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Abstract

High-resolution mass spectrometry (HRMS) enables rapid chemical annotation via accurate mass measurements and

matching of experimentally derived spectra with reference spectra. Reference libraries are generated from chemical

standards and are therefore limited in size relative to known chemical space. To address this limitation, in silico

spectra (i.e., MS/MS or MS2 spectra), predicted via Competitive Fragmentation Modeling-ID (CFM-ID) algorithms,

were generated for compounds within the U.S. Environmental Protection Agency’s (EPA) Distributed Structure-

Searchable Toxicity (DSSTox) database (totaling, at the time of analysis, ~ 765,000 substances). Experimental spectra

from EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT) mixtures (n = 10) were then used to evaluate the

performance of the in silico spectra. Overall, MS2 spectra were acquired for 377 unique compounds from the

ENTACT mixtures. Approximately 53% of these compounds were correctly identified using a commercial reference

library, whereas up to 50% were correctly identified as the top hit using the in silico library. Together, the reference

and in silico libraries were able to correctly identify 73% of the 377 ENTACT substances. When using the in silico

spectra for candidate filtering, an examination of binary classifiers showed a true positive rate (TPR) of 0.90

associated with false positive rates (FPRs) of 0.10 to 0.85, depending on the sample and method of candidate

filtering. Taken together, these findings show the abilities of in silico spectra to correctly identify true positives in

complex samples (at rates comparable to those observed with reference spectra), and efficiently filter large numbers

of potential false positives from further consideration.
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Introduction

The exposome was originally conceived as the sum of all

exposures encountered by an individual during their lifetime

[1]. Despite more than 10 years of dedicated research, the

exposome is not well-characterized for individuals or popula-

tions, owing (in part) to a lack of suitable monitoring tools.

Traditional exposure monitoring has relied on targeted analyt-

ical methods, developed and validated for specific high-

interest compounds. These methods have generally proven

impractical for exposome studies, where a goal is to charac-

terize previously unknown compounds that may be of even-

tual interest. Time and resource limitations simply prohibit the

development of enough targeted methods to cover the expanse

of the exposome.

Advancements in analytical and computational technolo-

gies have enabled a shift from targeted monitoring methods

to non-targeted analysis (NTA) methods. High-resolution

mass spectrometers (HRMS), utilizing Orbitrap and quadru-

pole time-of-flight (Q-TOF) mass analyzers, now provide the

combination of resolution, sensitivity, and speed needed to

support NTA studies. Whereas targeted methods only monitor

specific compounds during data acquisition, HRMS instru-

ments generate data with sufficient quality that compound

selection/identification can be performed at later stages of

analysis, without reliance on pre-conceived chemical target

lists. The confidence in eventual chemical identifications de-

pends, in part, on the experimental HRMS data available for

analysis. Accurate mass and isotope pattern data may enable

chemical characterization at the molecular formula level,

whereas tandem fragmentation data (i.e., MS/MS or MS2

spectra) may enable characterization at the structure level

[2]. Highly confident identifications are generally those in

which experimental MS2 data are matched to reference MS2

data contained within a well-curated library (with confirma-

tion ultimately requiring use of a chemical standard).

Numerous reference libraries exist (e.g., mzCloud,

MassBank, NIST) and enable confident identifications in

NTA studies; these range from proprietary vendor-generated

libraries to public repositories reflecting the collaborative ef-

forts of many contributors. Recent reviews highlight the

breadth of these MS2 reference libraries, which include spec-

tra for up to tens of thousands of compounds [3–5]. Compared

with chemical listings within ChemSpider and PubChem

(numbering in the millions), however, these libraries cover

only a small fraction of potential chemicals of interest [6, 7].

Chemical coverage within reference libraries is unlikely to

change dramatically in the near future; the requirement for

chemical synthesis followed by MS analysis is rate-limiting

in the growth of said libraries. To address this challenge, re-

searchers have turned to computational approaches, wherein

computer-generated spectra (or fragment ions) are the basis

for comparison against experimental data. Using these in

silico approaches, library coverage is limited only by the size

of the database from which the predictions are based.

Avariety of approaches currently exist for spectra/fragment

prediction and comparison. Approaches like MS-Finder and

Mass Frontier use specific fragmentation rules to predict MS2

spectra for database compounds [8]. An inherent limitation of

this approach is a bias towards compounds for which the

known rules apply. Other approaches like MetFrag and

MAGMA use combinatorial fragmentation. Here, rather than

predicting spectra for a given compound, each bond of that

compound is systematically broken in silico to yield possible

molecular fragments. Experimental fragment ions are then

matched against possible molecular fragment ions to generate

a weighted score for that compound [9–11].

Molecular fingerprinting is another computational

technique, and is being utilized by ChemDistiller and

CSI:FingerID. With this approach, predictive analysis is per-

formed on experimental data [12–14]. Specifically, fragment

ions within an experimental spectrum are used to predict spe-

cific structural features (i.e., substructures) of the unknown

compound, which together yield a “fingerprint” for that com-

pound. The predicted fingerprint for the unknown compound

is compared with discrete fingerprints for database com-

pounds to yield a list of scored matches. Recent reviews

highlight the merits and limitations of these computa-

tional approaches for the analysis of experimental MS2

data [3, 15, 16].

Competitive Fragmentation Modeling-ID (CFM-ID) is an

approach wherein experimental MS2 spectra are searched and

scored against predicted spectra based on similarity [17, 18].

CFM-ID algorithms are trained on experimental data and used

to discover fragmentation rules and eventual predictive

models for MS2 spectra. Relative to previously described

computational approaches, CFM-ID exists in a middle

ground; predicted spectra are more complex than those based

on specific fragmentation rules, while avoiding the explosion

of fragmentation possibilities from combinatorial methods.

CFM-ID further predicts peak intensities, which can be incor-

porated into spectral similarity searches and match scores. The

source code for CFM-ID is publicly available, allowing for

incorporation into in-house databases. Predictions can thus be

pre-processed on the entirety of a chemical database, reducing

computational time during actual searching of experimental

data.

With several computational approaches available, numer-

ous performance comparisons have been conducted in recent

years [11, 13, 17]. Unsurprisingly, results have varied from

assessment to assessment, as the tested data sets have differed

from one study to the next. To address this challenge, the

Critical Assessment of Small Molecule Identification

(CASMI) contest was founded in 2012 with the goal of en-

abling a more accurate comparison between methods. For

each CASMI contest, an MS-based data set of challenge
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compounds unknown to the participants was made publicly

available for examination [19, 20]. Specifically, previously

acquired MS2 spectra (with accompanying metadata, in some

instances) for individual compounds were shared for blinded

evaluation. Results for each completed contest year have been

compiled and are available online (http://casmi-contest.org),

along with the challenge data sets, allowing for additional

testing of new/refined computational approaches.

The data sets and results available through CASMI are an

excellent resource for evaluating specific computational tools

and in silico libraries. Since the CASMI contests were focused

on evaluating spectra of individual compounds, a logical ex-

tension is to consider many spectra from a complex mixture as

part of a performance evaluation. Along these lines, EPA’s

Non-Targeted Analysis Collaborative Trial (ENTACT) was

launched in 2016 to evaluate the current status and landscape

of NTA approaches, from data acquisition through results pro-

cessing, with a focus on xenobiotic compounds in complex

mixtures [21, 22]. Ten ENTACT mixtures were ultimately

prepared, encompassing over 1200 chemical substances from

EPA’s Toxicity Forecaster (ToxCast) library, and sent to par-

ticipating labs for analysis. Much like CASMI, participants

were allowed freedom in the selection of NTA approaches.

While initially blinded, labs were eventually informed of the

contents of each mixture to enable self-evaluation.

Within EPA’s Office of Research and Development (ORD),

initial analysis of the ENTACT mixtures has been performed

and results of self-evaluation reported [23]. The purpose of the

current article is to describe the incorporation of CFM-ID

predicted spectra into the existing EPAworkflow, and to eval-

uate overall method performance using the ENTACT mixture

data. CFM-ID was selected for this investigation given the

availability of the source code and its documented perfor-

mance in previous CASMI contests. This article describes

(1) workflows for processing and searching experimental

MS2 spectra against CFM-ID predicted spectra; (2) ap-

proaches for utilizing CFM-ID search scores in NTA

workflows; (3) assessment of CFM-ID performance on

ENTACT mixture compounds; and (4) comparison of refer-

ence library performance vs. CFM-ID library performance.

This analysis serves as the initial proof-of-concept for adding

CFM-ID predictions to an established NTAworkflow. Future

analyses that utilize this addition will benefit from increased

library coverage and enhanced confidence in compound

identifications.

Methods

Figure 1 displays the overall NTA workflow utilized in our

analyses of the ENTACT mixtures. This workflow outlines

the main components of data acquisition and processing (left),

as well as database generation and matching (center). It further

lists the confidence levels associated with each type of match

DSSTox Database

(~765,000 Substances)

DSSTox Database

(MS-Ready Structures)

CFM-ID Database

(Predicted MS2 Spectra)

ENTACT Mixtures

(MS-Ready Structures)

LC-MS

(ESI+, ESI-)

ENTACT Mixtures

(10 total)

MS1 Acquisition
ENTACT Mixtures

(MS-Ready Mass Lists)

ENTACT Mixtures

(MS-Ready Formula Lists)

Level 5

Identification Confidence

Level 4

Reference MS2 Library

(11,324 Compounds)

MS2 Exported .mgf Files

MS2 Acquisition .d files

Level 3

Level 2a

Database/Library MatchingExperimental Acquisition

MS2 Acquisition

Prior NTA Workflow Addition to NTA Workflow

Fig. 1 Overall workflow for data acquisition and compound

identification. Sections outlined in blue show aspects of the workflow

previously implemented for the analysis of ENTACT mixtures. The

section outlined in purple shows additions to the workflow that involve

matching experimental MS2 spectra with CFM-ID predicted spectra.

Identification confidence levels [2] for each match of experimental data

to a corresponding database/library entry are shown alongside the speci-

fied match in the workflow
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(right). Our previously reported results for the ENTACT mix-

tures were based on matching feature data to mass lists, for-

mula lists, and reference MS2 libraries (highlighted in blue)

[23]. The current examination incorporates searching against

CFM-ID predicted spectra (highlighted in purple).

Sample preparation and data acquisition

Sample preparation and analysis procedures have been previ-

ously described [23]. Briefly, a total of 1269 unique sub-

stances were spiked across ten separate synthetic mixtures

(labelled 499 through 508), with each mixture receiving be-

tween 95 and 365 substances. Each mixture was analyzed via

liquid chromatography/mass spectrometry (LC/MS), utilizing

an Agilent 1290 Infinity II LC coupled to an Agilent 6530B

accurate mass quadrupole time-of-flight (Q-TOF) mass spec-

trometer with a Dual AJS ionization source. An Agilent

ZORBAX Eclipse Plus C8 column (2.1 × 50 mm, 1.8 μm)

was used along with mobile phases consisting of

0.4 mM ammonium formate buffer in water and metha-

nol. MS1 and MS2 data were collected in a scan range

of 100–1000m/z in both positive and negative ionizationmodes.

Reference solution consisting of purine, hexakis(1H,1H,3H-

tetrafluoropropoxy)phosphazene, and trifluoroacetic acid

(TFA) was infused into the source during the course of the run

for auto-correction of mass drift. MS2 data were acquired using

Auto MS2 acquisition with the following settings: 3 max pre-

cursors per cycle, minimum threshold 3000 counts, scan

rate 4 spectra/second. MS2 exclusion lists were generat-

ed to exclude ions corresponding to the reference solu-

tion from selection for fragmentation. MS2 inclusion

lists were generated to increase preference for ions cor-

responding to substances previously observed using MS1 da-

ta. Each sample was acquired three times to generate MS2

data, with each acquisition collecting at one of the three colli-

sion energy (CE) levels: 10, 20, or 40 V.

Chemical substance database

EPA’s Distributed Structure-Searchable Toxicity (DSSTox)

Database is a public chemistry resource containing data on

(at the time of analysis) ~ 765,000 chemical substances and

serves as the foundation for EPA’s CompTox Chemicals

Dashboard, hereafter referred to as the Dashboard (https://

comptox.epa.gov/dashboard) [24, 25]. Each chemical

substance within DSSTox is identified by a unique DSSTox

substance identifier (DTXSID) and is also mapped to a “MS-

Ready” structure corresponding to the form that would be

observed by MS analysis. “MS-Ready” structures are identi-

fied by DSSTox chemical identifiers (DTXCID) [26]. The

entirety of the 1269 unique ENTACT mixture substances is

registered within DSSTox, with unique DTXSIDs and associ-

ated MS-Ready DTXCIDs.

Substance selection for MS2 matching

In a previous analysis of the ENTACT mixtures, initial sub-

stance identification was performed without the use of indi-

vidual reference standards. Thus, for any given spiked sub-

stance, determination of presence vs. absence could not be

made with absolute certainty (i.e., Schymanski et al. level 1)

[23]. Features that could be linked to spiked substances with

enough diagnostic evidence (e.g., MS1 and MS2 data corrob-

orating an identification at the “probable structure” level [2])

were classified as “passes,” indicating that there was

strong evidence of their presence. The set of “pass”

substances, spanning all ten mixtures, was the basis

for all analyses in the current study. Specifically, these

“pass” substances were first used to generate lists of

expected monoisotopic masses, considering only [M+

H]+ and [M-H]- ion species for positive and negative

ESI modes, respectively. These lists of expected masses

were then searched (with a 10-ppm accuracy window)

against MS2 precursor ion lists to identify “pass” sub-

stances for which MS2 data were acquired.

Reference library preparation

Reference MS2 spectra were contained in Agilent Personal

Compound Database and Library (PCDL) format. Six

Agilent PCDLs (i.e., Environmental water screening,

Pesticides, Forensic toxicology, Veterinary drugs, Metlin,

and Extractables and leachables) were combined and used

for the current analysis. Experimental MS2 data [23] were

searched against the composite PCDL using Agilent

MassHunter Qualitative Analysis (version B.08) software

with forward and reverse scoring thresholds of 0 and 20, re-

spectively. All matches were manually reviewed to increase

confidence in compound identifications.

Compound information from each of the six PCDLs was

exported using Agilent PCDLManager software. Specifically,

compound name, formula, mass, CAS number, and number of

MS2 spectra were exported for all compounds in each PCDL.

This list of compounds was filtered for those containing at

least one MS2 spectrum, and then batch searched by CAS

number on the Dashboard to retrieve a DTXSID for each

compound in the PCDLs. MS-Ready DTXCIDs were then

retrieved for each compound by querying a DSSTox MS-

Ready mapping file. In some cases, a PCDL compound was

not able to be mapped to a DTXSID/DTXCID, either due to

the compound not being registered in DSSTox or due to an

incorrect CAS number preventing a mapping. PCDL com-

pounds were compared against the ENTACT mixture com-

pounds by MS-Ready DTXCID to estimate the approximate

coverage of ENTACT mixture compounds within the

searched PCDLs.
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In silico library preparation

In silico MS2 spectra were computed for the majority of MS-

Ready structures in DSSTox using the publicly available

CFM-ID 2.0 algorithms [17]. Predictions were based on

electrospray ionization, in positive and negative modes, at

three CE levels (10, 20, and 40 V). Briefly, SMILES strings

for MS-Ready structures in DSSToxwere input into the CFM-

ID prediction source code (http://sourceforge.net/projects/

cfm-id) with pre-trained parameters. Resulting predicted spec-

tra were then linked with MS-Ready structure metadata such

as DTXCID, molecular formula, and monoisotopic mass. The

resulting database of CFM-ID predicted spectra is hereafter

referred to as the “CFM-ID database” [27].

In silico library matching

Fig. S1 (see Electronic Supplementary Material, ESM) de-

scribes the workflow for searching ENTACT MS2 spectra

against the CFM-ID database (source code used for in silico

library matching, scoring, and processing of results is avail-

able at https://github.com/NTA-Code/cfmid). Acquired MS2

spectra were first exported from Agilent .d files in MGF

format, and then processed using a custom script written in

the Python programming language. Processing of MGF files

was performed to improve data formatting and to de-duplicate

MS2 spectra. Regarding de-duplication, any single chemical

feature with an associated precursor mass may generate mul-

tiple MS2 spectra during acquisition. The spectrum with the

highest signal was considered most representative of the

chemical feature for spectral matching purposes. Thus, for a

given precursor mass, the spectrum with the highest sum in-

tensity of ions was retained for analysis. Once MS2 spectra

were processed, the Python script searched the CFM-ID data-

base for all candidate compounds (as identified by MS-Ready

DTXCID) within a 10-ppm mass window of each MS2 spec-

trum precursor mass, considering only [M+H]+ and [M-H]-

ion species for positive and negative modes, respectively.

The Python script then scored predicted spectra (for CE 10,

20, and 40 V) for all candidates against the experimental MS2

spectrum using a dot-product algorithm [28] with a fragment

mass window of 0.02 Da, with scores ranging from 0 to 1.

Once scores were generated for candidate compounds,

three approaches for using the scores were evaluated

(Fig. 2). In approach 1, only the score of the CFM-ID spec-

trumwith the same CE level as the experimental spectrumwas

used. In approach 2, scores for CFM-ID spectra at all three CE

levels were summed as a new score. In approach 3, scores for

CFM-ID spectra at all CE levels were summed as a new score,

and these new scores were summed across all experimental

CE levels. Scores from each approach were used to rank

ENTACT mixture compounds against other candidate com-

pounds for each MS2 spectrum. Scores were also used to

generate percentile and quotient values for all candidate com-

pounds, with quotient values defined as the score of the can-

didate compound divided by the maximum score amongst all

candidate compounds for a given experimental MS2

spectrum.

Only MS2 spectra corresponding to “pass” ENTACT mix-

ture compounds were evaluated by CFM-ID library matching.

For each MS2 spectrum, the ENTACT mixture compound

represents a true positive (TP) and the remaining candidate

compounds represent potential false positives (FP). When a

cutoff filter is applied to CFM-ID results based on either a

percentile or quotient value, the ENTACT mixture compound

is considered either a potential TP (if above the cutoff value)

or a false negative (FN; if below the cutoff value). Other

candidate compounds which are above the cutoff value are

considered potential FPs, and those below the cutoff value

are considered true negatives (TN). Examples of cutoff filter-

ing of CFM-ID results are shown in Fig. S2 (see ESM). True

positive rates (TPRs) and false positive rates (FPRs) were

calculated using the following equations:

TPR ¼
TP

TPþ FN

FPR ¼
FP

FPþ TN

To identify an optimal threshold for candidate filtering,

cutoff values were incremented throughout the entire range

by hundredths of the value range (i.e., percentile cutoffs were

set to 0, 1, 2… 100; quotient cutoffs were set to 0, 0.01, 0.02

… 1). At each level, TP, FP, TN, and FP counts were tallied

and used to calculate TPR and FPR. Receiver operating char-

acteristic (ROC) curves were then generated, using TPR and

FPR values, for the global ENTACT data set (i.e., all ten

mixtures). Using the global curves, the percentile value and

quotient value that would result in a minimum TPR of 0.90

were determined. These global percentile and quotient cutoffs

were applied to each ENTACT mixture’s results to calculate

the mixture-specific TPR and FPR based on the global cutoff.

The mixture-specific TPRs and FPRs ultimately serve as per-

formance metrics for the proposed methods.

Some NTAworkflows base predicted library matching on

monoisotopic mass queries, whereas others restrict the candi-

date compound set to those matching a specific formula (de-

duced from MS1 spectra or other orthogonal methods). All

procedures described in the “In silico library matching” sec-

tion were performed separately based either on monoisotopic

mass queries or on mass queries followed by formula filtering

(where the MS-Ready formula of all candidates was forced to

match that of the “pass” substance). It is noteworthy that, for

this investigation of ENTACT mixtures, a single formula was

previously assigned to each “pass” substance with a high level

In silico MS/MS spectra for identifying unknowns: a critical examination using CFM-ID algorithms and ENTACT... 1307
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of confidence. Formula assignments for features in true un-

known samples are subject to considerably larger error rates.

Thus, results of our formula-based analysis represent a “best

case scenario” and yield the smallest expected FPRs.

Nevertheless, comparison of results based on mass vs. formu-

la queries will help establish best practices and performance

targets for predicted library matching protocols.

Results

Reference library matching

For a given ENTACT compound, identification via reference

library matching requires that the compound is ionizable (giv-

en the experimental source conditions), selected for MS2 ac-

quisition, and present in the reference library. As described

above, our previous analysis of the ENTACTmixtures yielded

a list of “pass” substances that were identified with sufficient

diagnostic evidence; this list of substances (ESM Table S1)

represents the starting point for the current evaluation. It is

noteworthy that certain substances were included in multiple

mixtures as part of the ENTACT design to help evaluate meth-

od reproducibility [21, 23]. For the purposes of this analysis,

the focus of which was to evaluate performance of in silico

library matching across a broad range of substances, each

substance was ultimately evaluated only once even if it was

acquired in multiple mixtures. Initial results (vide infra), how-

ever, are provided without de-duplication to preserve statistics

specific to each individual ENTACT mixture.

Overall, 44% of spiked ENTACT substances were classi-

fied with a “pass” rating (Table 1). Certain ENTACTmixtures

(e.g., 507 and 508) had a very low proportion of “pass” com-

pounds owing, in part, to a high number of spiked isomers that

could not be resolved even with MS2 data. Out of 845 total

“pass” compounds, 500 (59%) were included in the composite

PCDL (including reference MS2 data), 453 (54%) had ac-

quired MS2 data, and 300 (36%) had both reference and ac-

quired MS2 data (Table 1). Ultimately, 246 of these 300

“pass” compounds were correctly identified with a level 2a

designation [2]. Thus, an 82% success rate was observed

when considering “pass” compounds with both experimental

and reference MS2 data (n = 300). A 54% success rate, how-

ever, was observed when considering all “pass” compounds
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Fig. 2 Three approaches for utilizing CFM-ID scores. Each combination

of experimental spectrum vs. CFM-ID predicted spectrum generates a

unique score via the dot-product algorithm, designated by a unique letter

assignment. In approach 1, only one score is generated at the designated

collision energy (CE, where CEexperimental = CEin silico). In approach 2,

scores from all three CEin silico levels are summed. In approach 3, scores

are summed across all three CEin silico levels, and then across all three

CEexperimental levels
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with experimental MS2 data (n = 453), regardless of whether

they were in the composite PCDL.

In silico library matching

Evaluation by collision energy

Regarding the use of in silico spectra for compound identifi-

cation, initial goals of this evaluation were to determine

whether 1:1 matching (i.e., one experimental spectrum vs.

one in silico spectrum) is best performed at a common CE

level, and whether a specific CE level (10, 20, or 40 V data)

would stand out as yielding the best results. To achieve these

goals, MS2 spectra for “pass” compounds were scored against

their respective CFM-ID spectra at all three CE levels. As

shown in Fig. S3 (see ESM), the highest match scores (where

CEexperimental = CEin silico) were generally observed at a CE of

10 V, followed by those observed at 20 V and 40 V. These

results likely reflect (1) the presence and matching of intact

precursor ions at lower CE levels and (2) greater spectral com-

plexity and number of fragments (with some below the exper-

imental mass range) at higher CE levels.

Fig. S4 (see ESM) shows, at each CEexperimental for each

“pass” compound, the quotient of the CFM-ID score when

CEexperimental = CEin silico vs. the CFM-ID score when

CEexperimental ≠CEin silico. For each comparison group (n = 6),

the estimated median value was significantly greater than 1

(Wilcoxon signed-rank test; p < 0.0001 in all cases), reflecting

higher CFM-ID scores when CEexperimental = CEin silico. Not

surprisingly, median quotients were highest when the

CEexperimental and CEin silico were most dissimilar (e.g.,

10Vscore/40Vscore). Examination of the range of quotients

shows that, for some “pass” compounds, the CFM-ID scores

were over 1000 times higher when CEexperimental = CEin silico

vs. when CEexperimental ≠CEin silico. In other cases, however,

the CFM-ID scores were up to 100 times lower when

CEexperimental = CEin silico. These results highlight the potential

value in utilizing in silico spectra at non-matching CE levels

as part of a composite score. The value of such a proposition is

examined below via scoring approaches 2 and 3.

Evaluation by scoring method

Three different scoring approaches were compared (Fig. 2),

with scores based on (1) 1:1 matching between experimental

and in silico spectra (where CEexperimental = CEin silico); (2) 1:3

matching with summation across three CFM-ID match scores

for a given experimental spectrum; and (3) summation of

scores across all possible combinations (n = 9) of experimen-

tal vs. in silico spectra. Each approach was evaluated for all

“pass” compounds across all ten ENTACT mixtures.

Distributions of ranks for “pass” compounds amongst all

candidate compounds retrieved from the CFM-ID database

are given in Table 2 (without formula filtering) and Table 3

(with formula filtering). For approaches 1 and 2, the best re-

sults were observed when CEexperimental = 20 V. Results using

approach 3 were very comparable to the best results from

approaches 1 and 2. Overall, when database matching was

performedwithout formula filtering (Table 2), the spiked com-

pound was ranked as the top candidate up to 38% of the time,

Table 1 Numbers of spiked ENTACT substances meeting specific research criteria

Mixture Spiked

substances

Passes Passes in PCDL1 Passes w/ MS2 Passes in PCDL

and w/ MS2

Passes matched

by PCDL

499 95 46 28 37 23 18

500 95 19 14 14 11 7

501 95 47 28 34 25 23

502 95 58 42 22 17 15

503 185 103 59 67 43 34

504 185 103 55 68 41 34

505 365 224 128 64 44 40

506 365 195 114 113 74 61

507 95 19 13 14 9 7

508 364 31 19 20 13 7

Total 1939 845 500 453 300 246

% of total NA 44% 26% 23% 15% 13%

% of passes NA NA 59% 54% 36% 29%

1Composite “Personal Compound Database and Library” (PCDL) containing compounds from six individual Agilent PCDLs (i.e., Environmental water

screening, Pesticides, Forensic toxicology, Veterinary drugs, Metlin, and Extractable and leachables)
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within the top 5 candidates up to 60% of the time, and within

the top 20 candidates up to 79% of the time. Using approach 3,

the spiked compound ranked in the 81st percentile of all can-

didate compounds, on average, when considering CFM-ID

match scores.

As expected, results were markedly better, regardless of the

scoring approach, when implementing formula filtering as part

of candidate ranking (Table 3). Again, results for approach 3

were very similar to those for approaches 1 and 2 when

CEexperimental = 20 V. This time, however, the spiked compound

was ranked as the top candidate up to 50% of the time, within

the top 5 candidates up to 71% of the time, and within the top

20 candidates up to 85% of the time. On average, using ap-

proach 3, the spiked compound was in the 84th percentile of all

candidate CFM-ID match scores. Individual results for each

“pass” compound (without and with formula filtering), includ-

ing the CFM-ID rank of the TP along with number of total

candidate compounds, are shown in Fig. S5 (see ESM).

Regarding approaches 1 and 2, where a single experimental

spectrum is considered at one defined CEexperimental, perfor-

mance results generally favor the use of CE = 20 V (Tables 2

and 3). A comparative analysis for approach 1, however,

shows benefit of considering all three CE results (Fig. 3a).

Specifically, out of 325 unique compounds identified (without

formula filtering) as being within the top 20 CFM-ID hits (at

one or more CE), 279 were identified at CE = 20 V and 46

were not identified at CE = 20 V (Fig. 3a). Using approach 3,

298 unique compounds were correctly identified as being

within the top 20 CFM-ID hits. Approach 3 coverage

exceeded that of approach 1 by 31 compounds when CE =

10 V, 19 compounds when CE = 20 V, and 83 compounds

when CE = 40 V (Fig. 3b). Considering these findings, com-

posite scoring via approach 3 was used for all remaining eval-

uations of in silico MS2 spectra.

Evaluation of filtering criteria

ROC curves in Fig. 4a show relationships between TPRs and

FPRs, at various percentile and quotient cut-points, when can-

didates from the CFM-ID database were matched to experi-

mental spectra using precursor mass or predicted formula. In

general, results based on quotient cutoffs (in pink) are superior

to those based on percentile cutoffs (in green). That is, a lower

FPR is associated with a given TPR when using a quotient

cutoff at a pre-defined test increment. This result is a function

of the right-skewed distribution of quotient values vs. the uni-

form distribution of percentile values (ESM Fig. S6). As ex-

pected, results based on formula matching (solid) are superior

to those based on precursor mass matching (dotted). This re-

sult reflects the smaller number of candidate compounds when

implementing a formula filter.

As shown in Fig. 4a, a global TPR of 0.90 (horizontal gray

dashed line) yielded percentile-based FPRs (green vertical

dotted lines) of 0.67 (by mass) and 0.36 (by formula), and

quotient-based FPRs (pink vertical dotted lines) of 0.57 (by

mass) and 0.32 (by formula). This global TPR of 0.90 is as-

sociated with percentile cutoff values of 32 (by mass) and 38

(by formula), and quotient cutoff values of 0.13 (by mass) and

0.18 (by formula). Figure 4b shows distributions of TPR and

FPR values for individual ENTACT mixtures based on these

four cutoff values; these distributions highlight expected

ranges of TPRs and FPRs when using the CFM-ID database

to investigate unknowns in individual samples. Overall, indi-

vidual mixture TPRs ranged from 0.72 to 1.0, and FPRs

ranged from 0.10 to 0.85. Interestingly, more variability in

FPRs was observed in analyses utilizing quotient cutoffs.

Thus, FPRs are generally expected to be lower, on average,

using quotient cutoffs, but more consistent using percentile

cutoffs.

Table 2 CFM-ID results for

ENTACT mixture compounds

across three scoring approaches

(Fig. 2). Candidate compounds

from the CFM-ID database were

limited to those having an MS-

Ready monoisotopic mass

matching (within 10 ppm) that of

the known (spiked) substance

Approach 1 Approach 2 Approach 3

CEexperimental 10 20 40 10 20 40 Σ
a

CEin silico 10 20 40 Σ Σ Σ Σ

No. of compounds scored 363 368 360 363 368 360 377

Number of true positives

Top hit 102 129 93 100 139 100 129

Within top 5 187 219 162 188 221 162 224

Within top 20 267 279 215 275 283 213 298

Percentage of true positives

Top hit 28% 35% 26% 28% 38% 28% 34%

Within top 5 52% 60% 45% 52% 60% 45% 59%

Within top 20 74% 76% 60% 76% 77% 59% 79%

Average percentile for true positives 77th 81st 72nd 78th 82nd 73rd 81st

Average quotient for true positives 0.67 0.62 0.45 0.64 0.65 0.47 0.69

a Sum of three CEs
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Comparison of performance across reference
and in silico libraries

Figure 5 shows a comparison of de-duplicated “pass” com-

pounds (n = 377) that were correctly identified by PCDL ref-

erence library matching (n = 199) vs. CFM-ID database

matching (with formula filtering, n = 188). When considering

only the top hit from library matching, 88 compounds (23%)

were identified only using the composite PCDL, 111 com-

pounds (29%) were identified using both the composite

PCDL and the CFM-ID database, and 77 compounds (20%)

were identified using only the CFM-ID database. One hun-

dred one (27%) compounds were not identified as the top hit

using either the composite PCDL or the CFM-ID database.

Ultimately, 53% of “pass” substances were correctly identified

by the composite PCDL, and 50% were correctly identified as

the top hit using the CFM-ID database. Percentile and

quotient-based cutoffs can be used to increase the potential

TPR (up to 100%), but at the expense of increasing FPR, as

described above. The implementation of cutoff values is at the

discretion of the investigator, who must carefully consider the

overall objectives of the research study when deciding on a

selection strategy.

Discussion

Targeted methods have long been the gold standard for chem-

ical analysis. As such, they have been implemented in a wide

number of scientific fields where chemical detection and/or

quantitation is critical. The focused nature of targeted analyt-

ical methods has proven limiting in discovery research fields,

where chemicals of eventual interest may not yet be known.

NTA methods seek to address this shortcoming by enabling

discovery and identification of unknown chemicals and

informing follow-up targeted investigations.

Confidence in chemical identifications is a function of the

experimental information available [2]. As the amount of in-

formation supporting an identification increases, the ambigu-

ity surrounding that identification decreases, resulting in more

confident annotations. Targeted methods produce data at the

highest confidence level, as they utilize chemical standards for

Table 3 CFM-ID results for

ENTACT mixture compounds

across three scoring approaches

(Fig. 2). Candidate compounds

from the CFM-ID database were

limited to those having an MS-

Ready formula matching that of

the known (spiked) substance

Approach 1 Approach 2 Approach 3

CEexperimental 10 20 40 10 20 40 Σ
a

CEin silico 10 20 40 Σ Σ Σ Σ

No. of compounds scored 363 368 360 363 368 360 377

Number of true positives

Top hit 159 178 123 171 180 128 188

Within top 5 239 250 194 243 252 194 268

Within top 20 284 291 232 295 292 232 321

Percentage of true positives

Top hit 44% 48% 34% 47% 49% 36% 50%

Within top 5 66% 68% 54% 67% 68% 54% 71%

Within top 20 78% 79% 64% 81% 79% 64% 85%

Average percentile for true positives 82nd 83rd 76th 83rd 84th 77th 84th

Average quotient for true positives 0.77 0.73 0.57 0.77 0.75 0.59 0.79

a Sum of three CEs

Approach 3
CE10Approach 1 CE20Approach 1

CE40Approach 1

CE10Approach 1 CE20Approach 1 CE40Approach 1

a b

Fig. 3 Number of “pass” compounds within the top 20 CFM-ID hits using approach 1 at CE = 10 V vs. 20 V vs. 40 V (a). Number of “pass” compounds

within the top 20 CFM-ID hits using approach 3 vs. approach 1 at CE = 10, 20, or 40 V (b)
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which reference MS1, MS2, and chromatographic data can be

acquired. NTA methods can benefit from these reference data

to the extent that they have been previously acquired and

stored in a usable format. Six Agilent PCDLs were used in

this analysis as the source of referenceMS2 data for matching;

the composite of these PCDLs included 11,324 unique com-

pounds with reference MS2 spectra. The ten ENTACT mix-

tures contained a total of 1269 unique substances, of which

610 (48%) were contained within the composite PCDL. The

other 52% of compounds represent a “blind spot” in the ref-

erence libraries searched. Clearly, in silico predicted spectra

are needed to enable MS2 matching for compounds not cap-

tured in empirical libraries. At the time of analysis, CFM-ID

predicted spectra were available for ~ 765,000 unique

DSSTox compounds, representing a > 60-fold increase in

search space over the composite PCDL. Given the obvious

advantage of size, careful evaluation of performance is re-

quired to ensure proper use and maximum benefit of these

predicted spectra.

Experimental MS2 data for ENTACT mixture compounds

were collected and CFM-ID spectra predicted at three CE

levels (10, 20, and 40 V). The specificity of CE level when

matching experimental and predicted spectra was evaluated

across all ten ENTACTmixtures. The highest CFM-ID scores

were observed when CEexperimental = CEin silico (ESM Fig. S4).

Furthermore, the best performance, in terms of compound

ranking, was generally observed when CE = 20 V (Tables 2

and 3). For some compounds, however, it was more advanta-

geous to acquire and match spectra at CE = 10 or 40 V

(Fig. 3a). This is most likely due to variability in com-

pound lability, where different compounds have distinct

optimal CE levels needed to generate a spectrum with

fragment ions in high abundance. For an NTA workflow

where the compounds are unknown, the recommended

practice is to acquire experimental MS2 data at all three

CE levels in order to capture suitable spectra on the

widest range of compounds.

It is difficult to anticipate, for a given compound of interest,

whether scoring/ranking results at one CE should be preferred

over another. Thus, aggregated scoring approaches were eval-

uated wherein summed scores were considered across multi-

ple CEs (Fig. 2). It was generally observed that the quality of

matching results increased with the amount of data consid-

ered, in terms of both experimental and predicted spectra.

Specifically, scoring results from approaches 2 and 3 were

shown to surpass those from approach 1 at each individual

CE (Tables 2 and 3, and Fig. 3b). Approach 3 tended to yield

the best overall results and was therefore the basis for perfor-

mance evaluations regarding TPR and FPR. Moving forward,

when using the CFM-ID database as a screening-level tool, we

Median

Q1

Q3

Min

Max

a b

Fig. 4 ROC curves (a) for ENTACTmixture data (all “pass” compounds

from all ten mixtures) when using percentile and quotient cutoff values,

and when filtering the CFM-ID database matches by mass or molecular

formula. A global TPR of 0.90 (horizontal gray dashed line) results in

percentile-based FPR values (green vertical dotted lines) of 0.67 (by

mass) and 0.36 (by formula), and quotient-based FPR values (pink verti-

cal dotted lines) of 0.57 (by mass) and 0.32 (by formula). Distributions

(b) of true positive rates (TPRs) and false positive rates (FPRs) across

individual ENTACTmixtures (n = 10) when selecting cutoff values based

on a global TPR of 0.90 (from a)

Fig. 5 Comparison of “pass” compounds (n = 377) correctly identified

by reference library matching (using a composite Agilent PCDL) vs.

CFM-ID database matching (when filtering by molecular formula)
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recommend an aggregated approach wherein each experimen-

tal spectrum is compared with all three CE levels of predicted

spectra (i.e., approach 3).

Utilizing CFM-ID results from approach 3 (based on mass

matching (2)), 34% of the 377 ENTACT mixture compounds

were identified as the best matching compound. This result is

comparable to those reported from the 2016 CASMI contest,

in which 12 to 34% of correct candidates were identified as the

best matching compound [20]. In certain cases, sub-optimal

performance of CFM-ID may reflect dissimilarities in struc-

tures between compounds used to train CFM-ID and those

included in ENTACT [27]. A re-training of the CFM-ID

models with an expanded set of compounds has the potential

to improve scoring and ranking results for the ENTACT mix-

ture compounds. Future work will examine the extent to

which re-trained models can better identify ENTACT com-

pounds (and potentially other xenobiotics) amongst other can-

didate chemicals.

Reference libraries are created from empirical spectra and

generally yield matches with high accuracy. That is, the best

match from a reference library search is often the TP. Predicted

libraries are less accurate and, as such, do not always correctly

identify the TP as having the best match score. Utilizing results

from in silico library searching is therefore a balance between

TPR and FPR. Considering only the highest matching com-

pounds will limit the number of FPs, but at a greater risk of

missing a TP. A less-stringent cutoff allows for more potential

FPs, and also a higher likelihood of retaining the TP. The cutoff

threshold depends on the desired goal(s) of the analysis, wheth-

er retaining true compounds or eliminating false compounds is

of most importance. For this analysis, cutoffs based on percen-

tiles and quotients were evaluated, with candidate selection

based on mass matching, with or without additional formula

filtering. Our results show a preference for quotient-based cut-

offs, and for filtering candidate lists based on molecular for-

mula (Fig. 4a). Specifically, the lowest FPR is expected for a

given TPR when using a quotient-based cutoff and formula

filtering. Better performance using quotient values is attributed

to the skewed (i.e., right-tailed) distribution of quotient values

(vs. the uniform distribution of percentile values), where most

candidates have very low CFM-ID match scores, and fewer

have moderate to high scores (ESM Fig. S6). This allows for

more incorrect candidates to be correctly removed from con-

sideration at even a modest cut-point. Interestingly, wider dis-

tributions of FPRs were observed when using quotient-based

cutoffs vs. percentile-based cutoffs (Fig. 4b). This again stems

from the skewed distributions of quotient values and under-

scores the variable nature of FPRs when using quotient cutoffs.

More stable FPRs can be achieved with percentile-based cut-

offs; these FPRs are expected to be higher, however, when

aiming for a high TPR (~ 0.90).

In silico library matches are inherently less confident than

reference library matches. As such, in silico MS2 libraries are

not meant to replace reference libraries, but to enable supple-

mentary matching procedures [3, 16, 29]. Figure 5 shows that,

using either the reference library (composite PCDL) or the in

silico library (CFM-ID database), about half of the “pass”

compounds could be correctly identified as the top match.

Using both libraries, however, yielded 73% correct identifica-

tions. A hybrid approach is therefore highly desirable for the

most comprehensive and accurate analysis. For example, in a

hypothetical study, MS2 spectra could be matched to both the

reference and in silico libraries. Top matches based on the

reference library would not require additional support from

in silico match scores. Yet, these in silico match scores could

serve as the basis for quotient- or percentile-based cut-points.

These cut-points would then be used to filter unlikely candi-

dates retrieved from the CFM-ID database. The use of addi-

tional supporting information, such as retention time predic-

tions [30, 31] and metadata source counts [20, 32], has been

shown to improve NTA identifications; incorporation of these

data with CFM-ID ranking results could further improve can-

didate filtering, thus increasing the overall accuracy and per-

formance of the workflow. Future investigations will aim to

incorporate these various data streams into a unified

workflow, and to optimize filtering criteria for maximum

TPRs and minimum FPRs.

Since the time of this original analysis, EPA’s DSSTox

database has increased from ~ 765,000 to ~ 875,000 unique

substances; CFM-ID predictions have been generated for the

majority of these substances based on their associated “MS-

Ready” structures. The dynamic nature of in silico libraries is

a highly desirable feature when compared with reference li-

braries, which are relatively static due to the need for pure

standards. This dependence on standards is a significant draw-

back when investigating new and rapidly emerging chemicals

of concern, as the analyses are not able to keep up with the

analytes. In silico libraries can be generated at a much more

rapid pace, on both known and predicted structures (e.g., those

of expected metabolites and transformation products) within a

given database. EPA’s DSSTox database is freely available to

the public via the Dashboard (https://comptox.epa.gov/

dashboard) [24]. Future Dashboard development will

provide additional functionality to support HRMS-based

NTAworkflows (i.e., retention time predictions, media occur-

rence data, experimental substructure filtering). Updates to the

CFM-ID processing and searching workflow are also being

explored, including aggregation of multiple experimental

spectra into a single spectrum (rather than selecting only the

spectrum of highest sum ion intensity), and implementation of

intensity threshold filters (for experimental and predicted

spectra) prior to CFM-ID matching/scoring. A prototype

web-based tool for searching an experimental spectrum

against the CFM-ID database has been developed and is un-

dergoing testing; users will see both the candidate results

returned for the spectrum as well as visualizations of the
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predicted vs. experimental spectrum (ESM Fig. S7). CFM-ID

batch searching is also being incorporated into existing NTA

workflows, with plans to publicly release a stand-alone web

service for processing of NTA data. Finally, implementation

of CFM-ID 3.0 algorithms (not available at the start of the

current project) will likely result in enhanced performance

based on an improved in silico library [33].

Conclusions

Confident identification of unknowns in NTA studies often

requires the use of reference library spectra. The relatively

modest size of existing reference libraries limits the number

of possible identifications for any given study. Use of in silico

fragmentation libraries can expand coverage into areas not

reached by reference libraries alone. Analyses of the

ENTACT mixture data show promising results for the perfor-

mance of in silico spectra towards aiding chemical identifica-

tion strategies. The expansion of NTAworkflows to incorpo-

rate in silico spectra for > 800K DSSTox compounds will

enable more rapid and certain identifications of xenobiotics

and other emerging compounds.
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