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Abstract

Despite the fact that the local immunological microenviron-

ment shapes the prognosis of colorectal cancer, immunotherapy

has shown no benefit for the vast majority of colorectal cancer

patients. A better understanding of the complex immunological

interplay within the microenvironment is required. In this

study, we utilized wet lab migration experiments and

quantitative histological data of human colorectal cancer tissue

samples (n ¼ 20) including tumor cells, lymphocytes, stroma,

and necrosis to generate a multiagent spatial model. The

resulting data accurately reflected a wide range of situations of

successful and failed immune surveillance. Validation of simu-

lated tissue outcomes on an independent set of human

colorectal cancer specimens (n ¼ 37) revealed the model reca-

pitulated the spatial layout typically found in human tumors.

Stroma slowed down tumor growth in a lymphocyte-deprived

environment but promoted immune escape in a lymphocyte-

enriched environment. A subgroup of tumors with less

stroma and high numbers of immune cells showed high rates of

tumor control. These findings were validated using data from

colorectal cancer patients (n ¼ 261). Low-density stroma and

high lymphocyte levels showed increased overall survival

(hazard ratio 0.322, P ¼ 0.0219) as compared with high stroma

and high lymphocyte levels. To guide immunotherapy in colo-

rectal cancer, simulation of immunotherapy in preestablished

tumors showed that a complex landscape with optimal stroma

permeabilization and immune cell activation is able to markedly

increase therapy response in silico. These results can help guide

the rational design of complex therapeutic interventions, which

target the colorectal cancer microenvironment. Cancer Res; 77(22);

6442–52. �2017 AACR.

Introduction

In recent years, tumor immunotherapy has become available

to treat malignant tumors with several drugs already approved

for solid tumors. Their main mode of action is the activation

of the adaptive immune system via checkpoint inhibition (1).

Other widely used therapeutic strategies aim at increasing the

number and the reactivity of effector cells by adoptive cell trans-

fer or vaccination (2, 3). Additionally, many more drugs are

currently investigated in clinical trials, especially combination

therapies aiming at the stromal compartment (4, 5). These

approaches act on the complex interactions in the tumor micro-

environment, as we could show recently in macrophage-targeted

immunotherapies (6).

Still, for most patients with solid tumors, no effective immu-

notherapy strategy is available. Especially formicrosatellite-stable

colorectal cancer, the most common form of this disease, immu-

notherapy has been largely ineffective. With a 5-year survival of

just 11% inmetastatic diseases (7) and a huge disease burden (8),

the therapeutic need is high. In this setting, the development of

more complex interventions into the immune landscape requires

detailed knowledge of the interactions of relevant players and
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Major Findings

We present a computer-based model of lymphocyte–

tumor–stroma interactions. This model reproduces key

aspects of human colorectal cancer tissue, predicts survival in

an independent patient cohort, and proposes a new strategy

for successful immunotherapy in colorectal cancer.
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their response to interventions. Although our understanding of

these processes has advanced considerably in the last years, there

is still no comprehensive systems perspective of all relevant

interactions. To understand a complex system, it is not sufficient

tohave adetailed characterizationof all its components. Instead, a

complex system can show emergent behavior that does not arise

from a specific component but from the interaction of different

components.

Agent-based models are a powerful method to investigate the

interactions in complex systems (9). An agent is the smallest unit

in this model and can show different types of stochastic behavior,

including interaction with other agents. Although these models

simplify many aspects of reality, they have been shown to be

extremely useful in a wide number of circumstances (10–12). In

cancer research, these models are emerging as valuable tools to

study emergent behavior in complex ecosystems (13), especially

in stem-cell models of tumor growth (14, 15) and are used to

study the mutational landscape of solid tumors (16, 17). Fur-

thermore, they are increasingly used to optimize therapies, for

example radiation therapy of solid tumors (18). Also, some

models of immune-cell interactions with (19–24) or without

tumor cells (25) have been proposed. Although these studies

gave important insight into parts of the tumor-immune interac-

tion, they did not accurately reproduce the diverse spatial patterns

in human tumors and did not investigate therapeutic strategies.

In the present study, we generated a multiagent-based model

from quantitative histological and other wet lab data, based on

the concept of immune surveillance (26). We focused on para-

meters that could be morphologically measured and created a

simplified yet powerful model of cellular interactions that shows

emergent behavior. This agent-basedmodel incorporates stochas-

tic interactions between tumor cells, immune cells, and stroma

and faithfully represents diverse spatial pattern observed in his-

tological samples of human colorectal cancer tissue. Furthermore,

the derived clinical predictions could be validated in an indepen-

dent colorectal cancer cohort. This model was then used to

systematically test the effect of different therapeutic interventions

on this system and to create specific recommendations for effec-

tive immunotherapies.

Materials and Methods

Ethics statement and tissue samples

All experiments were conducted in accordance with the Dec-

laration of Helsinki, the International Ethical Guidelines for

Biomedical Research Involving Human Subjects (CIOMS), the

Belmont Report and theU.S. CommonRule.N¼20human tissue

samples of colorectal adenocarcinoma were used as a calibration

cohort. These samples were retrieved from the pathology archive

at UMM (University Medical Center Mannheim, Heidelberg Uni-

versity, Mannheim, Germany) after approval by the institutional

ethics board (Ethics Board II at University Medical Center Man-

nheim, decision number 2017-806R-MA, granted to A. Marx and

waiving the need for informed consent for this retrospective and

fully anonymized analysis of archival samples; Supplementary

Table S2).

Another set of 37 colorectal adenocarcinoma samples was used

as a morphological validation cohort, composed as follows: N ¼

22 tissue sampleswere providedby the tissue bankof theNational

Center for Tumor diseases (NCT, Heidelberg, Germany) in

Quick Guide to Equations and Assumptions

Ourmodel is based on aminimal set of assumptions that are backed by our own data or previously published data. Two types of

agents are modeled: tumor cell agents and immune cell agents. Immune cells in our model represent T-lymphocytes, whose main

fractions are cytotoxic lymphocytes. All assumptions for themodel aremade explicit in Table 1 and allmodel parameters are listed in

Supplementary Table S1. Each agent occupies exactly one position on a two-dimensional rectangular grid with dimensions N�M

and Moore neighborhood (each grid cell has eight neighbors). Only one agent can occupy a grid cell. Unlike in other agent-based

models, all agents occupy the same grid and thus compete for space. This is thought to reflect the nature of colorectal cancer tissue,

which typically consists of densely packed cells. For simplicity, we refer to tumor cell agents as "tumor cells" and to immune cell

agents as "immune cells." Upon initialization, one tumor cell is placed in themiddle of the domain. Immune cells randomly appear

each round (constant rate of influx). Then, successively, tumor cells and immune cells can act as shown in Fig. 1A. Typically, 300 to

3,000 model iterations (rounds) are performed, after which, complex spatial patterns can be observed (Fig. 1B). In each iteration,

each tumor cell randomly performs an action with the following probabilities: Tupdeath for dying, Tupmig for migrating to a

randomly picked free adjacent position, Tupprol for proliferating. All remaining cells will idle. If a tumor stem cell (stemness true)

proliferates, it will generate an identical descendantwith probability Tups. Otherwise, it will generate a descendantwith no stemness.

After tumor cells have acted, immune cells will act. With probabilities Impdeath, Impmig, and Impprol, they will die, migrate, or

proliferate. Immune cells do not have a stemness property. Sustained immune cell activation can give rise to stroma (fibrosis)

through a desmoplastic reaction. Tumor cells and immune cells can be present in fibrotic areas. However, by default, they cannot

move here (no permeability). The permeability of fibrotic (stromal) areas can be adjusted between 0 and 1 through the parameter

stromaPerm. Tumor cellsmay die and seed necrosiswith probability probSeedNecr. Necrosis ismore likely to occur in the tumor center

as its occurrence linearly scales with the distance from the smoothed tumor edge. From here on, we use the term "stroma" to refer to

the tissue generated byfibrosis through exhausted immune cells. Although in reality, stromamight also arise through inflammation-

independentmechanisms, we restrict ourmodel on stroma induced by ongoing inflammation. To rule out early spontaneous tumor

death, we required the tumor to be alive at least 50 iterations (or longer, if declared otherwise—up to four attempts per experimental

run). The time scale of all events is scaled or adjusted through intermediary steps in such a way that one main iteration represents

12 hours. The resulting agent-based model shows emergent behavior and yields spatial patterns closely resembling those in

histological samples of human colorectal cancer.

Immune Cell–Stroma Interactions in Colorectal Cancer
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accordance with the regulations of the tissue bank and the

approval of the ethics committee of Heidelberg University (tissue

bank decision number 2152, granted to N. Halama and J.N.

Kather; informed consent was obtained from all patients as part

of theNCT tissuebankprotocol; Supplementary Table S3). Fifteen

additional sampleswere usedas describedbefore (Supplementary

Table S3; ref. 27). As the model was designed to be valid for all

types of colorectal cancer tissues, we included primary tumor

samples and colorectal cancer liver metastases in all cohorts

(Supplementary Tables S2 and S3).

Histological assessment

We performed histological staining for Ki67 (Dako M7240

antibody, 1:100), active caspase 3 (Abcam ab2302 antibody,

1:50), and CD3 (Leica Novocastra NCL-L-PS1 antibody, 1:50)

on a Leica Bond automatic staining device using a hematoxylin–

diaminobenzidine (DAB) staining protocol as described previ-

ously (6, 28). Stained whole slide tissue sections were digitized as

described previously (6, 28). On histological sections, we man-

ually identified areas homogenously occupied by tumor cells or

immune cells (in the tumor or around the tumor). The fraction of

Ki67-positive cells (active caspase 3–positive cells, respectively)

was quantified in these regions of interest (ROI) per slide using a

digital pathology approach analogous to our previously pub-

lished approaches (29, 30). Definiens Tissue Studio (Definiens)

was used for semiautomatic tissue segmentation and automatic

cell segmentation. The fraction of positive cells was calculated as

the number of positively (diaminobenzidine-positive) stained

cells divided by the number of all cells in the respective ROI. On

average, each ROI contained approximately 3,000 cells. Intensity

thresholds for cell detection and classification were set manually

and were identical for all images. The quality of cell segmentation

was checked manually for each image and was found to be

sufficient. We assumed that the median Ki67-positive fraction

and the median active caspase 3–positive fraction approximated

the probability of a given cell type to proliferate or die at one time

point. All raw measurements are listed in the Supplementary

Data.

Horizontal migration experiments on lymphocytes in vitro

For the horizontalmigration experiments, Matrigel (undiluted,

BD) was evenly plated at the sides of a 24-well chamber in two

half-moon shapes (cat eye configuration) and the remaining third

in between was filled with either pure collagen or Matrigel with

CXCL9 (10 ng/mL) and CXCL10 (10 ng/mL). After gelling over-

night in a humid chamber at 37�C, 5% CO2, the well was filled

with a thin layer of T-cell culture media and healthy donor T

lymphocytes (CD3/CD28 activated and in an independent exper-

iment non-activated) were placed on the right half-moon shaped

third. After migration for 48 hours at 37�C, the resulting distri-

bution in the well was documented and distances were docu-

mented and used for the multiagent model system.

Estimation of key parameters

Initially, our model had 22 parameters, as shown in Sup-

plementary Table S1. These parameters were based on a clear

set of assumptions. Key assumptions based on previous studies

are related the tendency of immune cells to migrate towards

tumor cells (31–33), lymphocyte exhaustion (23, 34), desmo-

plastic reaction (35, 36), and stromal permeability (37). All

assumptions are listed in Table 1. Some of the model para-

meters had been estimated in previous studies. Specifically,

this applies to the maximum proliferation capacity of non-

stem cells (tumor cells and immune cells alike), which we set

to 10 analogous to (14). Also, it was previously shown that the

maximum number of kills a lymphocyte can deliver can be

validly estimated as five (23). Of the remaining parameters,

five were measured histologically: Tumor cell proliferation and

apoptosis, immune cell proliferation and apoptosis, and dis-

tance to necrosis (Supplementary Fig. S1A–S1F). Thus, 12 free

parameters remained and were set to biologically plausible

values (Supplementary Table S1).

Of 20 tissue samples, 12 contained necrosis and the distance to

necrosis from the outer tumor margin was measured at three

locations, giving 36 distance values. Mean distance was 1.01mm,

standard deviation was 0.62 mm so that 90% of all necrotic areas

occurred within approximately 2 mm (1.64 sigma, rounded). In

the model, the occurrence of necrosis was determined by prob-

SeedNecr, and it was more likely to be located at the tumor core,

with the probability linearly increasing from 0 to 2 mm from the

outer tumor margin.

Regarding the scale of the model, we measured cell density of

tumor cells in 20 histological samples. We found that tumor cells

and immune cells occupy an area of 222.8 mm2 (median value).

Although tumor cells are larger than lymphocytes, the uniform

grid required that one grid cell should accommodate one cell. This

assumption yielded a rectangular grid cells size of 14.9 mm. Thus,

the length of 67 grid cells corresponds to 1 mm.

Time discretization

The events in our model (cell proliferation, migration, death)

do necessarily occur with the same rate at each iteration. To

Table 1. Assumptions for the model and references for each assumption

Assumption Ref.

All cells can migrate, proliferate, and die. Trivial

Tumor cells are composed of stem cells and non–stem

cells. Stem cells can divide symmetrically with a fixed

probability.

(14)

Stem cells can proliferate indefinitely, all other cells die

after a fixed number of proliferation cycles.

(14)

All cells can spontaneously enter apoptosis. Own data

Tumor cells can spontaneously enter necrosis. Own data

Tumor cells that are far from the outer margin have a

higher probability of entering necrosis than those cells

closer to the margin.

Own data

Immune cells are generated through a steady influx into

the domain and proliferation within the domain.

(32), own data

Immune cells move by a "random walk" but have a

tendency to migrate toward tumor cells.

(31–33), own data

Immune cells can kill adjacent tumor cells whenever they

are close enough. Killing, like other events in themodel,

occurs stochastically with a fixed probability and is not

regulated by other factors.

(23)

Immune cells can kill five times before they become

exhausted, which means that they cannot kill anymore

but can still proliferate.

(23, 34)

Activated immune cells give rise to stroma through a

desmoplastic reaction (stroma reaction). For

simplicity, this behavior is restricted to immune cells

that have successfully killed five times in the model.

(35, 36)

By default, cells cannot migrate through stroma, but

stromal permeability can be increased optionally.

(37)

NOTE: For each assumption, one ormore supporting references are listed. "Own

data" refers to histological and wet-lab experiments that are part of this study.

Kather et al.
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account for these temporal differences, we introduced interme-

diary steps. We assumed that themedian Ki67-positive fraction fk

is equal to the probability of cell division pk in one iteration.

Median tumor cell proliferation fraction (as measured in N ¼ 20

tissue samples) was approximately 0.5 (Supplementary Fig. S1A)

and a full cell cycle typically takes approximately 24 hours.

Therefore, we set one full iteration of the model as 12 hours. To

find out the probability of cell death in each iteration, we

measured the fraction fc of tumor cells and immune cells posi-

tively stained for active caspase 3. The process of apoptosis

induction to completion takes approximately 3 hours (38), just

a quarter of the time step in our model. Therefore, the probability

of cell death pc in each iteration was scaled appropriately. Regard-

ing immune cell movement, we assumed that tumor-infiltrating

lymphocytes (immune cell agents) migrate with an average speed

of approximately 2 mm/min (2,880 mm/24 hours; ref. 32). These

data were also qualitatively validated by our in vitro experiments

(data not shown). In our model, this corresponds to 97 grid cells/

12 hours (97 grid cells/iteration). Therefore, we introduced inter-

mediary steps and allowed immune cells to move up to 97 times

per iteration. Lastly, we scale the tumor cell killing events: It has

been shown that tumor cell killing by cytotoxic T-lymphocytes is

initiated within minutes (39) but takes approximately 6 hours to

complete in vitro (40) and in vivo (31). Accordingly, we required

that a killing event keeps a lymphocyte engaged for 6 hours and

only after this period the lymphocyte can kill again (if it is not

exhausted). It has been shown that tumor cell killing might

require several hits by lymphocytes (40). This was not explicitly

modeled in our system. Instead, we assumed that the killing

probability parameter IMpkill already included multiple hits.

Outcome assessment

In our simulation runs, we let the tumors grow for a fixed

number of iterations (nSteps) before performing changes of the

Figure 1.

Flowchart of the algorithm and

visualization: an agent-basedmodel that

generates realistic tumor nodules. A, In

our agent-based model, tumor cell

agents and immune cell agents occupy a

rectangular grid and can successively

act. All cells migrate, divide, idle, or die

with fixed probabilities. Immune cells

show a tendency to migrate toward

tumor cells and can kill them. Immune

cells that have killed five times become

exhausted and can induce fibrosis.

Tumor cells conglomerates can become

necrotic. This process is repeated 300 to

3,000 times. Intermediary steps for

accurate time scale discretization are

not shown. B, Tumor cells are shown in

red and shaded according to their

remaining proliferative potential.

Immune cells are shown in blue and

shaded according to their remaining

kills. By default, fibrosis (stroma) is

almost completely impermeable to all

cells and is shown in yellow, while

necrosis is permeable to immune cells

and is shown in black. Scale bar, 2 mm.

Immune Cell–Stroma Interactions in Colorectal Cancer
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parameters. After an additional number of steps addSteps, tumor

cell number was compared with the baseline. We assessed the

outcome analogously to the RECIST criteria (41) based on the

number of tumor cells at T ¼ nStepsþaddSteps as compared with

T ¼ nSteps. Complete remission (CR) was equivalent to the

eradication of all tumor cell, partial remission (PR) was a reduc-

tion in tumor cell number by at least 30%, progressive disease

(PD) was an increase of tumor cell number by at least 20% and

stable disease (SD) described all other outcomes.

Computational implementation

All simulations were implemented in MATLAB (Mathworks)

R2017a. Parts of the code were run in parallel with MATLAB's

Parallel Processing Toolbox. All experiments were run on a

standard workstation (Intel i7 Processor, 8 cores, 32 GB RAM,

MicrosoftWindows10.1). Typically, computing speedwas several

hundred simulations per hour. We release all source codes for the

agent-based model under an open-source license (http://dx.doi.

org/10.5281/zenodo.853342).

Clinical data (The Cancer Genome Atlas)

To validate the predictions of the model, a clinical validation

cohort of N ¼ 261 colorectal adenocarcinoma (COAD) patients

from theNIH (National Institutes of Health) The Cancer Genome

Atlas (TCGA) collectivewas used (42). The datawere downloaded

via the TCGA Data Portal as described before (43). All TCGA

samples that were included in the analysis are listed in Supple-

mentary Table S4.

Survival analysis

To assess the association between overall survival, stroma,

lymphocytes, and their interaction, we performed a survival

analysis of the TCGA collective. Cox proportional hazard models

werefitted, including overall survival as a dependent variable, and

lymphocytes (high/low), stroma (high/low), and the interaction

of lymphocytes and stroma as fixed factors. Lymphocyte infiltra-

tion and stroma content of tumor tissue were part of the data

tables available at the TCGA data portal. These variables had been

manually measured by pathologists as part of the original TCGA

data curation. Patients were split into low and high at themedian.

Due to its role as a potential confounder, TNM status was also

included into the model as a fixed factor. Hazard ratios for effect

estimates with corresponding 95% confidence intervals, and

P values for hazard ratios and the interaction term were compu-

ted. P values smaller than 0.05 were regarded as statistically

significant. The analysis was carried out using SAS v9.4 (SAS

Figure 2.

The model reproduces major

immunological phenotypes of tumors.

In general, four types of immune

phenotypes can be distinguished: hot

and cold tumors, immune excluded or

eradicated tumors (fibrous scar). The

agent-based model yields all those

four phenotypes, depending only on

the variation of two parameters

(related to fibrosis generation and

tumor cell killing). Cold tumor (A), hot

tumor (B), immune excluded

phenotype (C), and tumor eradication

(D). Scale bars, 2 mm.

Kather et al.
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Institute). Furthermore, a Kaplan–Meier plot displaying the prod-

uct-limit survival estimates alongside the number of subjects at

risk for each of the four strata was created.

Results

The model recapitulates major immune phenotypes of solid

tumors

We propose a new agent-based model of tumor-immune

cell interactions that is based on a minimal set of assumptions

(Table 1) and parameters (Supplementary Table S1). In this

model, we observed emergent behavior on different scales, par-

ticularly with regard to tumor tissue morphology. Generally, four

types of immunological phenotypes can be distinguished histo-

logically: hot tumors, cold tumors, immune excluded tumors

(with an immune cell rim around the tumor) and tumors that

have been (almost) completely eradicated by immune cells (44).

Our agent-based model was able to reproduce all these spatial

patterns as shown in Fig. 2A–D.We concluded that themodel is in

principle able to model all relevant types of immune surveillance

in solid tumors.

Themodel faithfully represents spatial patterns compared with

histological data

To compare our model with histological spatial patterns in an

objective way, CD3-stained colorectal cancer tissue samples were

used. This analysis entailed all 20 tissue samples from the cali-

bration cohort (Supplementary Table S2) and 37 additional

samples from an independent validation cohort from a different

institution (Supplementary Table S3). We analyzed spatial fea-

tures of tumor/stroma distribution and found that the spatial

layout of CD3-positive lymphocytes was always part of the

spectrum of cold tumors (Fig. 2A), hot tumors (Fig. 2B), immune

excluded tumors (Fig. 2C), or eradicated tumors (Fig. 2D). Spe-

cifically, resulting tumor nodules showed varying degrees of

fibrosis and necrosis, mirroring spatial patterns in histological

samples. This is shown in Supplementary Fig. S2A–S2C for

an immune-excluded non-necrotic tumor, in Supplementary

Fig. S2D– S2F for a largely necrotic tumor and in Supplementary

Fig. S2G–S2I for a cold tumorwith stromal core.We conclude that

based on a calibration cohort and a morphological validation

cohort, the model reproduced spatial architecture of tumor cells,

stroma, and lymphocytes sufficiently.

Figure 3.

Stroma slows tumor growth in a lymphocyte-deprived,

but mediates immune escape in a lymphocyte-enriched

environment. A, Experimental design. B and C, Tumor

mass over time for all four groups, depending on

probability of stroma generation (Stro low vs. high; B)

and the magnitude of immune cell influx (Lym low vs.

high; C) outcome three months after baseline (60 days,

dashed line). Response criteriawere chosen analogous to

the RECIST criteria (41). The subgroup "Stro low, Lym

high" had a 100% response rate, the majority complete

responses (i.e., eradication of all tumor cells). PD,

progressive disease; SD, stable disease; PR, partial

remission; CR, complete remission.

Immune Cell–Stroma Interactions in Colorectal Cancer
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Stromadeprivation enables tumor eradication in a lymphocyte-

enriched environment in silico

To better elucidate the emergent dynamics, the behavior of

tumors under different environmental conditions was investigat-

ed. In particular, we investigated immunological dynamics

(immune surveillance) of a typical tumor with varying tumor–

stroma ratios and varying numbers of tumor-reactive lympho-

cytes. To this end, we simulated the growth of 50 tumors for 60

days. At this point, tumors had reached a size of close to 5,000

cells. Then, the immune cell influx was strongly increased

(immune boost) and the parameter for stroma induction was

varied to generate tumors with different lymphocyte and stroma

contents (Fig. 3A). According to these variations, four types of host

response were investigated: Low and high stroma (Stro) genera-

tion (fibrosis seeding) and low and high immune cell (Lym)

number.

We observed that the groups showed a drastically different

behavior: Tumors in the "Stro low, Lym low" group showed an

unhindered, exponential growth (Fig. 3B). In comparison, the

growth in the "Stro high, Lym low" group was slower, but still

steadily rising. As can be seen in Fig. 3C, both "Lym low" groups

presented largely with progressive disease (PD) states at six

months (180 days) after baseline. In contrast, a higher number

of lymphocytes (Lym high) led to a phenotype with restrained

tumor growth, as expected. Specifically, in the subgroup "Stro

high, Lymhigh", tumor sizewas constrained to under 10,000 cells

Figure 4.

High lymphocyte number and low stroma define a subgroup with longer survival in TCGA colorectal cancer patients. Data from 261 patients, publicly

available through records from the TCGA database. A, Hazard ratios are shown for overall survival together with 95% confidence intervals and are adjusted

for TNM status. B, Kaplan–Meier plot for all four strata (product-limit survival estimates, number at risk shown below).
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(Fig. 3B and C). Surprisingly, the "Stro low, Lym high" group

showed analtogether different behavior: after an initial increase in

tumor mass (Fig. 3B), inflowing immune cells regained control

and completely eradicated the tumor in almost all simulation

runs (Fig. 3C; Supplementary Fig. S3).

Clinical validation of the predicted immunological dynamics

demonstrates a combined risk factor

In the model, the subgroup of tumors "Stro low, Lym high" by

far the most favorable outcome of all simulated tumors. Tumor

eradication reproducibly occurred only in the "Stro low, Lym

high" group and not in the "Stro high, Lym high" group. This

suggests that a high number of lymphocytes can only successfully

constrain tumor growth if there is little stroma in the tumor.

We validated this prediction by analyzing a cohort of 261

patients from the TCGA database based on publicly available

records (42, 43). For all patients, a manual histopathological

quantification of stroma and lymphocytes was available as well as

clinical follow-up data. Patients were stratified into high and low

stroma content and lymphocyte number at the median. The only

subgroup with a significant overall survival benefit as compared

with the other groups was "Stro low, Lym high" in comparison

with "Stro high, Lym high" group, as assessed by our Cox pro-

portional hazards model (hazard ratio 0.309 for overall survival

0.322, P ¼ 0.0219, confidence interval 0.122 to 0.849, Fig. 4A),

reflected also by Kaplan–Meier curves for all groups (Fig. 4B).

"Stro" and "Lym" alone were no significant predictors of overall

survival, and neither were all other subgroups as shown in Fig. 4A.

The P value for the interaction between "Lym" and "Stro" was

P ¼ 0.1192. Taking into account that the interaction test is

commonly subject to a very small power (45), P ¼ 0.1192 for

an interaction test, even though not statistically significant, can be

deemed as an indicator for a quite prominent interaction between

"Lym" and "Stro."

An optimal combination of immunotherapy and stroma-

targeted therapy

Having confirmed stroma as an importantmodulating factor in

the in silico experimental setup, we simulated an immunotherapy

together with stroma targeting therapy. A simple yet realistic way

Figure 5.

Increased stromal permeability can

lead to tumor hyperprogression or

eradication, depending on the immune

cell number. A, Experimental

procedure. B, Outcome in comparison

with baseline by varying degrees of

immune boosts and stromal

permeability changes. Vertical axis

from bottom to top: baseline, then

2-fold, 4-fold, and 8-fold immune

boost. Horizontal axis from left to

right: stromal permeability baseline,

then increase by 4%, 8%, and 16%

(100% being completely permeable).

N ¼ 24 technical replicates per group.

Stromal permeabilization leads to

increased tumor progression, but

enables tumor eradication if combined

with an 8-fold immune boost.
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of simulating stroma-targeted therapy is to modify the perme-

ability of stroma with regard to cell migration (46, 47). Therefore,

we let tumors grow to a diameter of approximately 2 mm, which

was typically reached after 120 days (Fig. 5A). Then, we simulated

an "immune boost," increasing the number of immune cells 2-

fold, 4-fold, and 8-fold. Also, stroma was permeabilized with a

factor of 4%, 8%, and 16%. In accordance with our previous

results, we saw that nonpermeable stroma inhibited a tumor

eradication (Fig. 5B).

In tumors with low stroma permeability and/or low lympho-

cyte numbers, we observed mostly tumor progression, character-

ized by four typical phenotypes: stroma acting as a physical barrier

that protects the tumor (Supplementary Fig. S4A), rapid tumor

outgrowth of immune control (Supplementary Fig. S4B), tumors

breaking through a physical barrier (Supplementary Fig. S4C),

and excessive immune cell exhaustion (Supplementary Fig. S4D).

Contrariwise, tumors with high stroma permeability and high

lymphocyte numbers were successfully eradicated in 75% of all

simulation runs (Fig. 5B). There was a striking duality in the effect

of stromal permeabilization: In a lymphocyte-deprived environ-

ment, permeabilizing stroma had an adverse effect and led to

increased tumor progression (bottom row in Fig. 5B).With highly

permeable stroma, this adverse effect persisted also in 2-fold

immune boosting and was only superseded by a strong immune

boost of 4-fold.

From these in silico experiments with clinical validation, we

conclude that stroma, arising through postinflammatory fibrosis,

has a dual role in solid tumors: under usual conditions, it can

mitigate tumor growth to a small degree. After a simulated

immune boost, stroma provides a mechanism for immune

escape. Only the permeabilization of stroma in combination

with immunotherapy can lead to tumor regression in this model.

Discussion

Within the concept of tumor immune surveillance, tumor cells

and immune cells are engaged in an ongoing battle (26). From a

conceptual perspective, a tumor disease develops if tumor cells

temporarily win this fight by means of immune evasion. In line

with this, immunotherapy aims at activating the T cells and

thereby leading to tumor eradication in some patients. For colo-

rectal cancer (microsatellite stable tumors), so far, no immuno-

therapy has shown efficacy. Driven by the clinical need to better

understand the processes of immune evasion and activation, we

developed a computer-basedmodel that allowed us to investigate

the dynamics governing tumor-immune cell interaction on a

systems level (Fig. 1A). This model was generated utilizing quan-

titative histological and other wet lab data as well as data from

previous studies (Supplementary Table S1).

The model was fitted to histological data in two ways: First,

quantitative histological data from Ki67 and active caspase 3

immunostainings was used to estimate the proportion of actively

dividing and dying cells as well as the overall cell density. In a

second step, N ¼ 37 human tumor tissue samples were used to

show that the naturally occurring spatial patterns could be repro-

duced by ourmodel, even on a large spatial scale (Supplementary

Fig. S2A–S2I).

Using this validated in silico model, a consistent and highly

relevant interaction between lymphocytes and stroma was dis-

covered: In an immune-deprived environment, stroma restrains

tumor growth and tumors with little stroma grows faster. In

contrast, in an immune-cell–enriched environment, stroma inhi-

bits tumor cell killing; thus, immune-cell rich tumors with low

amounts of stroma are eradicated while immune-cell rich tumors

with high amounts of stroma are not (Fig. 3). This leads to a

bivariate risk-factormodel for colorectal cancer that was validated

in two independent validation steps: a morphological validation

in n¼ 57 tissue samples (Fig. 2A–D, Supplementary Fig. S2A–S2I)

and a clinical validation in a set ofn¼261patients (Fig. 4AandB).

As a next step, immune cell numbers and stromal permeability

were gradually varied (Fig. 5B). Strikingly, a very consistent

pattern was apparent: increasing the number of lymphocytes

could only lead to tumor eradication if stromal permeability was

also increased, in a dose-dependent manner (Fig. 6). Stromal

permeability increase without lymphocyte-enrichment was det-

rimental and led to faster tumor progression (Fig. 6). This has

important clinical consequences: increasing stromal permeability

might greatly enhance the effectiveness of immunotherapy, but it

can also be dangerous if the tumor microenvironment is lym-

phocyte deprived. Currently, several experimental therapies in the

clinic aim to target the stroma. Indeed, most prominent are

approaches with enzymes that aim to enhance the permeability

of stroma (4, 5, 48). Our data show that these approaches can be

very effective but can also have adverse effects that need to be

considered before clinical development of new substances. Thus,

for future clinical trials, the balance between stroma-targeting

interventions and lymphocyte-targeting interventions should be

investigated at the preclinical stage. In silico models such as our

model could be a part of this preclinical pipeline.

The contribution of stroma reaction and inflammation in

colorectal cancer has been investigated before, jointly for both

factors (49)or separately (50, 51).However, to our knowledge,we

report for the first time a bivariate interaction effect of both risk

factors and provide an explanation for this behavior through in

silico experiments. Our findings regarding fibrosis are in line with

previous observations in biological studies and explain previous

observations. Pancreatic cancer, for example, typically has pro-

nounced tumor fibrosis. It has been shown that reducing fibrosis

in this cancer benefits the tumor and reduces survival in a mouse

model (52). This behavior also arises in our model. Furthermore,

in line with our simulations, it has been shown that tumors can

use the stroma to mitigate the immune response (53). Regarding

immunotherapy, it has been suggested that immune response

Figure 6.

Proposed model of combination effects of immunotherapy and stromal-

targeted therapy. Stromal depletion or permeability increase can lead to

different outcomes. Ourmodel suggests a crucial combination effect of stromal-

targeting and immune-enhancing therapy. Activation of the adaptive immune

response alone can stop tumor growth but cannot eradicate tumors. Stromal

depletion or permeabilization alone benefits the tumor cells and leads to

hyperprogression. Only the combination of stromal permeabilization and

immune boosting enables tumor eradication.
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against a tumor is more efficient if the immune cells also destroy

the stroma (48).Ourmodel provides a simple explanation for this

behavior.

Like all models, our model is not an exact copy of reality but

simplifies some key aspects of real-world tumors. For example,

killing of tumor cells by immune cells is a purely stochastic

process in ourmodel. Fine-tuning through T cell specificity, tumor

immunogenicity and other co-stimulatory or inhibitory factors

are not explicitly modeled but are summarized in the "killing

probability". Also, the model does not explicitly include myeloid

cells or other regulating factors for lymphocyte-mediated cyto-

toxicity. In the future, myeloid cells—and the crucial regulation of

lymphocyte activity via macrophages (6)—could be incorporated

into more complicated models.

While these simplifications constrain the implications that can

be drawn for certain molecular or signaling processes, it allows us

to focus on the emergent features of the cellular interaction

between key players in the tumor microenvironment. Most

importantly, our model takes into account several quantitative

histological observations and is thus partly calibrated with real-

world tumors. Also, our model includes postinflammatory fibro-

sis, which gives rise to unexpected and informative emergent

behavior. It therefore guides the possible translational develop-

ments, especially in selecting the ideal combination partners for

synergistic clinical effects (Fig. 6). This provides therefore a road-

map for an iterative enhancement of immunotherapy for immu-

nologically "cold" tumors.
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