukin-2 (IL-2), that are often produced in the
host during an infection (3), removes this constraint. For example,
cross-linking of the activating receptor NK group 2, member D
(NKG2D) with agonistic monoclonal antibodies (mAbs) fails to stimu-
late any appreciable activation of primary NK cells unless the NK cells

are pretreated with IL-2 (3). An added complexity arises because of the
differences in NK cell responses during different stages of NK cell de-
velopment (4, 5). For example, activation of immature human NK cells
that have increased amounts of the cell surface marker protein CD56
(so-called CD56brightNK cells) by treatment with IL-12 in combination
with IL-18 predominantly stimulates the production of cytokines (6),
whereas the activation through activating NKRs of more mature
primary human NK cells, which have reduced cell surface abundances
of CD56 (that is, CD56dimNK cells), generates a more robust cytotoxic
response (4). This type of behavior also opens up the interesting possi-
bility that cytokine-NKR synergies are executed differently during dif-
ferent stages of NK cell development. Although such synergies between
cytokines and NKRs are well documented in multiple experimental
systems, the underlying mechanisms are not well understood.

The roadblocks in obtaining a mechanistic understanding
underlying cytokine-NKR synergy arise because of experimental chal-
lenges in investigating the signaling kinetics and the difficulty in setting
upmechanistic in silico models in a signaling systemwith many poorly
characterized signaling events. The NKRs transmit signals through di-
verse signaling pathways, which involve distinct sets of adaptors,
kinases, and phosphatases (1, 7, 8). Even a given NKR can activate
key downstream proteins through different signaling pathways. For
example, upon activation, the complex formed between NKG2D and
DNAX-activating protein of 10 kDa (DAP10) binds to the kinase
phosphatidylinositol 3-kinase (PI3K) or to the adaptor growth factor
receptor–bound protein 2 (Grb2), which initiates different sets of
intermediate signaling events that lead to the activation of key proteins,
such as Rac1 (9–11). As a result, it becomes difficult to experimentally
characterize the signaling events for the synergy between a particular
cytokine and NKR by assaying a small number of activation markers.
A technical challenge in assayingmany signaling proteins inNK cells by
standardexperimental techniques (for example,Westernblottinganalysis)
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is the low abundance of these proteins in NK cells, as well as the heter-
ogeneity of the NK cell population, which contains subsets of cells with
different developmental states. Another factor that impedes the gener-
alization of a known NK cell signaling mechanism in one species (for
example, mice) to another (for example, humans) is the interspecies
differences between the type of NKRs and their associated signaling
pathways (7, 8). As a result, many of the events in NK cell signaling
are not well characterized (7, 12). This alsomakes it difficult to establish
mechanistic in silico models based on standard modeling techniques
(for example, differential equations orMaster equation) (13–15), which
require detailed knowledge regarding the interactions between the
involved molecular species.

Here, we investigated the synergy between IL-2 and NKG2D
signaling pathways in primary humanCD56bright andCD56dimNKcells.
We combined mass cytometry analysis with a data-driven in silico
modeling approach that has predictive powers to derive a mechanistic
understanding of synergy. Themass cytometry technique enabled us to
assay 37 different signaling proteins in single cells across multiple time
points, producing a detailed description of the signaling kinetics, which
included cell-to-cell variations of the signaling kinetics. The multi-
dimensional single-cell data were analyzed with a data-driven in silico
framework to quantify the flux between two signaling proteins in a time
interval. The flux is a measure of the rate of net flow of molecules be-
tween proteins during signaling. IfA and B are two proteins influencing
each other’s abundances, then the flux from A→B (fA→B) represents
how fast the abundance of A is changing to generate B. The analysis
provided a dynamic description of the signaling kinetics, which quan-
titatively elucidated roles of signaling components in regulating the
temporal evolution of the measured protein abundances. This com-
bined approach enabled us to predict themain regulators of the synergy
between IL-2 and NKG2D signaling and to quantify the differences in
the synergy between IL-2 and NKG2D exhibited by immature
(CD56bright) and mature (CD56dim) primary human NK cells. In IL-
2–treated CD56bright NK cells, our analysis predicted the phosphatase
CD45 to be amain regulator of increasedNK cell activation. In contrast,
our analysis indicated the involvement of additional regulators other
than CD45 in the increased activation of the IL-2–treated CD56dim

NK cells. Together, the results suggest that the developed data-driven
framework can be used to delineate synergistic signaling pathways in
immune cells.

RESULTS

IL-2 promotes NKG2D-mediated activation in both
CD56bright and CD56dim NK cells but with different
signaling kinetics
We assessed changes in the single-cell abundances of 37 different
proteins in two subsets (CD56bright and CD56dim) of primary human
NK cells that were stimulated with plate-bound agonistic anti-
NKG2D antibodies. The NK cells were left untreated or pretreated with
IL-2, previously titrated to achieve maximal activation (“priming”), for
24 hours before the cells were stimulated through NKG2D. The cells
were assayed before (at time t= 0) and after NKG2D-mediated stimula-
tionatmultiple times (t=4, 8, 16, 32, 64, 128, and256min).Wecompared
changes in protein abundances between the different pretreatment
conditions (medium alone or IL-2) for a given CD56+NK cell subset
(CD56bright or CD56dim) and between the CD56bright and CD56dim

NK cell subsets for a given pretreatment condition (medium or IL-2).
These experiments were performed with blood samples derived from

three different healthy human donors (donors #1 to #3). Throughout
the text, we describe the results for donor #1. Although some donor-to-
donor variances were observed, experiments with cells from the two
other donors produced results that were qualitatively similar, to a large
extent (see figs. S1 to S12).

We found that IL-2 stimulated changes in the abundances of
multiple proteins in both the CD56bright and CD56dim NK cell subsets.
Most notably, the average abundances of NKG2D, CD45, phosphoryl-
ated S6 (pS6), and phosphorylated signal transducer and activator of
transcription 5 (pSTAT5) were increased more than 3-, 1.5-, 5-, and
9-fold, respectively, in IL-2–treated CD56bright and CD56dim NK cell
subsets compared to those in untreated cells (Fig. 1, figs. S1 and S12,
and table S1). However, several other proteins that mark activation in
lymphocytes, including phosphorylated extracellular signal–regulated
kinase (pErk) (Fig. 1 and table S1) and CD69 (table S1), were also more
abundant in the IL-2–treated NK cells than in the untreated cells. Fur-
thermore, we observed differences in the average abundances of
multiple proteins between the CD56bright and CD56dimNK cell popula-
tions under the same pretreatment condition (medium or IL-2). For ex-
ample, and consistent with previous observations, the average
abundances of CD16 and CD57 were substantially greater (>3- to
90-fold), and the average abundance of CD62L was less in untreated
and IL-2–treated CD56dimNK cells compared to that in the CD56bright

NK cells (table S1 and fig. S12). In addition, regardless of the pre-
treatment condition, the average abundances of the activating receptor
NKG2D and the inhibitory receptor NKG2A were reduced (>1.5-fold)
in the CD56dim NK cells compared to those in the CD56bright NK cells
(table S1 and fig. S12).

Variations in protein abundances under the NKG2D-unstimulated
condition (for example, cells treated with medium or IL-2 alone) could
affect the signaling kinetics that follow NKG2D-mediated stimulation,
because the abundances of interacting proteins determine the propen-
sity of the associated biochemical reactions. Thus, increased (or de-
creased) protein abundances in the NKG2D-unstimulated state could
result in faster (or slower) changes in protein abundances involved in
biochemical signaling events. We calculated the covariance between a
pair of protein abundances. The covariance between two proteins indi-
cates if an increase in abundance of a protein is associated on average
with an increase (positive covariance) or decrease (negative covariance)
of the abundance for the other protein. We found protein abundances
that displayed both positive covariances (for example, CD45 and pAkt
in IL-2–treated CD56brightNK cells) and negative covariances [for ex-
ample, NKG2D and phosphorylated CrkL (pCrkL) in IL-2–treated
CD56bright NK cells], with the magnitudes of the correlations varying
from low (~0.01) to moderate (~0.4) values in the NK cell subsets
before they underwentNKG2Dstimulation (Fig. 2, A toD). The protein
abundances covaried differently between the CD56bright and CD56dim

NK cell subsets in an IL-2–dependent manner even before the cells
underwent NKG2D stimulation (Fig. 2). The nature of covariations
in protein abundances in the NKG2D-unstimulated state could also
affect the kinetics of signaling. For example, a positive covariance be-
tween a kinase and a substrate would favor enhanced phosphorylation
of the substrate in a cell population. We obtained similar results for
donor #2 (figs. S2 and S3).

The single-cell kinetics of signaling after NKG2D engagement
depended on the NK cell subset (CD56bright or CD56dim) and the
pretreatment condition (medium or IL-2). Stimulation of NKG2D
on IL-2–treated CD56bright and CD56dim NK cells resulted in subs-
tantially increased amounts (10- to 100-fold in the cell population
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average) of CD107a (a marker for the release of cytotoxic and secre-
tory granules) at late times (>128 min) compared to those in their
medium-treated counterparts (Fig. 1 and fig. S2). The IL-2–treated
CD56bright NK cells had increased amounts of CD107a compared to
those in their IL-2–treated CD56dim counterparts (Fig. 1). Further-
more, the IL-2–treated CD56bright and CD56dim NK cells had
increased amounts of pAkt and pS6 after NKG2D stimulation com-
pared to those of the medium-treated cells (Fig. 1). The qualitative
features of the averages of the protein abundances in the cell popula-
tion were similar between the CD56bright and CD56dim NK cell subsets

for most of the proteins analyzed (Fig. 1). However, the covariances
between the protein abundances changed differently in the CD56bright

and CD56dim NK cell subsets in response to NKG2D stimulation, and
these changes were dependent on the pretreatment condition (Fig. 2).
Therefore, the signaling kinetics in individual cells depended on both
the developmental stage and the pretreatment condition. We per-
formed additional control experiments by analyzing NK cells from a
third donor that were incubated with isotype-matched control immu-
noglobulin G (IgG) (stimulation with IL-2 and IgG). The incubation
of CD56bright and CD56dim NK cells with IgG resulted in negligible
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Fig. 1. Kineticsof averageprotein abundances inmass cytometrymeasurements in IL-2–ormedium-treatedCD56brightandCD56dimprimaryhumanNKcells stimulated

byanti-NKG2D. (A andB) Analysis of the kinetics of changes in the average abundances of the indicatedproteins inCD56bright (A) andCD56dim (B) primary humanNK cells at time0

and at the indicated times after stimulation throughNKG2D. a.u., arbitrary units. Before stimulation throughNKG2D, the cellswere pretreatedwith eithermedium (black lines) or IL-2

(red lines). Protein abundancesweremeasured bymass cytometry in duplicate samples from each donor. The average protein abundanceswere calculated using Eq. 3A for the cell

population in theduplicate samples. Data are froma single donor andare representativeof two independentdonors. Thedata fromthe seconddonor are shown in fig. S2. Cells from

a third donor were analyzed to confirm the effect of pretreatment with IL-2 (fig. S7). For analysis of the kinetics of other proteins of interest, see fig. S1 and table S1.
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changes in CD107a abundance, even at
later times (t = 264 min), and reduced
abundances of pAkt and pErk compared
to their NKG2D-stimulated counterparts
(fig. S7). Thus, these data suggest that
the increased activation in the IL-2–treated
NK cells upon NKG2D stimulation arose
from the synergy between IL-2 and
NKG2D signaling. Next, we quantified
the dependencies in the signaling kinetics
with a data-driven in silico scheme.

Using the mass cytometry data,
the underlying signaling kinetics is
analyzed in silico
NK cell signaling kinetics are com-
posed of different types of biochemical
reactions, including binding-unbinding
processes and phosphorylation and de-
phosphorylation events, as well as physical
processes, including diffusion and cyto-
skeletal movements, which result in changes
in the single-cell abundances of molecu-
lar species (7, 16, 17). Because these pro-
cesses are affected by multiple, cell-specific
properties, such as the total numbers of
the involved molecular species (for ex-
ample, the total numbers of NKG2Dmol-
ecules) and the cell size, as well as by the
intrinsic stochastic nature of biochem-
ical processes (18, 19), each individual
cell gives rise to a distinct signaling ki-
netic trajectory. The mass cytometry tech-
nique analyzes the single-cell abundances
of a large number of signaling species
(for example, proteins), thus providing
a detailed description of the kinetics in
terms of time-stamped snapshot data
(20). The details of the underlying signal-
ing interactions are implicitly contained
in average values (Fig. 1) and the pair-
wise covariances (Fig. 2) for the protein abundances calculated with
the mass cytometry data. Developing fully mechanistic in silico models
composed of physically interacting signaling proteins to analyze such
data is difficult because the detailed knowledge regarding the protein-
protein interactions (for example, the precise nature of reaction propen-
sities) required to establish such models is not available for most of the
proteins pertinent to NK cell signaling. Although we were able to
analyze many more markers than can be analyzed with conventional
flow cytometry methods, the number of proteins analyzed by mass
cytometry represented only a small percentage of the total number of
physically interacting proteins and protein complexes involved in such
signaling networks. Thus, in most cases, the measured proteins interact
with each other through effective interactions that are modulated by the
abundances of many unmeasured intermediate complexes.

We used a data-driven approach tomodel such effective interactions
between the measured proteins. In our scheme, the measured signaling
kinetics during a particular time interval were described by a system of
coupled, first-order chemical reactions (Fig. 3). The reaction rates and

the associated flux of molecules between pairs of proteins were esti-
mated using the average values and covariances given by the mass cy-
tometry data. The reaction rates describe the strengths of the effective
causal interactions between the pairs ofmolecular species (for a detailed
description regarding the framework and implementation, see Fig. 3,
Materials andMethods, and fig. S4). The framework has several advan-
tages. First, it provides a mechanistic description of the signaling kinetics
during a time interval. Second, the modeled kinetics separate the contri-
butions of basal (tonic) and IL-2 signaling before NKG2D stimulation
from those that result due to NKG2D stimulation in the single-cell pro-
tein abundances measured after NKG2D stimulation. Third, the mathe-
matical solution of the model kinetics can be obtained analytically in a
closed expression, which enables precise estimation of the rate constants.

We validated our computational scheme with snapshot data
acquired from in silico networks composed of first-order (fig. S4) and
nonlinear (fig. S5) reactions. This method generated results that are
qualitatively similar to those published in another study (21) in quanti-
fying relationships between signaling proteinswithmass cytometry data

CD56dimCD56bright
A C 

Medium + 

NKG2D 

Medium + 

NKG2D 

IL-2 + 

NKG2D 
IL-2 + 

NKG2D 

Time (min) Time (min) 

Time (min) Time (min) 

B D 

Fig. 2. Kinetics of correlations after NKG2D stimulation between protein abundances measured in cytometry

experiments for the IL-2– or medium-treated CD56bright and CD56dim primary human NK cells. (A to D) Cor-

relations between the measured protein abundances (donor #1) were calculated by scaling the covariance matrix

{Jij} in Eq. 3B by the variances of the proteins involved in the correlation: (Correlation)ij = Jij/(Jii × Jjj)
1/2. The correla-

tions for NKG2D, CD45, pAkt, pPLCg2, pCrkL, pS6, pErk1/2, and CD107a are shown using three-dimensional bar

graphs for medium-treated (A) and IL-2–treated (B) CD56bright NK cells and for medium-treated (C) and IL-2–treated

(D) CD56dim NK cells. The correlations are indexed along the x axis, with integers from 1 to 28 corresponding to the

indicated protein pairs (left table). The magnitudes of the correlations are shown along the z axis, and the bars are

color-coded on the basis of their heights for better visualization. The correlations for donor #2 are shown in fig. S3.
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from experiments with T cells (fig. S6). Furthermore, our scheme de-
scribed protein-protein relationships in the activation of Ras by the gua-
nine nucleotide exchange factor (GEF) SOS through an experimentally
validated signaling network with nonlinear interactions (14). Using our
scheme, the fluxes between the proteins at different times correctly
captured the known involvement of the enzymes SOS and RasGRP1
in the activation of Ras (fig. S5). Thus, we used this method to quantify
fluxes between pairs of signaling components at different times, which
provided a quantitative description of the role of major players in reg-
ulating the signaling kinetics during a time interval. This approach could
then be used to generate predictions to further characterize signaling
mechanisms.

We considered an interaction network (Fig. 4A) involving eight dif-
ferent proteins that were analyzed in the mass cytometry experiments.
The eight proteins, including NKG2D, CD45, pPLCg2, pCrkL, pAkt,
pErk, pS6, and CD107a, were chosen on the basis of previous results
described in the literature regarding NKG2D-induced signaling and
the available markers included in the mass cytometry experiment.
We considered effective interactions, modeled as first-order chemical
reactions, between different protein pairs (Fig. 4A). The presence of
an effective interaction between a protein pair was based on the pub-
lished literature.

CD45 molecules are present in activating synapses but are excluded
from inhibitory NK cell synapses that are formed upon ligand binding
(22). Thus, a change in the spatial localization of CD45 upon NKR en-
gagement could influence the indirect interactions mediated by Src
family kinases (SFKs) between the NKG2D-DAP10 receptor complex
andCD45. The first-order chemical reactionNKG2D→CD45 (Fig. 4A)
considers the possibility of such an interaction between CD45 and
NKG2D upon binding of the anti-NKG2D antibody. Upon receptor
cross-linking with this antibody, the NKG2D-associated adaptor pro-
tein DAP10 is tyrosine-phosphorylated by potentially five different
SFKs that are found inNK cells (1, 23). The phosphatase CD45 activates
SFKs by dephosphorylating a tyrosine residue at an inhibitory C-
terminal site (24, 25). Phosphorylation of DAP10 results in the recruit-
ment of the adaptor protein Grb2, which, in turn, leads to the activation
ofVav1, PLCg2, and the guanosine triphosphataseRac1, resulting in the
activation of themitogen-activated protein kinase (MAPK) Erk (1, 10, 26).
These interactions are represented by the first-order chemical reactions
CD45→PLCg2→pErk (Fig. 4A). Alternatively, PI3K produces phos-
phatidylinositol (3,4,5)-triphosphate (PIP3) from the plasmamembrane
lipid phosphatidylinositol (4,5)-biphosphate, which leads to the activa-
tion of Rac1 and Erk (8). These signaling events are broadly repre-
sented by the first-order chemical reaction CD45→pErk (Fig. 4A).
The generation of PIP3 by PI3K also leads to the phosphorylation of
Akt (27) and the subsequent phosphorylation of ribosomal protein S6
through themammalian target of rapamycin (mTOR) signaling pathway
(21, 28). These events are described by the first-order chemical reactions
CD45→pAkt→pS6 (Fig. 4A). Activated Erk stimulates the relocaliza-
tion of the lysosomal-associated membrane protein CD107a to the cell
surface (29), where it acts as a marker for cytokine secretion and the
release of cytolytic granules (30). This event is described by the first-
order chemical reaction pErk→CD107a (Fig. 4A). S6 is activated by
pErk in T cells (21). Thus, we considered the possibility of this activa-
tion event in NK cells with the first-order chemical reaction pErk→pS6.
We also included pCrkL, amember of theCrk family of adaptor proteins.
CrkL regulates NK activation by influencing NK cell–target cell adhesion
andNKcell polarity (9). In ourmass cytometry experiments, pCrkLwas
increased transiently in abundance in primary human NK cells after

A 

B 

Fig. 3. Data-driveninsilicoschemeforquantifyingthesignalingkineticsunderlying

themass cytometry data. (A) Mass cytometrymeasurementswere used tomeasure the

single-cell abundances of multiple proteins (for example, protein X1 and protein X2) simul-

taneously at different time points. X1 and X2 do not need to interact physically with each

other butmaybe able to changeeachother’s abundances through intermediate signaling

complexes. Individual cells display distinct trajectories of signaling kinetics because of cell-

to-cell variations in total protein abundances. Because individual cells are destroyed upon

eachmeasurement,mass cytometryexperimentsprovide time-stampedsnapshotdata for

the underlying signaling kinetics. Thus, the data cannot be used to quantify changes in

proteinabundances inan individual cell that solely arise as a result ofNKG2Dsignaling. The

average values, covariances, and higher moments (for example, skewness and kurtosis)

calculated from such snapshot data at a given time (for example, t2) are influenced by

two factors: (i) the distribution of the abundances at an earlier time (for example, t1) and

(ii) the changes in the abundances that occurred as a result of NKG2D signaling during the

time interval t1 to t2. It is difficult to separate these factors from each other because of

nontrivial relationships between these quantities (see Eq. 4B and the related discussion

in Materials and Methods). This fact makes it difficult to infer signaling mechanisms. For

example, if t1 represents a time point in the unstimulated state (cells treatedwithmedium

or IL-2) before NKG2D stimulation and t2 represents a time point after NKG2D stimulation,

then a positive correlation between X1 and X2 could arise because of the anti-NKG2D–

induced co-regulation of X1 and X2 in the time interval t1 to t2 or because of the increased

abundance of both proteins (for example, as a result of exposure to IL-2) at the NKG2D

unstimulated state (at t1). (B) We addressed these concerns by constructing a data-driven

model based on first-order chemical reactions. The scheme is described with a simple

setup with two measured proteins, X1 and X2, that are assumed to interact through first-

order reactions with the rates (m12,m21,m11, andm22). The magnitude of these rates de-

scribe the strengths of the interactions between the proteins X1 and X2. The reaction rates

m12 (propensity, m12x2) and m21 (propensity, m21x1) are associated with the reactions

X2→X1 and X1→X2 to X2 and X1, respectively. Note that {x1 ,x2 } ≡ x→ in the propensity ex-

pressions represents the single-cell abundances of the proteins X1 and X2. The rates m11

(propensity,m11x1) andm22 (propensity,m22x2) denote any self-decay (whenm11 < −m21

orm22< −m12) or self-productionwhenm11> −m21 orm22 > −m12 (for example, by auto-

catalysis) or conservation (whenm11= −m21 andm22 = −m12) of X1 and X2, respectively.

The kinetics of the system is described by deterministic mass action kinetics, dx→/dt =

Mx→. The average abundances (m→ ≡ {m1,m2}) and the covariance ({Jij}) between the abun-

dances at times t1 and t2 are related by Eqs. 4A and 4B. We assumed that the quantities

{m→(t1), {Jij (t1)}} and {m→(t2), {Jij (t2)}} are determined by the mass cytometry–measured

single-cell abundances m→(data),J (data), and we then estimated the reaction rates ( M̂ ) in

the model by minimizing a cost function given by Eq. 7. The cost function ensures that

the rates minimize the error between the model and the data corresponding to the av-

erage abundances and covariances. We also used a constraint that minimizes the total

external flux to the system to reduce the effect of self-decay and self-production in de-

scribing the data. A simulated annealing scheme is used to perform theminimization of

the cost function (for details, seeMaterials andMethods). Once the rateswere estimated,

the instantaneous average flux at time t1, the flux from i→j, or fi→j is calculatedwith Eq. 8.
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NKG2D stimulation, which is consistent
with previous findings (9). However, the
role of pCrkL in NKG2D-mediated NK
cell activation is unclear. We considered
an association between pCrkL and the
relocalization of CD107a upon NKG2D
stimulation with the first-order chemical
reactions NKG2D→pCrkL→CD107a
(Fig. 4A). Next, we evaluated the strengths
of the interactions and the corresponding
fluxes between the proteins as the kinetics
progressed in time. We chose to include
the early times (0 to 32 min) in our anal-
ysis of NKG2D-mediated signaling ki-
netics because most NKG2D-mediated
signaling events are thought tooccurwith-
in this time frame after NKG2D stimula-
tion (9, 31, 32).

The calculation of the fluxes (based
on Eq. 8) in the CD56bright NK cells
showed that at early times after NKG2D
stimulation (that is, 0 to 4 min), the sig-
naling kinetics in the IL-2–treated cells occurred with a larger magni-
tude of flux in the pathway pErk→pS6 compared to that in their
medium-treated counterparts (Fig. 4, B and C). This implies that be-
tween 0 and 4 min, the rate of change in the pErk abundance to pro-
duce pS6 (or the propensity of the reaction pErk→pS6) was greater

than other reaction propensities (for example, the propensity for
CD45→pErk in the IL-2–treated cells) considered in Fig. 4A. It is pos-
sible that the phosphorylationof S6was induced by the high abundances
of pErk present before the NKG2D stimulation in the IL-2–treated
CD56bright NK cells before the NKG2D stimulation (Fig. 4C). At later

Fig. 4. In silico characterizationof theNKG2D-

stimulated signaling kinetics in CD56bright

NK cells. (A) Effective signaling model used to

characterize signaling kinetics. The arrows indi-

cate the presence of first-order reactions be-

tween the indicated protein pairs. The direction

of the arrow shows the causality in the interac-

tion; for example, A→B denotes that species B

is generated or activated by Awith a rate propor-

tional to the abundance of A. (B and C) Instanta-

neous average fluxes in the network shown in (A).

The average fluxes were calculated from the

mass cytometry data obtained at two successive

time points (as indicated) for CD56bright NK cells

stimulated with anti-NKG2D after first being

treated with medium (B) or IL-2 (C). The flux (de-

scribed by Eq. 8) in the time interval from t1 to t2
(t2 > t1) was calculated at the earlier time point,

t1. The fluxes were rescaled by the largest flux

calculated for all data sets analyzed. The thickness

of an arrow is proportional to the value (shown

next to the arrows) of the associated flux on a

logarithmic scale. The directions associatedwith

relatively larger values (≥10−3) of the fluxes are

emphasizedwith red arrows. NKG2DandpPLCg2

are denoted as NKG and pPLC, respectively, for

brevity. The flux analysis was performed on the

mass cytometry data collected at 0, 4, 8, 16, and

32 min. For each time point, the sample size was

about 250 single cells.
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time points after the NKG2D stimulation of the IL-2–treated CD56bright

NK cells, fluxes with larger magnitudes in the signaling kinetics oc-
curred in those pathways, in which CD45 was considered to stimulate
S6 activation (CD45→pAkt→pS6) between 4 and 16 min, PLCg2 ac-
tivation (CD45→pPLCg2) between 4 and 8 min, and Erk activation
(CD45→pErk) between 8 and 16 min (Fig. 4C). Activated Erk stimu-
lated the relocalization of CD107a to the cell surface (pErk→CD107a)
between 16 and 32 min after NKG2D stimulation in the IL-2–treated
CD56brightNK cells (Fig. 4C). In addition, pCrkL also appeared to con-
tribute to CD107a relocalization (pCrkL→CD107a) in the same time
interval (Fig. 4C).We found that NKG2D stimulation led to fluxes with
greater magnitudes to CD45 (NKG2D→CD45) between the 4- to 8-min
and 16- to 32-min time intervals in the IL-2–treated CD56brightNK cells
(Fig. 4C).Overall, the calculation of fluxes suggested the possible involve-
ment of CD45 withmost of themajor changes in the signaling pathways
that led to the activation of S6 and Erk and, eventually, CD107a reloca-
lization. In comparison, in themedium-treated CD56brightNK cells, CD45
was predicted to contribute to the activation of Erk (CD45→pErk) be-
tween 0 and 4 min and Akt (CD45→pAkt) between 0 and 8 min during
the early stages of NKG2D-mediated signaling (Fig. 4B). In the medium-
treated CD56bright NK cells, pErk did not stimulate large changes in
CD107a localization, and pAkt stimulated S6 activation substantially only
during the period 8 to 16min afterNKG2Dstimulation (Fig. 4B). Changes
toNKG2D→CD45 fluxeswere still observed in themedium-treated NK
cells at early (0 to 8 min) and late (16 to 32 min) times after NKG2D
stimulation (Fig. 4B). Thus, in the absence of IL-2, the involvement of
CD45 in the activation of Erk and S6 was substantially reduced, which
could be a result of the lower abundances of CD45 in themedium-treated
NK cells compared to those in their IL-2–treated counterparts (Fig. 1).

We also analyzed fluxes (Eq. 8) in the CD56dim NK cells (Fig. 5,
A and B). Similar to the IL-2–treated CD56bright NK cells, NKG2D-
mediated activation of Erk, Akt, and S6 in the CD56dim NK cells
was induced by CD45 as the signaling progressed after NKG2D
stimulation (Fig. 5B). However, the changes in fluxes in the IL-
2–treated CD56dim NK cells were less substantial (less than five-
fold) than those in the CD56bright NK cells (Figs. 4C and 5B). In
addition, the relocalization of CD107a in response to Erk activation
was about 1000-fold less between 16 and 32 min in the IL-2–treated
CD56dim NK cells than in the IL-2–treated CD56bright NK cells (Figs.
4C and 5B). Therefore, although CD45 stimulated most of the larger
changes in pErk, pAkt, and pS6 abundance and in CD107a relocaliza-
tion, the effect of CD45 in the CD56dim NK cells was much weaker
compared to that in the CD56bright NK cells (Figs. 4C and 5B). The
signaling kinetics of the medium-treated CD56dim NK cells showed more
similarity to those of the IL-2–treated CD56dim NK cells (Fig. 5, A and
B) compared to their CD56bright counterparts (Fig. 4, B and C). In the
medium-treated CD56dim NK cells, CD45 induced changes in the ac-
tivation of PLCg2, Akt, and Erk during different time intervals. How-
ever, the flux from pErk to CD107a relocalization was substantially
less (<100-fold) in the medium-treated CD56dimNK cells (Fig. 5A) com-
pared to that in the IL-2–treated CD56dimNK cells (Fig. 5B). Overall, the
extent of the effect of IL-2 on the CD56dim NK cells was not as large as
that in the CD56bright NK cells, and pErk in the CD56dim NK cells was
less effective at stimulating CD107a relocalization than it was in the
CD56bright NK cells (Figs. 4C and 5B). We obtained qualitatively similar
results from our data-driven analysis of another NK cell donor (fig. S8).

The in silico analysis of fluxes between the protein pairs predicted
the involvement of CD45 in stimulating large changes in the signaling
pathways in the IL-2–treated CD56brightNK cells (Fig. 4C). IL-2 stimu-

lated almost a twofold increase in the average abundance of CD45 in the
CD56brightNK cells compared to that in the IL-2–treated CD56dim NK
cells, which led to enhanced Src activation and a resulting increase in
Erk activation and CD107a relocalization after NKG2D stimulation.
Thus, these results suggest that pretreatment with IL-2 promotes the
robust NKG2D-mediated activation of the CD56bright NK cells by
increasing the abundance of CD45. From this analysis, one could pre-
dict that those IL-2–treated CD56brightNK cells that had a CD45 abun-
dance similar to that of medium-treated CD56bright NK cells would
display substantially reduced amounts of CD107a on the cell surface
after NKG2D stimulation. We tested this prediction by gating the IL-
2–treated CD56bright NK cells based on low or high CD45 abundance
late after NKG2D stimulation (t = 256 min), a time at which increased
amounts of CD107a were detected at the cell surface (Fig. 1).We found
that IL-2–pretreated CD56bright NK cells with less CD45 had reduced
amounts of CD107a on the cell surface (Fig. 6A). This property of IL-
2–treated CD56brightNK cells was reproducible in cells from donors #2
and #3 (figs. S9 and S10), as well as in all of the additional donors that
were tested (fig. S11). Note that data from this late time point were not
used to calculate the fluxes that were used to generate the predictions.

When the CD56brightNK cells were gated on CD11c, whose abun-
dance was also increased after IL-2 treatment, but which is not known
to play a role in NKG2D signaling, we did not detect any correlation
between CD11c with the cell surface abundance of CD107a after
NKG2D stimulation (Fig. 6B). This was also observed inNKcells from
donors #2 and #3 (figs. S9B and S10B). In addition, no correlation was
observed between CD45 abundance and IFN-g production in the IL-
2–treated CD56bright NK cells after NKG2D stimulation (fig. S11C).
The in silico analysis of the CD56bright NK cells also showed that
CD45 stimulated the activation of Erk in the IL-2–treated cells
(Fig. 4C). Thus, our model predicts that both IL-2– and medium-
treated cells would have similar amounts of pErk if the CD45-mediated
Erk activation pathway was bypassed. Stimulation of cells with
phorbol 12-myristate 13-acetate (PMA) and ionomycin leads to an
increase in the abundance of intracellular calcium and the activation
of Erk but bypasses the need for SFKs (25, 33). We found that PMA
and ionomycin stimulated similar increases in pErk abundance in
both IL-2– and medium-treated NK cells for both the CD56bright and
CD56dim subsets (Fig. 6C). Furthermore, we did not observe any ob-
vious correlation between CD45 abundance and CD107a cell surface
abundance in the IL-2–treated CD56brightNK cells after treatment with
PMA and ionomycin (fig. S11B), suggesting that the role of CD45 in
CD56bright NK cells is upstream of calcium release and Erk activation.

Because our analysis showed that CD45 was involved to a simi-
lar extent in the IL-2– and medium-treated CD56dim NK cells, the
model predicts that, unlike in the CD56bright cells, the increased
abundance of CD45 in the IL-2–treated CD56dim NK cells alone
is not a major factor in the increased activation of these cells. This
prediction was confirmed by our analysis of the behavior of the IL-
2–treated CD56dim NK cells at 256 min after NKG2D stimulation,
in which the increased CD107a abundance on the cell surface
occurred in cells with reduced amounts of CD45 (Fig. 6A). This
property was also displayed by NK cells isolated from donors #2
and #3 (figs. S9A and S10A). The CD56dim NK cell population
can be further divided into subpopulations based on the cell surface
marker CD57, which defines terminally differentiated NK cells (34)
and the expression of inhibitory receptors, such as NKG2A. Be-
cause the CD57− NKG2A+ subset of CD56dim NK cells exhibits
enhanced responsiveness to IL-2 compared to that of their CD57−
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NKG2A− and CD57+ counterparts (34), we examined whether there
was a CD45-mediated dependency, similar to the CD56bright NK cells,
of CD107a mobilization to the cell surface after NKG2D stimulation
in the CD57− NKG2A+ CD56dim NK cell subset. However, we ob-
served no correlation between CD45 and CD107a in the CD57−

NKG2A+ CD56dim NK cell subset (figs. S9A and S10A). Together,
these results suggest that the correlation between CD45 and CD107a
abundance is specific for the IL-2–treated CD56bright NK cell popula-
tion. Because the relocalization of CD107a to the cell surface correlates
with both the extent of cytokine secretion and the release of cytolytic

 Medium + NKG2D  IL-2 + NKG2D 
CD56dim

A B 

pErk

pErk

pErk

pErk

pErk
pErk

pErk pErk

Fig. 5. In silico characterization of the NKG2D-stimulated signaling kinetics in CD56dim NK cells. (A andB) Instantaneous average fluxes (derived fromEq. 8) in thenetwork

shown in Fig. 4A. The average fluxes are calculated from the mass cytometry data obtained at two successive time points (as indicated) for CD56dim NK cells stimulated with anti-

NKG2D after first being treatedwithmedium (A) or IL-2 (B). The flux (as calculated from Eq. 8) in the time interval from t1 to t2 (t2 > t1) was calculated at the earlier time point t1. The

fluxes were rescaled by the largest flux calculated for all data sets analyzed. The thickness of an arrow is proportional to the value (shown next to the arrows) of the flux on a

logarithmic scale. The directions associated with relatively larger values (≥10−4) of the fluxes are emphasized with red arrows. NKG2D and pPLCg2 are denoted as NKG and pPLC,

respectively, for brevity. The flux analysis was performed on themass cytometry data collected at 0, 4, 8, 16, and 32min. For each time point, the sample size was about 4000 cells.
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granules, we used flow cytometry to ex-
amine any correlation between CD45
abundance and IFN-g production by
CD56bright and CD56dim NK cells after
stimulation of NKG2D. Whereas we
observed a correlation between CD45
and CD107a abundance in the IL-2–
treated CD56bright NK cells (similar to
that observed from our mass cytometry
analysis), we did not observe any corre-
lation between CD45 abundance and
IFN-g production in these cells (fig.
S11C). Thus, these results suggest that
CD45 may be linked to cytolytic granule
secretion, rather than cytokine produc-
tion, by the IL-2–treated CD56bright NK
cells in response to NKG2D stimulation.

DISCUSSION

We analyzed the synergy between the IL-
2 andNKG2Dsignaling pathways inNK
cells residing at two different stages of
development (immature CD56bright cells
and mature CD56dim NK cells) through
a combination of single-cell, mass cy-
tometry experiments and a data-driven
in silico framework. Measurement of
the abundances of 37 different proteins
bymass cytometry revealed that the pre-
treatment of NK cells with IL-2 before
stimulation through NKG2D generated
moderate to large changes in the abun-
dances of several proteins, including
CD45 and NKG2D, with many of these changes depending on the mat-
uration state of the NK cells. The differences in the protein amounts be-
tween the IL-2–treated CD56dim and the IL-2–treated CD56bright NK
cells before the NKG2D stimulation could be the result of the type of
IL-2 receptors found on these cells: CD56brightNK cells express the high-
affinity, heterotrimeric IL-2Rabg receptors, whereas the CD56dim NK
cells express the low-affinity, heterodimeric IL-2Rbg receptors (4). Stim-
ulationof the IL-2–ormedium-treatedNKcells by plate-bound agonistic
anti-NKG2Dantibodies resulted in increasedmobilization ofCD107a at
the cell surface in the IL-2–treated cells compared to that in themedium-
treated cells.

We developed a data-driven in silico framework to analyze cytokine-
NKR signaling synergy with the time-stamped snapshot single-cell
mass cytometry data. The data-drivenmethodwas developed to address
the difficulties in establishing canonical mechanistic signaling models
for NKG2D signaling kinetics because of the poor characterization of
many associated signaling pathways. Furthermore, we needed to devel-
op an in silico framework that was able to separate the contributions of
signaling that occurred in response to pretreatment with IL-2 or medi-
um and NKG2D stimulation in the single-cell data because the current
methods (21) designed to quantify the strengths of protein-protein
interactions in cytometry data are unable to do so. The data-driven
scheme described interactions between measured proteins by a set of
coupled, first-order reactions in which the rates of the reactions were
estimated in a time interval with successive time-stamped mass cy-

tometry data. Thus, the reaction rates can vary between different
time intervals, which provides a description of the signaling kinetics
in terms of piecewise first-order reactions. The piecewise description
models the kinetics with first-order reactions, where the rate con-
stants can be different during different time intervals.

The in silico framework enabled us to separate the changes in the
protein abundances that were derived from the pretreatment with IL-2
or medium and from the NKG2D-mediated stimulation and enabled us
to directly compare the signaling kinetics between the CD56bright and
CD56dim NK cell subsets initiated by the NKG2D stimulation under
these different pretreatment conditions. Using the estimated rates, we
calculated average fluxes between signaling proteins at each time point.
The fluxes between protein pairs provided a dynamic and mechanistic
characterization of the complex time dependence of the average abun-
dances and the covariances in themass cytometry data. Themagnitudes
of the fluxes enabled us to identify proteins that play important roles in
regulating the signaling kinetics. Our calculations of the fluxes showed
donor-to-donor differences in these magnitudes (Fig. 4 and fig. S8). The
estimation of the magnitudes of the fluxes in our in silico framework
depended on the kinetics of changes in the average protein abundances
and the pairwise correlations between the proteins, and because these
quantities varied between different donors (see Figs. 1 and 2 and figs.
S1 to S3), the magnitudes of the fluxes also showed variations. However,
some of the general features of the kinetics, for example, the involvement
of CD45 in stimulating Erk activation and CD107a relocalization in

A
CD56bright CD56dim

CD107a

C
D

4
5

IL-2 + NKG2D

NKG2D

0.1% 0.2%

29.1% 5.1% CD107a

C
D

1
1

c

IL-2 + NKG2D

CD56bright CD56dim

29.3% 5.2%

B

CD56bright CD56dim

pErk

Control

IL-2 + PMA/Lonomycin

PMA/Lonomycin

C

Fig. 6. Testing ofmodel predictions. (A) Mass cytometry analysis of CD45 and CD107a in CD56bright and CD56dimNK cells

(obtained fromdonor #1) at 256min after the cells were stimulatedwith anti-NKG2D antibody having first been treatedwith

medium (NKG2D) or IL-2 (IL-2 + NKG2D). As predicted by themodel, IL-2–treated CD56brightNK cells with greater amounts of

CD45 exhibited increased relocalizationof CD107a to the cell surface. IL-2–treatedCD56dimNKcellswith thegreater amounts

of CD45 showed a bimodal distribution of CD107a abundances on the cell surface. The dashed red line denotes the corre-

lation between the abundances of CD45 and CD107a. Data are from a single donor and are representative of five

independent donors. (B) Mass cytometry analysis of CD11c and CD107a abundances (NK cells obtained from donor #1)

at 256 min after IL-2–pretreated CD56bright and CD56dim NK cells were stimulated with anti-NKG2D antibody. As predicted

by the model, CD11c abundance played no role in determining the extent of NKG2D-stimulated CD107a relocalization in

either NK cell subset. Data are from a single donor and are representative of five independent donors. (C) Mass cytometry

analysis of the distribution of pErk in CD56bright and CD56dimNK cells at 16min after incubationwithmedium, PMA alone, or

PMA and ionomycin. The NK cells were first pretreated with either IL-2 (orange) or medium (blue). Unstimulated control

samples are shown in green. Data are from a single donor and are representative of three independent donors.
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IL-2–treated CD56bright cells, were maintained across the different do-
nors (Fig. 4 and fig. S8). Amechanistic understanding of which features
of the signaling kinetics are insensitive to donor-to-donor variationswill
require further investigation.

The strong correlation between CD107a and CD45 abundance pre-
dicted by the in silico model, in which increased CD107a relocalization
correlated with increased CD45 abundance, was observed in the IL-2–
treated CD56bright NK cells from all of the donors tested. At the same
time, this correlationwas not observed in the IL-2–treated CD56dimNK
cells from any of the donors or when we gated on a CD57− NKG2A+

subpopulation of the IL-2–treated CD56dim NK cells. CD45 is a phos-
phatase that is present in all nucleated hematopoietic cells, and it acti-
vates SFKs by dephosphorylating their inhibitory tyrosine residues
(24, 25). However, when present in greater abundance, CD45 can
also diminish SFK activation by dephosphorylating a tyrosine
residue in the kinase domain (35). The IL-2–treated CD56dim NK cells
contained fewer NKG2Dmolecules (~1.5-fold less average abundance)
but more CD45 molecules (~1.5-fold higher average abundance) than
did the IL-2–treated CD56bright cells. It is possible that this makes the
relationship between CD45 abundance and CD107a relocalization in
the IL-2–treated CD56dimNK cells more complicated, which could lead
to weaker signaling activity. Previous studies with Ptprc−/− (CD45-null)
mice showed that NK cells lacking CD45 produced lower amounts of
cytokines and showed a defect in CD107a relocalization compared to
NK cells from wild-type mice when stimulated through immunorecep-
tor tyrosine-based activation motif (ITAM)–associated activating
NKRs, such as CD16, Ly49H, and NKG2D (25). The effect of CD45
in the activation of immature and mature mouse NK cells was not
examined in the CD45-deficient mice (36). We observed no correlation
between CD45 abundance and IFN-g production in the IL-2–treated
CD56brightNKcells in response to the stimulation ofNKG2D.However,
it is difficult to compare NKG2D signaling in mouse and human NK
cells because human NKG2D associates only with the adaptor DAP10,
whereas mouse NKG2D associates with either DAP10 or DAP12 in ac-
tivated mouse NK cells. DAP10 contains a YINM sequence and
transmits signals through pathways that are different from those used
by the ITAM-bearing adaptor DAP12 (37).

The flux analysis based on themass cytometry data points to several
differences between different protein pairs. In the IL-2–treated
CD56bright NK cells, the calculation of fluxes showed large rates of
change in CD45 abundances to produce pAkt (through CD45→pAkt)
at all of the time points examined, whereas the rates of change in CD45
abundances to generate pErk (through CD45→pErk) became larger
transiently at a specific time interval (16 to 32 min). Such differences
could possibly arise because of the presence of multiple phospho-
rylation sites in Erk or other MAPKs. Multisite activations can give
rise to bistable behavior in MAPK activation, resulting in a switch-
like activation of the MAPK (for example, Erk) when the stimula-
tion crosses a threshold value (38). In addition, CD45 and pErk
(CD45→pSrc→pVav→Rac→PAK1→MEK→Erk) are separated by
a relatively larger number of signaling events compared to those be-
tween CD45 and pAkt activation (CD45→pSrc→PI3K→PIP3→pAkt).
Therefore, a signal generated at the receptor-ligand interaction could
take some time to surpass the threshold needed for Erk activation,
whereas pAkt might be more easily activated.

Another observation is of the relatively larger fluxes between
NKG2D→CrkL→CD107a at 16 to 32 min in the medium-treated
CD56dim NK cells, which did not exhibit any CD107a relocalization.
The value of the flux for pCrkL→CD107a in these cells was almost

10-fold less than the CrkL→CD107a and Erk→CD107a fluxes for
the IL-2–treated CD56bright cells, which exhibited increased CD107a re-
localization. The smaller values of the flux in the medium-treated
CD56dim NK cells could be responsible for the negligible reloca-
lization of CD107a in these cells. However, the magnitude of the
CrkL→CD107a flux at 16 to 32 min in the medium-treated CD56dim

cells was similar to that in their IL-2–treated counterparts, which
exhibited CD107a relocalization to a small extent. It is therefore
possible that there are additional pathways, which were not ana-
lyzed here, that are responsible for CD107a relocalization in the IL-2–
treated CD56dim cells.

The flux calculations also showed transient fluxes between NKG2D
andCD45, which could have arisen due to indirect interactions regulated
by multiple intermediate complexes that were not measured in the
experiments. For example, the activation of SFKs by CD45 results in the
phosphorylation of tyrosine residues in NKG2D-DAP10, which leads to
Erk activation and NKG2D internalization (39). Furthermore, the spatial
localization of CD45 at the cell surface of NK cells can change depending
on the type of synapse (activating or inhibitory) that is formed (22). CD45
is evenly distributed at the target cell–NK cell interface when cells of the
YThumanNK cell line form activating synapses. Similar towhat occurs
in the immunological synapse formed by T cells (40), CD45 is excluded
from the inhibitory synapses in the YT cells (22). The presence of wide
regions (size, >30 nm) alternatingwith narrow regions (size, ~14 nm) in
the synaptic cleft in the activating NK cell synapses possibly enables
large CD45 molecules to be present in the synapse (22). Thus, the tran-
sient fluxes between NKG2D and CD45 observed in this study could
also be influenced by changes in the spatial localization of CD45 in
the NK cell synapses.

The combined approach that we developed to use single-cell mass
cytometry data and data-driven in silico modeling could be applied to
analyze signaling mechanisms in a wide range of systems, especially
when synergistic interactions between different signaling networks take
place orwhen the contribution of the pretreatment condition regulating
the receptor-induced signaling kinetics is not negligible.However, the in
silico framework works successfully only under two specific conditions:
(i) when a reasonable amount of previous knowledge regarding the in-
teractions between the measured proteins is available and (ii) when the
effects of intrinsic noise fluctuations are not substantial. In the absence
of any information about the potential interactions between the
measured species, any estimation of the fluxes would involve minimi-
zation of a cost function in large dimensions without any good initial
guess. The solution of such problems can be difficult, particularly for
reaction networks in which many reaction parameters (also known as
sloppy modes) vary across a large range without affecting the cost
function substantially (41). Therefore, the analysis of a signaling sys-
tem can begin with calculations involving molecular species that
have known interactions, and then small sets of proteins with un-
known interactions in the scheme can be included iteratively, where
each iteration is followed up by test of predictions. Signaling events
in single cells usually involve large amounts of proteins; thus, cell-to-
cell variations in total protein content (or extrinsic noise fluctuations)
dominate over intrinsic noise fluctuations (42), which can become im-
portant for proteins with low copy numbers (43). Intrinsic noise fluc-
tuations can be important during receptor stimulation when the
numbers of ligands or receptors pertaining to a single cell are very
small. In such cases, considering stochastic kinetics for the first-order
reactions (44) could provide a way to incorporate these fluctuations
into the model.
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MATERIALS AND METHODS

Development of the in silico framework in terms of
first-order chemical reactions
Themass cytometry data showed that both theCD56bright andCD56dim

NK cells exhibited moderate amounts of basal activation, which
changed substantially for several proteinswhen theNKcells were treated
with IL-2 (see table S1). Upon stimulation of the cells with anti-NKG2D
antibody, the ensuing signaling kinetics changed single-cell protein
abundances, which produced time-dependent changes in the average
values and covariances in the protein abundances. Therefore, the
measured single-cell abundances after NKG2D stimulation contained
contributions arising from the unstimulated condition as well as from
the changes induced by NKG2D signaling (Fig. 3). Because individual
cells were not tracked in themass cytometrymeasurements, it is difficult
to separate the changes in single-cell protein abundances that arise
from these two sources. We considered a model system in which the
receptor-induced (for example, NKG2D) signaling kinetics in indi-
vidual cells were described by a set of first-order reactions involving
the measured protein species. We considered deterministic mass-
action kinetics; thus, we captured the cell-to-cell variations in protein
abundances that arose because of differences in signaling induced by
IL-2 or medium before NKG2D stimulation. However, these kinetics
do not take into account the intrinsic noise fluctuations in the chem-
ical reactions, which can become relevant for molecular species that
are present at low abundances (43). Such fluctuations play a minor
role in signaling kinetics, presumably due to the presence of large
copy numbers of signaling proteins (42). Consider a model system
of N number of single cells, with each cell (indexed by a) containing
n different molecular species (indexed by i) occurring with copy
numbers or abundances, {x

ðaÞ
i }. The interactions between the molec-

ular species can be described by a set of coupled first-order bio-
chemical reactions. The single-cell abundances then follow a
deterministic mass-action linear kinetics:

dx
ðaÞ
i

dt
¼ ∑

n

j¼1
M

j
ix

ðaÞ
j ð1Þ

in which M j
i describes the rate of the reaction j→i. The strength of

the interaction between species i and j is given by the magnitudes of
the rates of the forward ( j→i ) and the reverse (i→j) reactions, M j

i

andM i
j, respectively. The flux f

j
i =M j

i x j (t) for i≠ j [or f ij =M i
jx i (t)]

gives the rate of change of species i (or j) by j (or i) through the reac-
tion j→i (or i→j). Thus, when f ji (t) > f ij (t), it implies that at time t,
species j is causing the abundance of species i to change by a greater
amount than vice versa. This provides a precise notion of causality in
the interactions in the signaling pathway. Note that theMmatrix does
not depend on the cell index, which implies that the signaling reactions
occur at the same rate in each cell. We considered cell-to-cell variations
of species abundances at the prestimulus (t= 0) state due to the extrinsic
noise fluctuations in total species abundances, tonic (basal) signaling,
and treatment conditions (for example, cells treated beforeNKG2Dstim-
ulation with either medium or cytokine, such as IL-2). Equation 1 can
be solved analytically to calculate single-cell species abundances at
any time t:

x
ðaÞ
i ðtÞ ¼ ∑

n

j¼1
½eMt �ijx

ðaÞ
j ð0Þ ð2Þ

In the mass cytometry data sets, we are provided with measure-
ments that pertain to the abundances {xi

(a)(t)} at a particular time t
in single cells indexed by a. The challenge is to use the time-stamped
snapshot data at multiple time points to infer the reaction rates or
{Mj

i}. The difficulties for achieving that are as follows: First, the
n × n Mmatrix in general contains n2 independent elements; therefore,
we need at least n2 linear equations involving these matrices to solve for
all the elements ofM. Suppose that we are providedwith data sets at two
different time points, t1 and t2 (>t1). The population averages and cov-
ariances of the proteins at any time t can be easily computed from the
data; that is:

miðtÞ ¼ 1=N ∑
N

a¼1
x
ðaÞ
i ðtÞ ð3AÞ

J ijðtÞ ¼
1

N
∑
N

a¼1
ðx

ðaÞ
i ðtÞ � miðtÞÞðx

ðaÞ
j ðtÞ � mjðtÞÞ ð3BÞ

These quantities at the time points t1 and t2 are related by:

miðt2Þ ¼ ∑
n

j¼1
½eMðt2�t1Þ�ijmjðt1Þ ð4AÞ

Jðt2Þ ¼ eMðt2�t1ÞJðt1Þe
MT ðt2�t1Þ ð4BÞ

Note that Eqs. 4A and 4B provide n + n(n + 1)/2 = n2/2 + 3n/2 (<n2)
linear equations for determining n2 elements ofM from the data; thus,
the system is underdetermined. The nonuniqueness in the estimation of
M using Eqs. 4A and 4B can be further characterized with the following
relationship:

eMðt2�t1Þ ¼ ½Jðt2Þ�
1=2Q½Jðt1Þ�

�1=2 ð5Þ

whereQ is any orthogonal matrix (QQT = 1) with real elements, and
J(t2)

1/2 is the square root of the matrix J(t2).
Second, the fact that elements of M must be calculated uniquely

from the average values and covariances makes it difficult to
separate the changes that occurred during NKG2D-stimulated
signaling from those that occurred as a result of the pretreatment
with IL-2 or medium. For example, the covariance between species
[J(t)] at a particular time

JðtÞ ¼ eMtJðt ¼ 0ÞeM
T t ð6Þ

is affected by the signaling kinetics (ºeMt) and by the covariances
at the prestimulus level [J(t = 0)]. It is not possible to separate eMt

from J(t = 0) by just calculating J(t) or by considering functions of J(t).
Several methods, based on the calculation of mutual information for
joint probability distributions (45) or conditional joint probability dis-
tributions (21), aim to infer the strength of interactions with covar-
iances of the species abundances; however, those estimates can be
biased by covariances between the species at the prestimulus level.
Thus, even in this relatively simple and idealized situation, it can be
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challenging to infer the strength of interactions from time-stamped,
mass cytometry measurements. We addressed this difficulty by esti-
mating the elements of theMmatrix with a simulated annealing tech-
nique. We first created a cost function

c2 ¼ ∑
n

i¼1
1�

∑
n

j¼1
eM t2�t1ð Þ
h i

ij
m

datað Þ
j t1ð Þ

m
datað Þ
i t2ð Þ

0

B

B

B

@

1

C

C

C

A

2

þ

∑
n

i;j¼1
1�

eM t2�t1ð ÞJ datað Þ t1ð ÞeM
T t2�t1ð Þ

h i

ij

J
datað Þ
ij t2ð Þ

0

B

@

1

C

A

2

þ

∑
j¼1

Dtð Þ
2
∑
n

i¼1
Mij

� �2

ð7Þ

which was minimized in the simulated annealing calculation. The av-
erage abundances and covariances computed at times t1 and t2 from
the mass cytometry data were used in Eq. 7 to estimate theMmatrix (M̂).
When the data were generated by the signaling kinetics given by Eq. 1,
the correct M matrix yielded c2 = 0. The average effective flux at
time t was calculated using the i→j flux is given by:

f i→j ¼ M̂j
iðtÞmiðtÞ � M̂i

jðtÞmjðtÞ ð8Þ

where the first term is the flux from i→j and the second term is the
flux from j→i. When fi→j > 0, the effective flux from i→j is repre-
sented with an arrow from i to j, and when fi→j < 0, we showed the
effective flux with an arrow from j to i.

Estimation of the M matrix using simulated annealing
We started our annealing scheme with an initial matrixM, in which the
Mi

i’s for the reaction network (Fig. 4A) were set to 1, whereas the rest of
the off-diagonal elements were set to zero. The diagonal elements were
chosen such that all of the columns of thematrix were added up to zero.
Using thisMmatrix, we calculated an initial cost c2initial, which was giv-
en by Eq. 7. The initial temperature (s2T)initialwas set to 10c

2
initial. After

each annealing step, the temperature was lowered according to an ex-
ponential annealing scheme, (s2T)p+1 = b × (s2T)p, where p is the an-
nealing index and b (<1) was chosen such that (s2T)end = 10−6. We used
a total of 6000 annealing steps. For every annealing step p, we ran 106

Monte Carlo (MC) updates. For eachMC update, we chose an element
M j

i by drawing the row index i and the column index j randomly froma
uniformdistributionU(1,n), wheren is the total number of proteins con-
sidered in the model. When i = j, we proposed a new Mpropose(i, j) =
Mcurrent(i, j) + D(2x − 1), in which D is the maximum step size and
x is a random number between (0,1). We have performed simula-
tions for D = 1 and 0.01, and both produced the same final result. If
i ≠ j, then we first checked whetherMcurrent(i, j) + D(2x − 1) > 1 or < 0.
If these conditions were met, we setMpropose(i, j) = Mcurrent(i, j); oth-
erwise, we setMpropose(i, j) =Mcurrent(i, j) + D(2x − 1). This condition
ensured that the off-diagonal elements of the matrixM lay between 0
and 1. Note that the diagonal elements of the proposed matrix M
could, in principal, take any (positive or negative) real value. We then
calculated the cost function given by Eq. 7. The proposedMmatrices

whose columns did not add up to zero paid a penalty equal to the third
term in Eq. 7. A choice of c2 given by Eq. 7 biased our search for net-
works in which the total number of molecules was conserved at all
times. We accepted the proposed moves using the standard Metropolis-
Hastings algorithm (46), in which the acceptance probability h is given by:

h ¼ minð1; e
c2
current

�c2
proposed

2s2
T Þ

The method was validated with synthetic data (see fig. S4 for details).
We setDt to 1min inEq. 7 for all of the simulations.The fluxvalues shown
in Figs. 4 and 5 were normalized by a constant factor (maximum flux
magnitudeoccurred in all thedata analyzed) such that the fluxmagnitudes
were always less than or equal to unity.

Enrichment of primary human NK cells
Blood was obtained from the Blood Centers of the Pacific under an In-
stitutional Review Board–approved protocol (IRB #10-00265).
Peripheral blood mononuclear cells (PBMCs) were then isolated by
density gradient centrifugationwith Ficoll-Paque PLUS (GEHealthcare
Bio-Sciences AB). NK cells were purified from the PBMCs with an NK
Cell Isolation kit (Miltenyi Biotec GmbH) and were >90% pure. The
enriched primary human NK cells were cultured in RPMI 1640
(Corning Cellgro, Mediatech Inc.) containing 10% fetal bovine serum
(ThermoFisher Scientific), 2mM L-glutamine [University of California,
San Francisco (UCSF) cell culture facility], 1× nonessential amino acids
(UCSF cell culture facility), sodium pyruvate (0.11 mg/ml; UCSF cell
culture facility), 100 IU penicillin, and streptomycin (100 mg/ml;
Corning Cellgro) (R10 medium) and were pretreated with either medi-
um or human IL-2 (200 U/ml; provided by Prometheus Laboratories
Inc.) for 24 hours at 37°C and 5% CO2.

In vitro stimulation of primary human NK cells
Nunc MaxiSorp enzyme-linked immunosorbent assay (ELISA) plates
(ThermoFisher Scientific) werewashed twice in phosphate-buffered sa-
line (PBS) and thenwere coatedwith anti-NKG2DmAb (5 mg/ml; clone
1D11, BioLegend) in PBS for 24 hours at 4°C. The ELISA plates were
washed twice in PBS and blocked in complete culturemedium for 10min
at room temperature before 150,000 enriched primary human NK cells
were added to each well in the ELISA plate. The cells were left unstimu-
lated (t = 0) or stimulated with anti-NKG2DmAb in R10mediumwith
or without IL-2 (200 U/ml) for 4, 8, 16, 32, 64, 128, or 256 min at 37°C
and 5% CO2. For experiments in which the cells were stimulated with
PMA and ionomycin, the cells were incubated for 16 min at 37°C and
5%CO2with PMA(50 ng/ml; Sigma-Aldrich) and ionomycin (1mg/ml;
Sigma-Aldrich). For mass cytometry analysis, the cells were fixed with
1.5 % paraformaldehyde (PFA) in PBS for 10 min at room temperature
immediately after stimulation.

Mass cytometry
Labeling of cells and the viability staining for mass cytometry were per-
formed as previously described (47, 48), with a few modifications.
Before the cells were stimulated, viability staining was performed by in-
cubating the cells with 50 mMcisplatin (Sigma-Aldrich) in 1ml of serum-
free RPMI 1640 per 106 cells for 1 min at room temperature. An equal
volume of R10 medium was added, and the cells were then incubated
for an additional 5 min at room temperature. The cells were washed in
R10 medium and resuspended at a concentration of 750,000 cells/ml.
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151Eu-conjugated anti-CD107a mAb was added to the cells just before
they were stimulated. Immediately after stimulation, the cells were fixed
with 1.5% PFA in PBS for 10 min at room temperature. The cells were
then washed twice with cell-staining medium (CSM) [PBS containing
0.5% bovine serum albumin (BSA) and 0.02% sodium azide] and bar-
coded as previously described (49). Briefly, the cells were washed once
with PBS and once with 0.02% saponin in PBS and then incubated with
barcode reagents in 1 ml of 0.02% saponin in PBS at room temperature
for 15 min. After the incubation, the cells were washed twice with CSM
and then pooled for subsequent staining. All of the antibodies used
for mass cytometry were validated and titrated before use. The bar-
coded samples were surface-stained by incubation with a cocktail of
metal-conjugated antibodies (listed in table S2) for 1 hour at room
temperature with continuous shaking. Cells were washed twice with
CSM, fixed with 1.5% PFA in PBS for 10 min at room temperature,
and then permeabilized in cold methanol for 10 min at 4°C. Intra-
cellular staining was performed by incubating the cells with a
cocktail of metal-conjugated antibodies (listed in table S2) for 1 hour
at room temperature with continuous shaking. Cells were washed
twice with CSM and then incubated for 20 min in 1 ml of iridium
DNA intercalator [diluted 1:5000 inPBSwith 1.6%PFA (DVSSciences)]
for 20 min at room temperature or overnight at 4°C. Before the mass
cytometry analysis was performed, the cells were washed once with
CSM and twice with double-distilled water and then resuspended in
double-distilled water containing the bead standard for normalization
(50). Cells were resuspended in double-distilled water at about 1million
cells/ml and analyzed on a mass cytometer (Fluidigm). The data were
normalized and debarcoded as previously described (49, 50). The
protein abundance data were extracted from the NK cells by gating on
caspase3−cPARP−CD45+CD235−CD61−CD33−CD20−CD3−CD56+ cells
using the Cytobank platform.

Flow cytometry
The mAbs used for cell surface staining were as follows: fluorescein
isothiocyanate–conjugated anti-human CD107a (H4A3, BioLegend),
peridinin chlorophyll protein–Cy5.5–conjugated anti-human CD56
(HCD56, BioLegend), Alexa Fluor 700–conjugated anti-human CD3
(HIT3a, BioLegend), and allophycocyanin-conjugated anti-human
CD45 (Hle-1, BD Biosciences). After stimulation, the cells were washed
twice in staining buffer (PBS, 1% BSA, and 0.5 mMEDTA) and stained
with the appropriate mAbs against cell surface markers for 20 min on
ice. The cells were thenwashed twice in FACS staining buffer, fixed, and
permeabilized using the Cytofix/Cytoperm kit (BD Biosciences) according
to the manufacturer’s protocol. The cells were subsequently stained with
Alexa Fluor 647–conjugated anti-human IFN-g antibody for 20 min on
ice. After the final wash, the samples were acquired on an LSRII flow cy-
tometer (BD Biosciences) and analyzed with FlowJo software (Tree Star).
Single live cells were gated on the basis of forward and side light scatter
profiles, andNKcellswere gatedasCD3−CD56brightorCD3−CD56dim cells.

Statistical analysis
The parameters in the model were estimated as described in the
beginning of this section.

SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/10/485/eaai9062/DC1

Fig. S1. Kinetics of cell population–averaged protein abundances in mass cytometry

measurements in IL-2– or medium-treated CD56bright and CD56dim primary human NK cells

(from donor #1) stimulated by anti-NKG2D.

Fig. S2. Kinetics of cell population–averaged protein abundances in mass cytometry

measurements in IL-2– or medium-treated CD56bright and CD56dim primary human NK cells

(from donor #2) stimulated by anti-NKG2D.

Fig. S3. Kinetics of correlations between protein species in CD56bright and CD56dim NK cells

from donor #2.

Fig. S4. Estimation of reaction rates with synthetic data generated from a biochemical network

composed of coupled first-order chemical reactions.

Fig. S5. Estimation of reaction fluxes with synthetic data generated from the Ras activation

network composed of coupled, nonlinear chemical reactions.

Fig. S6. In silico characterization of naïve CD4+ T cell signaling stimulated with cross-linking

antibodies against CD3, CD28, and CD4.

Fig. S7. Kinetics of the average abundance of proteins when IL-2–pretreated cells obtained

from donor #3 were stimulated by isotype-matched IgG or anti-NKG2D.

Fig. S8. In silico characterization of the NKG2D signaling kinetics in CD56bright and CD56dim NK

cells from donor #2.

Fig. S9. Test of correlation between CD45 expression and CD107a mobilization to the cell

surface of human NK cells from donor #2.

Fig. S10. Test of correlation between CD45 expression and CD107a mobilization to the cell

surface of human NK cells from donor #3.

Fig. S11. Test of correlation between CD45 expression and CD107a mobilization to the cell

surface of human NK cells from donors #4 to #7.

Fig. S12. Matrix plot showing the changes in average protein abundances in CD56bright and

CD56dim NK cells in response to IL-2 treatment.

Table S1. Changes in average protein abundances in CD56bright and CD56dim NK cells in

response to IL-2.

Table S2. Mass cytometry antibody panel.
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function.
type of analysis to other immune cell types will help to discover other synergies underlying cellular activation and
cells was the major determinant of the enhanced responses of these cells to NKG2D stimulation. The application of this 

stimulated increase in the abundance of the phosphatase CD45 in immature NK−and experiments verified that the IL-2
stimulation of the activating receptor NKG2D in immature and mature subsets of human NK cells. This analysis predicted

 ubsequentdelineated the mechanism underlying the synergy between signaling by the cytokine interleukin-2 (IL-2) and s
uthorsmore than 30 proteins and computational analysis of the relationships between those changes in abundance. The a

. performed mass cytometry analysis of the abundances ofet alreceptor signaling to induce NK cell activation. Mukherjee 
balance between signaling by inhibitory and activating receptors, and cytokine signaling can synergize with activating 

Natural killer (NK) cells detect and kill virally infected and transformed cells. NK cell activation depends on the
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