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Computational analyses of toxicological processes enables high-throughput screening of chemical substances and prediction of their endpoints
in biological systems. In particular, quantitative structure-activity relationship (QSAR) models have been increasingly applied to assess the
environmental effects of a plethora of toxic materials. In recent years, some more highlighted types of toxicants are endocrine disruptors (EDs,
which are chemicals that can interfere with any hormone-related metabolism). Because EDs may significantly affect animal development and
reproduction, rapidly predicting the adverse effects of EDs using in silico techniques is required. This study presents an in silico method to
generate prediction data on the effects of representative EDs in aquatic vertebrates, particularly fish species. The protocol describes an example
utilizing the automated workflow of the QSAR Toolbox software developed by the Organization for Economic Co-operation and Development
(OECD) to enable acute ecotoxicity predictions of EDs. As a result, the following are determined: (1) calculation of the numerical correlations
between the concentration for 50% of lethality (LCso) and octanol-water partition coefficient (Koy), (2) output performances in which the LCsg
values determined in experiments are compared to those generated by computations, and (3) the dependence of estrogen receptor binding
affinity on the relationship between K, and LCsj.

Video Link

The video component of this article can be found at https://www.jove.com/video/60054/

Introduction

New developments in informatics and computational technology have empowered the biological sciences with quantitative methodologies that
offer high precision and reliability1. In particular, algorithms used in molecular taxonomy and property classification have resulted in quantitative
structure-activity relationship (QSAR) models?. These models automatically correlate the chemical structures and biological activities of a given
chemical database and implement rapid in silico screening of a wide range of chemical substrates according to their medicinal or toxicological
actions®. QSAR tools can produce predictive toxicity profiles as a function of feature vectors of molecular descriptors (i.e., physicochemical
parameters) of chemicals of interest to numerically create categorical endpoints4. Usually, each quantitative endpoint is displayed as a 2D
scatterplot vs. changes in descriptor values. A QSAR model is then generated using (multiple) linear regression analyses. Once a dataset has
been fully exploited to construct a QSAR model (called the training set), then the model is statistically validated by predicting the endpoints of a
group of ch%micals not included in the training set (called the test set). The model can then be used to predict the biological activities of untested
compounds”.

Among many harmful chemicals, endocrine disruptors (EDs) have been highlighted as a group of toxicants that may interfere in numerous
hormone-related metabolisms in mammals, amphibians, and fish®>®. EDs are known to induce a variety of adverse effects, such as cancers

and malformations, by blocking or altering normal hormonal pathways or activating abnormal hormone synthesis/degradation signals. As a
consequence, these hormone-mimicking chemicals can perturb endocrine systems such that biological development and reproduction of wildlife
animal populations are hampered. In particular, the ecotoxicological effects of EDs have been extensively investigated in aquatic vertebrates,
which have nearly identical hormone receptor structures to those of mammals, including humans. Because all hormonal actions occur at low
doses in vivo, predicting the potential toxicities of ED candidates using rapid in silico screening is critical to public and environmental health.

QSAR models based on the toxicology of EDs have been conducted utilizing both 2D and 3D descriptors (known as 2D and 3D QSAR,
respectively), which reveal the ED ligand binding affinities of estrogen, androgen, and progesterone receptors7. Despite the high-precision
advantages of 3D QSAR, in which conformational and electrostatic interactions are considered, 2D QSAR retains its own robustness in direct
mathematical algorithms, rapid calculations, and extremely low computational loads. In addition, 2D-QSAR models are flexible for use in a wide
range of applications while achieving relatively accurate prediction performance.

The OECD QSAR Toolbox is currently one of the most utilized computer software tools, providing freely available and pre-built QSAR models®®.
Its profiler uses 2D descriptor databases. Since the release of the first version in 2008, the software has been applied in the fields of chemical
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and biological industries, public health, and environmental safety for full or1partial analysis of the potential risks of natural and synthetic
compounds, with special interests in carcinogenesis10'11’12, mutagenicity”’ 4’15, and developmental toxicity16. The application to aquatic
toxicology has also been demonstrated, with focus on bioaccumulation and biotransformation”.

The QSAR Toolbox has been groven useful in predicting the short-term toxicity of a broad range of chemicals”, as well as the estrogen receptor
(ER) binding affinities of EDs'®. However, the acute ecotoxicities of EDs in aquatic vertebrates has not been analyzed using the QSAR Toolbox.
In this study, a typical and facile protocol is presented to perform QSAR modeling on the acute adverse effects of EDs with a focus in fish
species. The study shows that the QSAR Toolbox is a highly accessible software for calculating and predicting the lethality/mortality of aquatic
vertebrates for some representative EDs. Statistical treatment methods for the derived in silico datasets are presented. Figure 1 shows the
overall scheme for the general operation of the QSAR Toolbox. The workflow shown in Figure 2 provides straightforward instructions on how to
operate the in silico assay to predict acute ecotoxicity of target substances such as endocrine disrupting chemicals.

1. Equipment

Software: use OECD QSAR Toolbox 4.0 or newer (free download from <https://qsartoolbox.org/download/?) and data analysis software.
Computer: for the OECD QSAR Toolbox, use: (i) system type: 64 bit, Windows 7 or newer; (ii) processor: 15 at 2.4 GHz, or a faster processor
or equivalent AMD CPU; (iii) installed memory (RAM): 6 GB; (iv) hard disk drive (HDD): 20 GB of free hard drive space (OECD QSAR
Toolbox 4.3 Release Notes: <https://gsartoolbox.org/file/2019/02/Toolbox-4.3-Release-Notes-1.pdf>).

N =

2. Procedure

1. OECD QSAR Toolbox
NOTE: The QSAR Toolbox operates in six consecutive flow modules starting from Input and followed by Profiling, Data, Category
Definition, Data Gap Filling, then Report, located at the top of the program interface.
1. Explore the aforementioned six stages through six toolbar icons by left-clicking. First, look over the stages of Input, Data Gap Filling,
and Report that are necessary to perform the automated workflow “Ecotoxicological endpoint” and to document its results.
2. Take a short look over optional stages Profiling and Data. The Profiling stage provides an initial insight into the target substance’s
(eco)toxicity potential and environmental fate characteristics. Optional Data stage enables searching for available experimental data
related to the target substance.

2. Input

1. Upon starting the QSAR Toolbox, the user begins at the Input toolbox stage by default. The QSAR Toolbox creates a working file
named “Document 1” automatically, which is displayed in the stage option panel on the left of the program interface. Rename the file, if
desired, by right-clicking the working file.

2. Click on the CAS# button in the actions toolbar, enter the chemical abstract service (CAS) number of the target substance in the
available text field, and click Search. The tool will then search for the target substance by CAS number.

3. If required, choose other search options that are available in the action toolbar such as searching by substance name or simplified
molecular-input line-entry system (SMILES) code. SMILES can be entered as 2D non-stereochemical or 3D stereochemical containing
forms. Click Name or Structure, respectively. Use the Structure tool to draw the target substance.

4. The search tool displays the search results through database records in a pop-up window. Choose the record reporting a “high” CAS-
SMILES relation (CS Relation field) if multiple records are retrieved for the target substance by checking the box on the left of the
record. Click OK.

NOTE: Proceeding from this point is possible only if the retrieved record contains a SMILES code, as the SMILES code (2D non-
stereochemical containing form) is the basis for computation.

5. Batch mode: to perform the in silico assay for multiple target substances, write a simple substance list in a text editor in which each
CAS number is listed in a single row (Supplementary Figure S3). Save the text file with an appropriate name and extension .txt on the
computer.

6. Batch mode: click Data. Then, go to Databases in the stage option panel on the left of the program interface. Make sure databases
that are listed under Ecotoxicological Information are checked.

7. Batch mode: click Input. Select Query from the actions toolbar. Accept the settings set in step 2.2.6 by clicking Yes in the dialog
window.

8. Batch mode: choose the CAS tab. Upload the substance list saved as text file through Load list from your computer.

9. Batch mode: there are two Add buttons available; click the Add button on the bottom of the pop-up menu and then click Execute. The
QSAR Toolbox will display a message on the number of substances that have been retrieved for the search.

NOTE: Some substances of the loaded list may not be found by the search tool or that several entries may be available for one CAS
number. It is not possible to delete substances from the retrieved set of substances.

3. Profiling
NOTE: The following section is optional. If this is not required, skip to section 2.5.

1. Click on the toolbox stage button Profiling. Go to Profiling methods in the stage option panel on the left of the program interface.

2. Click Unselect All. Check all profilers listed under Predefined and those related to aquatic toxicity listed under Endpoint specific
such as “Acute aquatic toxicity classification by Verhaar (Modified).”

3. Finish the selection. Then click on the Apply button in the Actions toolbar.
NOTE: The QSAR Toolbox provides recommendations on a set of profilers. These are highlighted in green (suitable) and orange
(plausible) when choosing Options > Color by: > Endpoint selected in the data matrix in the upper left corner of Profiling
methods. Left-click the data matrix field next to the endpoint of interest. Available endpoints are listed in the endpoint tree next to the
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4. Data

stage option panel. The profiler Substance type will indicate whether the target substance is a “discrete chemical.” The information

is displayed in the expanded endpoint tree “Profile”, “Predefined”, and “Substance type”. Only if the target substance is a discrete
chemical can the automated workflow run successfully. “Acute aquatic toxicity classification by Verhaar (modified)” provides a first
estimate of the acute aquatic toxicity mechanism of the target substance'®%®. The information is displayed in the expanded endpoint
tree “Profile”, “Endpoint Specific”, and “Acute aquatic toxicity classification by Verhaar (modified)”. Five classes are available: (class 1)
inert chemicals (baseline toxicity); (class 2) less inert chemicals; (class 3) reactive chemicals; (class 4) specifically acting chemicals;
and (class 5) for chemicals not possible to classify.

Right-click Parameter in the endpoint tree to run integrated 2D and 3D QSAR models available in the QSAR Toolbox, if desired. Click
Calculate/extract all parameters for all chemicals in the pop-up menu.

2D and 3D QSAR models compiled in Parameter provide numeric values. Use “Profiling methods” for qualitative information (see step
2.3.1).

NOTE: This section is optional. If it is not required, skip to section 2.5.

1.
2.

Click on the toolbox stage button Data. Then, click Gather from the Actions toolbar.

Select All endpoints to gather all experimental data, then Choose to gather endpoint specific experimental data. As an example, if
aquatic toxicity is the user’s focus, click Choose > Ecotoxicological Information > Aquatic toxicity > OK.

NOTE: Choosing to gather experimental data for all endpoints may lead to extended processing time. The user can adapt the hierarchy
of the endpoint tree to the specific purpose. This changes the manner in which data are displayed.

If desired, right-click the endpoint of interest in the endpoint tree area. Choose Set tree hierarchy in the pop-up menu. Organize the
endpoint tree in the preferred manner using the available terms and arrows and click OK.

If desired, export the gathered data as an Excel file. Right-click on the endpoint of interest and choose Export Data matrix in the pop-
up menu.

A “Matrix export” wizard opens and enables adding other endpoints to the export list. Finish the selection, click Export, and save the
file on the computer.

NOTE: Exporting data from all databases is not possible. For example, data retrieved from the database “ECHA CHEM” cannot be
saved.

5. Data gap filling

1.

Click on the toolbox stage button Data gap filling. Then, click Automated in the Actions toolbar.

2. Select Ecotoxicological Endpoint > Fish, LC50 (lethal concentration, 50%) at 96 h for Pimephales promelas (mortality). Click OK. A
“Workflow Controller” will appear, and processing will take up to several minutes, especially in batch mode.
NOTE: The QSAR Toolbox automatically applies a defined set of profilers when searching for suitable substances with available
experimental data for the prediction. The experimental data [e.g., effect concentrations 96 h LCs, (P. promelas) or 96 h ECsq (P.
promelas, mortality)] are used to generate the prediction for the target substance by either linear approximation or nearest neighbor
method. Note that the methods of linear approximation and nearest neighbor are referred to as trend analysis (labeled as “T”) and
read-across (labeled as “R”), respectively.

3. The user will receive a message if the prediction is performed successfully. Click OK and close the workflow controller indicating
“Finished workflow” by clicking x in the upper right corner.

4. Batch mode: upon starting the automated workflow, the user will be asked to specify the range of substances over which to execute the
workflow. Accept the full range of substances selected by default in the dialog window by clicking OK.

5. Batch mode: the user will not receive a message indicating whether a prediction was run successfully or unsuccessfully. Close the
workflow controller indicating “Finished workflow” at the end of the batch processing by clicking x in the upper right corner.

6. Report

1. If a prediction was successfully executed, click on the toolbox stage button Report.
NOTE: No reports can be generated in batch mode.

2. Scroll down and find the prediction value in matrix field located in a yellow highlighted row next to endpoint “96-h.” The predicted value
is labelled with “T” or “R.” Activate this specific data matrix field by left-clicking it.

3. Click Prediction in the Actions toolbar. Customize the report content and appearance in the pop-up wizard. Three types of reports are
available: (i) prediction, (ii) category, and (iii) data matrix.

4. The wizard allows the user to fill in the author’s name and contact details. Write a short summary, provide a detailed explanation of the
mechanistic interpretation, or provide justification for the adequacy of the prediction.

5. Include additional information related to the executed prediction, if desired. The extent of additional information depends on the user.

6. Go through the wizard by clicking Next. Finally, click Create report and save the prediction and category reports as PDF files and the
data matrix as an Excel spreadsheet on the computer.

7. Find additional details on the functionalities of the QSAR Toolbox and automated workflows in the application manual for the OECD

QSAR Toolbox v.4 (F1 help on the keyboard). Details on the algorithms and rationale behind the automated workflow are described by
Dimitrov et al.® and Yordanova et al.’.

3. Application

1. If using the predicted effect concentration (i.e., 96-h LCsq of P. promelas) in the environmental risk assessment, use the lower limit of the 95%
confidence interval. Find the data on the first page of the saved prediction report (PDF) in “Prediction summary”, “Predicted value: <mean>
(from <lower_limit> to <upper_limit>).”

NOTE: The notes given here are based on results of the comparison between predicted and experimental data for a set of target substances
reported in this study. Selecting the lower end of the 95% confidence range will increase the likelihood that the predicted effect concentration
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will not underestimate the real toxicity of the substance (see the representative results). The predicted effective concentration of the lower
limit of the 95% confidence interval will therefore present a safer basis for risk assessment.

Representative Results

The example described in this study was implemented for quantitative analysis and prediction of acute toxicities of selected EDs in fish. When
the predicted data points were plotted versus experimental data points as a log-log scale, a positive correlation between both was found

for all fish and a representative species, namely, Pimephales promelas (fathead minnow; Figure 3). In both cases, the slope of the linear
regression appeared to be comparable (predicted LCsqo/experimental LCsy = 0.611 and 0.602 for all fish and P. promelas, respectively). Because
of the limited amount of experimental data, the number of available values from experimental observation was usually smaller than that from
computational prediction. Application of the tolerance factor as 5-fold for the computational capability21 resulted in 94% (34/36) and 96% (26/27)
of the protective prediction for all fish and P. promelas, respectively. Based on this prediction, 3',5,7-trihydroxy-4',6-dimethoxyisoflavone and 1,4-
benzenediol appeared to exhibit calculated LCsq values greater than the tolerance limit.

To enable safety assessment at the highest reliability, further computational analysis was performed by plotting the predicted lower limit of
the 95% confidence interval of LCs (instead of the mean values used in Figure 3) versus the experimentally derived values (Figure 4). In
this evaluation with an elevated safety threshold, 92% (33/36) of the total tested endocrine disrupting compounds were shown to fall into the
protective range when compared to the experimentally derived values except for: 3',5,7-trihydroxy-4',6-dimethoxyisoflavone; 1,4-benzenediol;
and 4-hexylphenol.

Based on assessments of the entire species available from the database, values for the predicted and experimental 96-h log,oLCsq exhibited
linearity with the log,oKow values in the domain between -1 and 7, indicating a hyperbolic correlation between LCsy and Koyw. An overall trend
existed whereby the LCs, decreased for higher Koy values of EDs for the data obtained from both computational predictions and experiments,
suggesting increasing acute toxicity in fish species for EDs with higher hydrophobicity (Supplementary Figure S1).

By the rule-based ER profiler embedded in the OECD QSAR Toolbox, the ER binding affinities of the EDs were categorized as non-binding

as well as weak, moderate, strong, and very strong binders, in order of increasing binding affinity18. Accordingly, the statistical distribution

of log4oKow could be displayed as a qualitative classification of ER binding affinity (Supplementary Figure S$2). Overall, the changes in K,
distribution ranges and their mean levels appeared to not have a defined tendency. Similarly, the distributions of predicted and experimental LCs
were shown as the extent of ER binding affinity (Figure 5). In this case, mean levels of predicted LCs, for ER binders were higher than those of
non-binders. By contrast, for the experimental LCs,, the mean levels of non- and weak binders were higher than those of stronger ER binders.
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Figure 1: Basic scheme of the general workflow of the OECD QSAR Toolbox.
Please click here to view a larger version of this figure.
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Figure 2: Workflow.
Shown is the workflow conceptualizing the modules and sequences applied to predict the acute toxicities of endocrine disruptors (EDs) in fish
using the OECD QSAR Toolbox. Please click here to view a larger version of this figure.
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Figure 3: Predicted vs. experimental 96-h LC5, of EDs in Table 1 for all fish (blue diamonds, n = 36) and a selected species P. promelas
(cyan diamonds, n = 27).

For the predicted LCsg, the average (“AVE”) values are displayed. The dashed lines represent linear regressions for the two groups: for all fish
(light blue), predicted LC50AVE =0.611 x (experimental LCsp) + 0.277 (adjusted = 0.408); and for P. promelas (light cyan), predicted LCsoAVE =
0.602 x (experimental LCsp) + 0.385 (adjusted = 0.441). The solid diagonal line shows unitg/ in which the predicted and experimental values are
equal21. The dotted gray line shows the 5-fold tolerance limit of the computational capability1 . Outliers: 3',5,7-trihydroxy-4',6-dimethoxyisoflavone
(*) and 1,4-benzenediol (**). Please click here to view a larger version of this figure.
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Figure 4: Predicted (lower limit of 95% confidence interval, “low-95%”) vs. experimental 96-h LCs, of EDs in Table 1 for all fish (n = 36).
The dashed line represents the linear regression: predicted LC50'°‘”'95% =0.470 x (experimental LCs) - 0.312, where adjusted r? =0.193.

The solid diagonal line indicates unity where the predicted and experimental values are equal to each other'®. Outliers: 3',5,7-trihydroxy-4',6-
dimethoxyisoflavone (*), 1,4-benzenediol (**), and 4-hexylphenol (***). Please click here to view a larger version of this figure.
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Figure 5: Distributions of predicted (solid boxes, n = 8-20 for each category) and experimental (dashed boxes; n = 3—16 for each
category) 96-h LC5, depending on ER binding affinity of EDs in Table 1 for all fish.

A box plot represents: (A) mean (small square with a bold horizontal bar), (BZI 1% and 3" quartiles (lower and upper— ends of the box,
respectively), (C) median (horizontal segment inside the box), (D) 5™ and 95' percentile (lower and upper error bars, respectively), (E) 1% and
99" percentile (lower and upper X, respectively), and (F) minimum and maximum (lower and upper —, respectively). Please click here to view a
larger version of this figure.

Copyright © 2019 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported August 2019 | 150 | e60054 | Page 7 of 15
License


https://www.jove.com
https://www.jove.com
https://www.jove.com
https://www.jove.com/files/ftp_upload/60054/60054fig5v2large.jpg
https://www.jove.com/files/ftp_upload/60054/60054fig5v2large.jpg

lee Journal of Visualized Experiments

www.jove.com

No.

CAS Registry
Number

Substance Name

SMILES Formula (2D non-stereochemical form)

Log Kow

AVE
predicted
96-h
LC50
(mg/L)

LOWER
95% CI
predicted
96-h
LC50
(mglL)

Profiler -
Estrogen
Receptor
Binding

50-28-2

17-B Estradiol

CC12CCC3C(CCe4oc(O)occ34)C1CCC20

4.01

3.62

1.42

Very
strong
binder,
OH
group

57-63-6

17-a Ethinyl-
estradiol

CC12CCC3C(CCedac(O)oce34)C1CCC2(0)CHE

3.67

3.00

Strong
binder,
OH
group

80-05-7

2,2-bis(4-
hydroxyphe-
nyl)propane
(Bisphenol A)

CC(C)(c1ccc(O)cct)c1cec(O)cct

3.32

4.68

Very
strong
binder,
OH
group

80-46-6

4-tert-Pentylphenol

CCC(C)(C)c1cee(O)ce

3.91

2.27

Weak
binder,
OH
group

140-66-9

4-tert-Octylphenol

CC(C)(C)CC(C)(C)clcec(O)eet

5.28

0.38

Strong
binder,
OH

group

446-72-0

Genistein [3',5,7-
trihydroxy-4',6-
dimethoxyisoflavone]

Oc1cece(cc1)C1=C0Oc2cc(0)cc(0)c2C1=0

2.84

32.00

10.03

Very
strong
binder,
OH

group

10161-33-8

17B-Trenbolone

CC12C=CC3C(CCC4=CC(=0)CCC=34)C1CCC20

2.65

124.72

19.75

Strong
binder,
OH
group

67747-09-5

Prochloraz (DMI
fungicide)

CCCN(CCOc1¢(Cl)cc(Cl)cc1Cl)C(=0)n1cenct

4.1

5.19

1.74

Non
binder,
without
OH or
NH2
group

84852-15-3

4-Nonylphenol

CC(C)CCCCCColccc(O)ct

5.92

0.21

Strong
binder,
OH
group

10

69-72-7

salicylic acid

OC(=0O)c1ccecec10

2.26

24.07

Weak
binder,
OH
group

1

80-09-1

4,4-
dihydroxydiphenyl
sulphone (Bisfenol
S)

Oc1cee(ce1)S(=0)(=0)c1cec(O)cce

1.65

48.67

10.67

Very
strong
binder,
OH

group

12

84-74-2

phthalic acid, dibutyl
ester

CCCCOC(=0)c1cecec!C(=0)0CCCC

4.5

0.76

Non
binder,
without
OH or
NH2

group

13

92-88-6

4.4
dihydroxybiphenyl

Oc1cce(cc1)-c1cec(O)ce

2.8

12.05

4.20

Moderate
binder,
OH
grooup

14

94-13-3

4-hydroxybenzoic
acid, propyl ester

CCCOC(=0)c1cec(O)cet

3.04

10.32

Moderate
binder,
OH
grooup
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15 98-54-4 4-tert-butylphenol CC(C)(C)c1cee(O)cct 3.31 4.36 1.68 Weak
binder,
OH
group
16 97-23-4 2,2'-dihydroxy-—5,5"- | Oc1ccc(Cl)cc1Cc1cc(Cl)ccc10 4.26 0.48 0.10 Very
dichlorodiphenyl- strong
methane binder,
OH
group
17 97-53-0 eugenol COc1cc(CC=C)ccc10 2.27 14.70 5.60 Weak
binder,
OH
group
18 99-76-3 4-hydroxybenzoic COC(=0)c1ccc(O)cct 1.96 38.20 14.01 Weak
acid, methyl ester binder,
OH
group
19 103-90-2 N-(4-hydroxyphenyl) | CC(=O)Nc1ccc(O)cet 0.46 338.97 [43.39 Weak
acetamide binder,
OH
group
20 106-44-5 p-cresol Cc1cec(O)cet 1.94 20.47 7.14 Weak
binder,
OH
group
21 108-39-4 m-cresol Cc1ceec(O)ct 1.96 23.45 9.17 Weak
binder,
OH
group
22 108-45-2 1,3- Nc1ceec(N)c1 -0.33 34.60 0.00 Weak
phenylenediamine binder,
NH2
group
23 108-46-3 1,3- Oc1ccec(O)ct 0.8 123.03 27.06 Weak
dihydroxybenzene binder,
OH
group
24 108-91-8 cyclohexylamine NC1CCCcCC1 1.49 28.08 1.40 Weak
binder,
NH2
group
25 119-36-8 salicylic acid, methyl | COC(=O)c1ccccc10 2.55 16.16 5.68 Weak
ester binder,
OH
group
26 120-47-8 4-hydroxybenzoic CCOC(=0)c1cee(O)ccet 247 19.93 7.40 Weak
acid, ethyl ester binder,
OH
group
27 120-80-9 1,2- Oc1ccecec10 0.88 11.14 0.01 Weak
dihydroxybenzene binder,
OH
group
28 123-31-9 1,4- Oc1ccc(O)cet 0.59 90.75 33.19 Weak
dihydroxybenzene binder,
[1,4-benzenediol] OH
group
29 131-53-3 2,2"-dihydroxy-4- COc1ccc(C(=0)c2ccecc20)c(O)ct 3.82 3.97 1.46 Very
methoxybenzophenone strong
binder,
OH
group
30 131-56-6 2,4- Oc1cee(c(0)c1)C(=0)c1cecect 2.96 12.04 4.73 Strong
dihydroxybenzophengne binder,
OH
group
31 131-57-7 2-hydroxy-4- COc1ccc(C(=0)c2ccecc2)c(O)ct 3.79 5.96 2.27 Strong
methoxybenzophenorpe binder,
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OH
group

32 599-64-4 4-cumylphenol CC(C)(c1cceect)c1eec(O)eet 4.12 215 0.84 Strong
binder,
OH

group

33 2855-13-2 1-amino-3- CC1(C)CC(N)CC(C)(CN)C1 1.9 30.65 1.53 Moderate
aminomethyl-3,5,5- binder,
trimethyl- NH2
cyclohexane group

34 6864-37-5 3,3"-dimethyl-4,4'- CC1CC(CCC1IN)CC1CCC(N)C(C)C1 4.1 1.07 0.05 Strong
diaminodicyclohexylmethane binder,
NH2
group

35 25013-16-5 tert-butyl-4- COc1ccc(O)c(c1)C(C)(C)C 35 4.85 1.85 Moderate
hydroxyanisole binder,
OH
grooup

36 147315-50-2 2-(4,6- CCCCCCOc1cee(c(O)c1)-c1nc(nc(n1)-c1ceceecct)-c1cceeet 6.24 0.17 0.06 Strong
diphenyl-1,3,5- binder,
triazin-2-yl)-5- OH
(hexyloxy)phenol group

37 88-68-6 2-aminobenzamide | NC(=O)c1ccccc1N 0.35 694.00 84.30 Weak
binder,
NH2

group

38 611-99-4 4.4 Oc1cec(cc1)C(=0)c1cec(O)cet 2.19 37.74 14.67 Very
dihydroxybenzophengne strong
binder,
OH

group

39 27955-94-8 1,1,1-tris(4- CC(c1cee(O)ce)(c1cee(O)ect)ctcec(O)ect 4.38 2.09 0.82 Very
hydroxyphenol)ethan strong
binder,
OH

group

40 87-18-3 salicylic acid, 4-tert- | CC(C)(C)c1ccc(OC(=0)c2ccec