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Vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (FOL)

is one of the most devastating diseases, that delimits the tomato production

worldwide. Fungal short-chain dehydrogenases/reductases (SDRs) are NADP(H)

dependent oxidoreductases, having shared motifs and common functional mechanism,

have been demonstrated as biochemical targets for commercial fungicides. The

1,3,6,8 tetra hydroxynaphthalene reductase (T4HNR) protein, a member of SDRs

family, catalyzes the naphthol reduction reaction in fungal melanin biosynthesis.

We retrieved an orthologous member of T4HNR, (complexed with NADP(H) and

pyroquilon from Magnaporthe grisea) in the FOL (namely; FOXG_04696) based

on homology search, percent identity and sequence similarity (93% query cover;

49% identity). The hypothetical protein FOXG_04696 (T4HNR like) had conserved

T-G-X-X-X-G-X-G motif (cofactor binding site) at N-terminus, similar to M. grisea

(1JA9) and Y-X-X-X-K motif, as a part of the active site, bearing homologies with two

fungal keto reductases T4HNR (M. grisea) and 17-β-hydroxysteroid dehydrogenase

from Curvularia lunata (teleomorph: Cochliobolus lunatus PDB ID: 3IS3). The catalytic

tetrad of T4HNR was replaced with ASN115, SER141, TYR154, and LYS158 in the

FOXG_04696. The structural alignment and superposition of FOXG_04696 over

the template proteins (3IS3 and 1JA9) revealed minimum RMSD deviations of

the C alpha atomic coordinates, and therefore, had structural conservation. The

best protein model (FOXG_04696) was docked with 37 fungicides, to evaluate

their binding affinities. The Glide XP and YASARA docked complexes showed

discrepancies in results, for scoring and ranking the binding affinities of fungicides.

The docked complexes were further refined and rescored from their docked poses

through 50 ns long MD simulations, and binding free energies (1Gbind) calculations,
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using MM/GBSA analysis, revealed Oxathiapiprolin and Famoxadone as better

fungicides among the selected one. However, Famoxadone had better interaction of

the docked residues, with best protein ligand contacts, minimum RMSD (high accuracy

of the docking pose) and RMSF (structural integrity and conformational flexibility of

docking) at the specified docking site. The Famoxadone was found to be acceptable

based on in silico toxicity and in vitro growth inhibition assessment. We conclude that

the FOXG_04696, could be employed as a novel candidate protein, for structure-based

design, and screening of target fungicides against the FOL pathogen.

Keywords: THN reductase, fungicide, melanin, protein–fungicide interaction, homology modeling, MD

simulations, MM/GBSA analysis

INTRODUCTION

Tomato (Lycopersicon esculentum Mill.) is one of the most
widespread vegetable crops grown across the globe. However,
the growth and economic productivity of tomato crop are
well constrained by various biotic and abiotic stress conditions
(Bergougnoux, 2014; Gupta and Rashotte, 2014). Vascular wilt
disease caused by Fusarium oxysporum f.sp. lycopersici (FOL)
(Sacc.) W. C. Snyder and H. N. Hans (FOL) is one of the most
destructive diseases (Amini and Sidovich, 2010; Prihatna et al.,
2018), that affects the growth and economic production of tomato
(Yeole et al., 2016; Prihatna et al., 2018). The wilt pathogen FOL
is the most common soil-borne Ascomycetous fungus that infects
through roots and develops symptoms leading to vascular wilt
in tomato (Park et al., 2013; Rongai et al., 2017). It invades the
xylem vessels resulting in wilting and death of the plant (Swarupa
et al., 2014). The high-frequency incidence (25–55%) of Fusarium
wilt disease in tomato has been reported from various regions of
India (Asha et al., 2011; Pandey and Gupta, 2014; Nirmaladevi
et al., 2016). The infection and disease development of the fungus
leads to devastating agricultural losses, which may cover up to
80% under the favorable weather conditions.

The vascular wilt disease of tomato is characterized by
vascular browning, that involves the deposition of melanin-like
compounds on the walls of xylem vessel and other neighboring
parenchymatous cells (Mace et al., 2012). The control of vascular
wilt disease is difficult and mainly achieved through the use of
chemical fungicides (Minton, 1986; DeVay et al., 1988; Swarupa
et al., 2014). The most commonly used chemical fungicides that
have been used up to till date against the Fusarium sp. either alone
or in combination with other integrated approaches includes
iprodione (Amany and Ellil, 2005) (Rovral) (dithiocarboxamide)
benomyl (Benelate) carbendazim, prochloraz, fludioxonil,
bromuconazole, azoxystrobin (Amini and Sidovich, 2010;

Abbreviations: DHN, 1,8-dihydroxynaphthalene; DOPE, discrete optimized
protein energy; GLIDE, grid-based ligand docking with energetics; MM/GBSA,
molecular mechanics generalized Born surface area; PMDB, protein modeling
database; ProSA, protein structural analysis; ProTSAV, protein structure analysis
and validation; RAMPAGE, Ramachandran plot analysis; RMSD, root mean
square deviation; RMSF, root mean square fluctuation; SDR, short-chain
dehydrogenase/reductases; T3HNR, 1,3,8-trihydroxynaphthalene reductase;
T4HNR, 1,3,6,8-tetrahydroxynaphthalene reductase; UniProtKB, Universal
Protein Resource Knowledgebase; VADAR, volume area dihedral angle reporter;
OPLS, (optimized potentials for liquid simulations).

Singha et al., 2011; Anand et al., 2013; Khan et al., 2014),
flutolanil (Moncut WP 30%), tolclofos-methyl/thiram (Rhizolex
50% WP) and carboxin-thiram (Vitavax 200 WP) (Mohamed
and Amer, 2014), mancozeb + carbendazim (0.125 + 0.05%)
(Barhate et al., 2015), mancozeb + copper sulfate + copper
oxychloride (Ramaiah and Garampalli, 2015), metiram (55%)
and pyraclostrobin (5%) (Yeole et al., 2016), thiophanate
methyl (La Torre et al., 2016), propiconazole, thiabendazole,
benomyl, fuberidazole, thiophanate, myclobutanil triadimefon,
difenoconazole, tebuconazole, epoxiconazole, methoxy-acrylates,
ethyl phosphonates (de la Isla andMacías-Sánchez, 2017), Nativo
75% WG, Cordate 4WP, fluopyram 20% + tebuconazole 20%,
and tebuconazole 50% + trifloxystrobin 50% (Patón et al., 2017).

Short-chain dehydrogenases/reductases (SDRs) are
NADP(H)-dependent oxidoreductases characterized by
conserved catalytic tetrad (N-S-Y-K) and cofactor binding
site (TGxxxGxG) (Jörnvall et al., 1995; Filling et al., 2002)
with having common α/β-folding pattern, and characterized
by presence of a central β-sheet typical to Rossmann-fold
with helices on either side (Kavanagh et al., 2008). The fungal
1,3,6,8-tetrahydroxynaphthalene reductase belongs to SDR
family mediates the naphthol reduction reactions in melanin
biosynthetic pathway (Liao et al., 2001). The protein Blast
results at NCBI revealed that M. grisea T4HNR (SDR) showed
high sequence similarity with other fungal keto reductases,
involved in the biosynthesis of fungal melanin and mycotoxins,
that includes versicolorin reductase from Magnaporthe oryzae
(99%), Verticillium alfalfae (77%), Verticillium dahliae (76%),
Colletotrichum graminicola (79%), versicolorin reductase (VerA)
from Emericella nidulans (52%), and 17β-hydroxysteroid
dehydrogenase (17β-HSDcl) of Cochliobolus lunatus (52%). The
crucial role of the fungal SDR gene in M. oryzae is required for
infection related development and pathogenicity (Kwon et al.,
2010). The function of a novel fungal SDR gene (adh1) encoding
for alcohol dehydrogenase has been reported to play a crucial
role in virulence of Fusarium wilt pathogen in tomato (Corrales
et al., 2011).

Fungal melanins are high molecular weight dark brown to
black colored pigments synthesized via the pentaketide pathways
in the cell wall of fungal groups belonging to Ascomycotina
and Deuteromycotina (Bell and Wheeler, 1986). The DHN
melanin biosynthetic route is the most common among
fungi where melanins are synthesized through the acetate
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via the polyketide synthase pathway (Chiewchanvit et al.,
2017). DHN melanin pathway has been investigated in many
filamentous plant pathogenic fungi including Cochliobolus
heterostrophus (Eliahu et al., 2007), Alternaria spp. (Kheder
et al., 2012), Colletotrichum spp. (Ludwig et al., 2014), genera
Gaeumannomyces (Frederick et al., 1999), Phyllosticta musarum
(Kubo and Furusawa, 1991), and V. dahliae (Wheeler et al.,
1978). During the biosynthesis of fungal melanin through
pentaketide pathway, tetrahydroxynaphthalene reductase
(T4HNR) catalyzes the NADP(H)-dependent reduction of
1,3,6,8-tetrahydroxynaphthalene (THN) into (+)-scytalone and
1,3,8-trihydroxynaphthalene into (−)-vermelone (Figure 1).
The DHN pathway-based classification depends on their
preference for the Naphthoquinon precursors or on the effect
of inhibitors such as phthalide or tricyclazole, which binds with
hydroxynaphthalene reductases having classical short-chain
dehydrogenase/reductase (SDR) with Rossmann-fold domains
(Palonen et al., 2017). It has been reported that the polyketide
pathway in filamentous fungi is an important metabolic process
that regulates their growth, development, and pathogenicity
(Xiong et al., 2014). Fungal melanin is an important polyketide
and genes responsible for the biosynthesis of melanins have
been reported in V. dahliae including hydroxynaphthalene
reductase (VDAG_03665), polyketide synthase (VDAG_00190),

and scytalone dehydratase (VDAG_03393) (Xiong et al.,
2014). Recently, the gene clusters and enzymes, involved in
melanin and other pigment biosynthesis, were explored in
Ascomycota including Aspergillus spp. based on transcriptomic
and gene expression studies. The studies revealed that the
core polyketide synthase (PKS) gene clusters have crucial
role in biosynthesis of DHN type of pigment (Palonen
et al., 2017). The phylogenetic analysis of the extended PKS
revealed striking similarities with group of known pigments
of Fusarium spp., which predicts the similar function for
this PKS (Palonen et al., 2017). Some chemical fungicides
that inhibit the biosynthesis of melanin have been used in
controlling plant pathogenic fungi (Kurahashi, 2001). In the
last few years, many melanin biosynthesis inhibitors have been
used against rice blast pathogen such as triazoloquinoline,
pyroquilon, tricyclazole, and coumarin (Yamaguchi and Kubo,
1992; Kimura and Tsuge, 1993). The formation of melanin by
the members of Fusarium genus has been recently reported
as it was found that F. graminearum accumulates melanins in
a process dependent on polyketide synthase PGL1 (Frandsen
et al., 2016). Furthermore, F. keratoplasticum, a significant
causing agent of fusariosis produces melanin or melanin-like
compounds during in vitro cultivation and also inside the
growing tissues as confirmed through immunofluorescence

FIGURE 1 | General mechanism of DHN melanin biosynthesis pathway in fungi. The tetrahydroxynaphthalene reductase (T4HNR) catalyzes the NADP(H)-dependent

reduction of 1,3,6,8-tetrahydroxynaphthalene (THN) into (+)-scytalone and 1,3,8-trihydroxynaphthalene into (–)-vermelone. 1,8-dihydroxynaphthalene (DHN) is the

immediate precursor of the polymer.
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labeling with anti-melanin monoclonal antibody (MAb)
(Chiewchanvit et al., 2017). The fungus FOL forms brown
colored melanin that is insoluble in water and organic solvents
but soluble in alkaline medium (1 M KOH) (Amany and
Ellil, 2005). Dicarboxamide produces antimicrobial oxidants
using ROS molecules, thus inhibiting the growth of many
pathogenic fungi, including F. oxysporum (Abo Ellil and
Sharaf, 2000). The sensitivity of some potent phytopathogenic
fungi such as Sclerotium cepivorum, Alternaria alternata,
and FOL pathogen against melanin biosynthesis inhibitor
(fungicides having dicarboxamide group) have been well
evaluated (Amany and Ellil, 2005). Furthermore, fungicides that
inhibit the biosynthesis of melanin (tricyclazole, pyroquilon, and
iprodione) could be employed as a useful tool for controlling
plant pathogenic fungi that utilize polyketide metabolites as
intermediates (Motoyama and Yamaguchi, 2003; Singh et al.,
2014). The 17-β-hydroxysteroid dehydrogenase (SDR) was
recently used as a molecular target for fungicide tricyclazole
against Cercospora canescens, causing Leaf spot disease in
mung bean (Vigna radita) (Singh et al., 2014). In a recent
study, the inhibitors for F. oxysporum copper nitrite reductase
(NirK), involved in the fungal denitrification process were
searched using hierarchical in silico screening approach that
consists of pharmacophore modeling and molecular docking
(Matsuoka et al., 2017). The ranges of the molecular target
for currently used fungicides are narrow, and therefore,
the threat of resistance development necessitates the need
for the discovery of novel targets for fungicides (Foster,
2018).

In the last few years, several studies have been done on in silico
characterization of an unknown hypothetical proteins/essential
genes from pathogenic microbes, that might have a possible role
in regulation of metabolic process, or play an indispensable role
in microbial pathogenicity (Ravooru et al., 2014; Silva et al.,
2015; Marklevitz and Harris, 2016; Kumar et al., 2017; Prava
et al., 2018). Recently, a hypothetical protein (FcRav2) with
ROGDI such as leucine zipper domain, and homologous to yeast
Rav2 was reported in F. culmorum. It was demonstrated that
FcRav2 protein may become a suitable target for new antifungal
drug development or the plant−mediated resistance response in
filamentous fungi of agricultural interest (Spanu et al., 2018).

In this study, we have predicted and characterized a fungal
SDR (the FOXG_04696) as a putative receptor protein, and
a novel target, for structure-based protein–fungicide complex
interactions. The predicted protein was found to be good
enough based on qualitative and quantitative parameters and
was further docked with 37 known commercial fungicides,
frequently used against different phytopathogens, to find the
best fungicide/agrochemicals (among the selected) that could
target the FOXG_04696 and therefore, useful for controlling
vascular wilt fungi. The environmental toxicity assessment could
be used to decide the dosage formulations that could be used
safely without having any loss to the non-target organism.
With this view, the selected fungicides were further evaluated
based on in silico toxicity assessment tools. It was found the
fungicide that binds with crucial residues forming active site
of the receptor protein (disrupt the protein function) have a

better fungicidal action [for example, T4HNR complex with
pyroquilon and NADP(H) used successfully against M. grisea]
(Singh et al., 2014). The objective of the present study is
to evaluate the efficacy of potential inhibitor (fungicides)
that could bind to the crucial residues of the FOXG_04696.
Furthermore, the protein–fungicide docking studies with target
protein could be useful to evaluate the comparative efficacy of
an individual fungicide over each other against vascular wilt
pathogen.

MATERIALS AND METHODS

Database Search, Comparative
Phylogeny, and Functional Domain
Analysis
The protein sequence available for the crystal structure of the
T4HNR protein complexed with NADP(H) and pyroquilon
fungicide, and solved through X-ray diffraction in Magnaporthe
grisea was selected for searching all the sequential homolog
and orthologs using NCBI Blast server1 (Altschul et al., 1997)
keeping the default values, and against the non-redundant
protein sequences, with searching the organism as FOL 4287
(taxid: 426428). The sequences were also retrieved, checked,
and confirmed from the JGI genome portal for FOL with
having transcript ID 13950. The Blast-p annotations were further
checked across several databases. The FOXG_04696 homolog and
orthologous sequences to the T4HNR protein were identified
using Blast-p and collected for multiple sequence alignment
using ClustalW (Thompson et al., 1994). Multiple sequence
alignment was done to represent the consensus and conserved
residues present in the T4HNR protein across the different
members using CLC BIO workbench. The alignment results
were further checked using the BioEdit tool (Hall, 1999). The
phylogenetic relationship between the different homolog and
orthologs were established using the neighbor-joining (NJ)
and maximum parsimonious method using the MEGA6 suite2

(Tamura et al., 2013) at 1000 replication bootstrap values.
The similarities and differences in the T4HNR proteins in
between different homologous and orthologous fungal partners
were visualized based on the comparison of their protein
sequences retrieved through the conservation of genomic
positions (segments) using circos visualization tool3 (Krzywinski
et al., 2009) at 50% cutoff filter values. The functional domain
of the identified protein was searched using ExPASy-PROSITE
scan4 (de Castro et al., 2006; Sigrist et al., 2010). The identified
FOXG_04696 protein sequences were further searched for
finding the functional signature sequences against the InterPro
protein signature database using InterProScan 5.05 (Jones et al.,
2014).

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://www.megasoftware.net/
3http://circos.ca/
4http://prosite.expasy.org/scanprosite/
5https://www.ebi.ac.uk/interpro/interproscan.html
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Gene Prediction and Chromosomal
Mapping
Sequence of the protein tetrahydroxynaphthalene reductase
(T4HNR) complexed with NADP(H) and pyroquilon (1JA9) was
searched to find its sequential orthologs in the FOL pathogen,
using Blast-p against the non-redundant database. Furthermore,
the two protein sequences (1JA9 and the FOXG_04696) were
aligned using BL2 seq (Blast-p). The FOXG_04696 protein
sequence was also aligned with the protein sequence of 17-β-
hydroxysteroid dehydrogenase [other closely related structural
homolog (3IS3)]. Furthermore, the FOXG_04696 protein was
searched using the tBlastn against the Refseq (reference protein)
genome database, searching for F. oxysporum f.sp. lycopersici.
The first hit obtained was further scanned with the gene
prediction tool Fgenesh6. Furthermore, the chromosomal map
was generated to identify and locate the position of the gene,
that encodes the hypothetical protein FOXG_04696 using the
Ensembl-BLAST tool.

CATH Analysis
The functional annotation of the predicted FOXG_04696
protein was done using CATH server. The FOXG_04696
protein sequence was submitted to CATH database7 (Sillitoe
et al., 2015) for structural classification, based on domains
organization, and folding patterns that belong to homologous
protein superfamilies. The FunFHMMer8 (Das et al., 2016) was
used for functional classification of the identified CATH super
families. The ReviGO webserver9 (Supek et al., 2011) was used
for plotting the functional annotation in terms of molecular
function and biological processes involved using scattered plot
diagram. The CELLO2GO webserver10 (Yu et al., 2014) was used
for finding the probable subcellular localization of the predicted
protein. The possible functional role of the FOXG_04696 was
predicted in terms of gene ontology enrichment analysis.

Identification of Functional Sites
The functional sites of the identified protein were searched using
CD search on CDD webserver11 (Marchler-Bauer et al., 2015,
2017) at three interfaces including protein active site, substrate
binding site, and chemical binding (NADP binding site). The
meta-pocket server12 (Huang, 2009) was used for the prediction
of three prominent binding sites in the FOXG_04696 protein.

Protein–Protein Interaction Network
The FOXG_04696 protein was submitted to the STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins database
version 10.0)13 (Szklarczyk et al., 2007) server for the functional
interaction associative network between the partners, and the

6http://www.softberry.com/
7http://www.cathdb.info/
8http://www.cathdb.info/search/by_funfhmmer
9http://revigo.irb.hr/
10http://cello.life.nctu.edu.tw/cello2go/
11https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
12https://projects.biotec.tu-dresden.de/metapocket/
13http://string-db.org/

interactions were analyzed at their high and highest confidence
level.

Structural Modeling
The homology modeling of the protein FOXG_04696 (T4HNR
like) was performed using Modeller v9.19. The protein sequence
was queried against the PDB database14 (Berman et al.,
2000) with having sequence similarities >90% using Blast-
p to identify the closely related structural homologs for the
FOXG_04696. The first hit obtained on Blast-p annotation was
found to 17-β-hydroxysteroid dehydrogenase (SDR enzyme)
from Cochliobolus lunatuswas taken as a template (PDB ID: 3IS3;
46% identity, 96% of query coverage; E-value of 2e–75). The PDB
file of the template (3IS3) was retrieved from the Protein Data
Bank (PDB). The alignment file was generated using CLUSTALX.
The target sequence file, alignment file, and template’s PDB
file, PDB file (3IS3) was initialized in the Modeller script file
(script.py). The script file (script.py) was executed usingModeller
command prompt. Twenty-five models were generated for the
FOXG_04696, each with having a DOPE score. Furthermore,
the protein model with least DOPE score was selected for final
validation.

Model Validation
The stereochemical stability of the predicted models were further
verified using various protein quality based parameters such
as percentage residues lying in favored and allowed regions,
the number of glycine and proline residues and orientation of
dihedral angles including phi (ϕ) and psi (ψ) and backbone
conformation using PROCHECK module of the PDBSum
server15 (Laskowski et al., 2005), and also confirmed using
the RAMPAGE server16 (Lovell et al., 2003). The qualitative
assessment methods were based on ProSA analysis (probable
residues lying at a specific distance and interactions observed
between the model and the solvent i.e., solvation17 (Wiederstein
and Sipp, 2007). The VERIFY3D (Eisenberg et al., 1997) server
was used to check the compatibility of atomic models (3D) with
its own primary amino acid sequences (1D). The quality was
verified using the ERRAT score values18 (statistics of non-bonded
atomic interactions and distribution of atoms) (Colovos and
Yeates, 1993). The overall quality assessment of predicted model
was done through ProTSAV score values19 (Singh et al., 2016).
The quantitative evaluation of the model was done through
the VADAR20 (Willard et al., 2003). The modeled FOXG_04696
protein was superimposed over the template T4HNR (SDR)
protein ofM. grisea (1JA9) to compare their structural alignment
and similarities using the Automated Structural Alignment
Server (AuStrAlis)21. The final model was submitted to an online

14http://www.rcsb.org/pdb/
15http://www.ebi.ac.uk/pdbsum/
16http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
17https://prosa.services.came.sbg.ac.at/prosa.php
18http://services.mbi.ucla.edu/ERRAT/
19http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp
20http://vadar.wishartlab.com/
21http://eds.bmc.uu.se/eds/australis.php
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repository protein modeling databases (PMDB)22 (Castrignano
et al., 2006).

Preparation of Protein and Ligands
The ligands were retrieved from the PubChem database.
The FOXG_04696 protein was selected as a target receptor
protein and was imported to the Maestro v11. The structure
was prepared using protein preparation wizard of the
Schrödinger. Optimization of protein was done at neutral
pH and then the structure was minimized by applying optimized
potentials for liquid simulations (OPLS-3) force field for
all atoms (Umamaheswari et al., 2010). A receptor grid of
10Å × 10Å × 10Å was generated on defined binding site
residues of the FOXG_04696 using Glide v7.1 (Grid-based
Ligand Docking with Energetics, Schrödinger, LLC, New York,
NY, United States, 2017) (Friesner et al., 2006). The ligand
was prepared through adjusting the chemical correctness
(protonation), stereochemical and ionization variation using
Epik and LigPrep modules. The energy minimization was done
at neutral pH 7.0 ± 2.0.

Protein–Fungicide Docking
The Glide XP ligand docking protocol was employed to predict
the scoring and binding interactions between the FOXG_04696
and the ligand Famoxadone. The prepared ligand was docked
into the binding site of the FOXG_04696. The van der Waals
radii of non-polar regions of the T4HNR were limited to
1.0Å with the partial atomic charge of 0.25 in the receptor
grid generation. Rigid receptor docking was utilized to dock
each ligand into every refined low-energy conformation of the
T4HNR produced from the earlier phases (high-throughput
virtual screening and standard precision methods). XP docked
complexes were evaluated using Xtra precision Glide score (XPG
Score). The XPG score optimized the ligand binding energy
on the behalf of the force field parameters, and penalties that
had significant influences over the receptor-ligand binding. The
following equation denotes the formulae for XPG calculations.

Score = a∗vdW + b∗Coul + Lipo + Hbond + Metal

+ BuryP + RotB + Site

where vdW, Coul, Lipo, H bond, metal, BuryP, Rot B, and
Site denote van der Waals energy, Coulomb energy, lipophilic
contacts, hydrogen-bonding, metal-binding, penalty for buried
polar groups, penalty for freezing the rotatable bonds, and polar
interactions with the residues in the active site, respectively;
a = 0.065 and b = 0.130 are coefficient constants of van der Waals
energy and Coulomb energy, respectively.

The molecular docking of the FOXG_04696 with fungicides
was also performed through YASARA (Yet Another Scientific
Artificial Reality Application) (Krieger and Vriend, 2014; Chen
et al., 2015). The YASARA docked protein–fungicide complexes
were analyzed for the comparative binding energies and
dissociation constant (Kd) of the docked molecular complexes
(Yadav et al., 2017).

22http://www.caspur.it/PMDB

Molecular Mechanics and Binding
Energy Assessment
The protein–fungicide docked complexes were further analyzed
for Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA) analysis to predict the free binding energies of
the protein–fungicide docked complexes. The binding energy
calculated through MM/GBSA was more accurate than the XPG
Score (Lyne et al., 2006). The binding free energy 1Gbind was
calculated by the following equations (Liang et al., 2017; Zhang
et al., 2017).

1Gbind = 1Gcomplex − (1Greceptor + 1Gligand)

1G = 1Egas + 1Gsol − T1Sgas

1Egas = 1Eint + 1EELE + 1EVDW

1Gsol = 1GGB + 1GSurf

These energy contributions are computed from the atomic
coordinates of the protein, ligand and complex using the (gas
phase) molecular mechanics energy function (or force field).
The solvation free energy term Gsolv contains both polar and
non-polar contributions. The binding free energy (1Gbind)
could be dissociated into various energy terms. Since the
same trajectory was selected for extraction of receptor protein,
ligand, and protein–ligand complex, we neglected the internal
energy change (1Eint). Therefore, the gas–phase interaction
energy (1Egas) between the receptor and the ligand was the
sum of electrostatic (1EELE) and van der Waals (1EVDW)
interaction energies. The solvation free energy (1Gsol) could be
distributed into non-polar and polar energy terms, and the polar
solvation energy (1GGB) is calculated by using the VSGB2.1 GB
model, and was default parameter for Prime calculations using
the OPLS2.1/3/3e force field. The Post-docking MM/GBSA is
implemented in Schrödinger software using the program Prime,
with options to include receptor and ligand flexibility; the entropy
term is neglected by default. Simulations were performed using
GBSA continuum model. The Gaussian surface area model
instead of vdW was employed for denoting the solvent accessible
surface area.

Molecular Dynamics (MD) Simulations
The receptor–ligand interactions for fungicides having
minimum binding energy (stronger binding) were further
evaluated using molecular dynamics simulations analysis. MD
simulations studies were performed up to 50 ns through
Desmond v 4.2 to analyze the conformational stability
of the FOXG_04696–Famoxadone, and the complexes in
the solvated model system, embedded with ordered water
molecules (ordered water molecules may involve in protein
binding sites and influence protein ligand binding by
bridging protein–ligand interactions and can make large
contributions to the binding affinity). The Desmond supports
algorithms typically used to perform fast and accurate MD
simulations. Long-range electrostatic energy and forces were
calculated using particle-mesh-based Ewald techniques. The
FOXG_04696–ligand docked complexes were solvated, using
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orthorhombic simple point charge (SPC) water model. The
solvated system was neutralized with counter ions and
physiological salt concentration was limited to 0.15 M. The
receptor–ligand complex system was assigned with optimized
potentials for liquid simulations-AA (OPLS-AA) 2005 force
field (Madhulitha et al., 2017). The system was specified on
periodic boundary conditions, the particle mesh Ewald (PME)
(Maragakis et al., 2008) method was applied for electrostatics.
Lennard-Jones interactions cutoff was set to 10Å and SHAKE
algorithm (Friesner et al., 2006) was employed for limiting
movement of all covalent bonds involving hydrogen atoms.
The solvated model system, prior to MD simulationss study,
was passed through a six-step relaxation protocol for energy
minimization (Katari et al., 2016). At first, only solvent molecules
were allowed for energy minimization which then followed by
minimization of the entire system using the Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) algorithm (Chiranjeevi et al., 2016).
The minimized system was further analyzed with NVT ensemble
for 12 picoseconds (ps) simulationss at 10 K temperature. The
non-hydrogen solute atoms were restrained at 300 K temperature
for 24 ps. Furthermore, the system was simulated for 24 ps in the
NPT ensemble at 300 K temperature without restrains in order to
attain an equilibrium state (Chubb et al., 2006). The minimized
system without any restrains was further subjected to 50 ns
NPT simulations production (Cichero et al., 2013; D’Ursi et al.,
2016). Berendsen thermostats and barostat were used to control
the temperatures and pressures during the initial simulations
(Pradeep et al., 2015). For MD simulations, Desmond was
utilized as constraints, which are enforced using a variant of the
SHAKE algorithm, allowed the time step to be increased. These
approaches can be used in combination with time-scale splitting
(RESPA-based) integration schemes. The purpose was to find
the interactions between protein and ligand in protein–ligand
complex during MD simulations.

In vitro Inhibition Test
The selected fungicide (Famoxadone) was used for in vitro
assessment against the FOL pathogen. The pathogenic culture
was obtained from Laboratory of Mycopathology and Microbial
Technology, Department of Botany, Institute of Science, Banaras
Hindu University, Varanasi, India and the fungicide Famoxadone
(Sigma-Aldrich, St Louis, MO, United States) was used for
evaluating its in vitro efficacy. Four separate concentrations 50,
100, 150, and 200 µL were employed along with the control
solution (having only PDA) and amended in 20-mL PDA
medium. A 5-mm culture disc was extracted from the freshly
inoculated pathogen culture in each of the four plates. The plates
were further incubated at 27 ± 2◦C under observation and the
radial growth of the hyphae was recorded at even (2, 4, 6, and 8)
days interval.

The percent growth inhibition (PI) was calculated using the
following formula [(C − T)/C × 100] where I = inhibition
percentage; C = radial growth of the pathogen in control, and
T = radial growth of the pathogen fungicide treatment (Suneeta
et al., 2016). The percentage inhibitions measured in the form
of radial growth were subjected to statistical analysis. All the
experiments were executed in triplicates and repeated twice
employing a completely randomized design. The representative

statistical data were expressed in mean ± SEM values of three
independent replications data ± SD, and the average data of
one experiment was interpreted through one-way analysis of
variance (ANOVA), while the comparison of mean separations
was performed with Duncan’s multiple range test (DMRT) with
P ≤ 0.05 of significance level.

In silico Toxicity Assessment
The in silico toxicity assessment of the selected fungicide
was made with different online tools and software including
FAF-Drugs 4.023 (Lagorce et al., 2017). Furthermore, the
environmental toxicity hazard assessments were also evaluated
through admetSAR24 (Cheng et al., 2012). The drug-likeness of
the selected fungicide was evaluated through Lipinski Rule of Five
using the server given in the web link25 (Lipinski, 2004; Jayaram
et al., 2013).

RESULTS

Database Search, Comparative
Phylogeny, and Functional Domain
Analysis
The Blast-p results against the non-redundant (nr) database
with organism Fusarium oxysporum f.sp. lycopersici 4287
(taxid: 426428) revealed the homology of the query protein
sequence (1JA9) with the target protein FOXG_04696. The
query sequences showed 93% query coverages with 49% identity
with the target protein FOXG_04696 (XP_018239507.1). The
PDB Blast-p annotation revealed the queried sequence of
the FOXG_04696 had more than one structural homologs
like 1JA9 (47% identity), 3IS3 (44% identity), and therefore,
could be used as a template protein for homology modeling
of our target protein. The Uniprot results identified the
queried protein sequence as an uncharacterized/hypothetical
protein of F. oxysporum f.sp. lycopersici (strain 4287/CBS
123668/FGSC 9935/NRRL 34936) (A0A0D2XL72). Interestingly,
both T4HNR (1JA9) and 17-β-hydroxysteroid dehydrogenase
(3IS3) query sequences when searched against the reference
protein (Ref seq) database, with searching for Fusarium
(taxid: 5506) the first and significant hit obtained showed
an orthologous relationship of the queried protein with
the hypothetical protein FOXG_04696 [XP_018239507.1; 49%
identity (1JA9): 93% query coverages; E-value: 3e−74 and
46% identity (3IS3): 94% query cover; E-value: 1e−71],
which further confirms the existence of similar T4HNR and
17-β-hydroxysteroid dehydrogenase-like protein (FOXG_04696)
in the FOL pathogen. The phylogenetic tree was constructed
based on the neighbour-joining end (NJ) method revealed the
polyphyletic origin of the FOXG_04696 protein (Figure 2). The
evolutionary conservation and functional diversification of the
fungal SDRs across the related taxonomic group have been shown
through maximum parsimonious method based phylogenetic
tree (Supplementary Figure S1). The PROSITE results revealed

23http://fafdrugs3.mti.univ-paris-diderot.fr/
24http://lmmd.ecust.edu.cn/admetsar1/predict/
25http://www.scfbio-iitd.res.in/software/drugdesign/lipinski.jsp
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FIGURE 2 | Phylogenetic relationships between the different fungal taxa showing the evolution of short-chain dehydrogense/reductases (T4HNR like) protein. The

tree was constructed based on distance-based neighbour-joining (NJ) method with 1000 bootstrap relications using MEGA6.0. The tree showed the existence of

several clades for fungal short-chain dehydrogenases/reductases (SDRs) between the evolutionarily related taxa. The hypothetical protein (FOXG_04696) lacks

common ancestor and therefore predicts the polyphyletic evolution of SDR in Fusarium oxysporum f.sp. lycopersici. The bootstrap values are mentioned below the

tree.

the presence of common functional domain with signature
sequences characteristic to the SDR family (IPR002347) and the
NADP binding domain superfamily (InterproID: IPR036291)
(Supplementary Figure S2). The circos results revealed the
polyphyletic ancestry of the FOL with other Ascomycetous fungal
taxa at highest filter cutoff values. However, at the medium
scale (50% cutoff score) we found similarity index at their low
percentage values, with the other homolog and orthologous
members (Figure 3). The multiple sequence alignment results
showed the strong conservation of core residues (red square)
occupied within the functional domain, with the substitution
of some residues at consensus positions (Supplementary

Figure S3). It has been reported that the aldo–keto reductase
superfamily might have been evolutionarily diverged from an
ancestral multifunctional oxidoreductases (Jez et al., 1997).
However, the presence of similar and identical active sites,
across the distantly related fungal taxonomic group, explained
their convergent evolution as SDRs superfamily (Jez et al.,
1997). The conserved domain database alignment results for the
queried protein identified the conserved functional sites that
include (both active site and substrate binding site) across the
evolutionary diverged fungal partners.

Gene Prediction and Chromosomal
Mapping
The BL2seq (Blast-p) results revealed that (XP_018239507.1)
protein was found to have (97% query coverages; 50%
identity; E-value 3e−78) with the T4HNR protein of M. grisea
(XP_003715430.1). By contrast, the BL2seq query with 3IS3
resulted into (94% query coverages; 46% identity; E-value

8e−77). This confirms that T4HNR (1JA9) is closely related
with 1JA9 based on percentage identity and query cover values.
The Fgenesh results located the position of the FOXG_04696
encoding gene along with transcriptional start sites (TSS) and
poly A tail across the full-length genome (Figure 4). The
FOXG_04696 gene was found to be located on chromosome7
(NC_030992.1 with 87% identity; 99% query coverages; E-value
2e−150). The chromosomal map represented the position
of the gene (FOXG_04696) on chromosome 7 (genomic bp
7: 22061–22974; 100% identity; E-value 0.0) (Supplementary

Figure S4).

Structural Modeling, in silico

Characterization, and Model Validation
The modeler generated 25 predictive models for protein
FOXG_04696 with different discrete optimized potential energy
(DOPE) score values. Themodel with least values for DOPE score
(21st model; −28563.03 kcal/mol) was selected as a final model
for in silico characterization and docking studies. The predicted
model was visualized through the visualization module of the
Discovery Studio 3.0 (Figure 5A). The three putative prominent
binding sites identified in the target protein structure have been
shown (Supplementary Table S1). It was found that most of the
residues involved in binding to ligand (fungicide) were occupied
from first the major binding, site (binding site 1; metapocket
results) of the predicted model. The major catalytic sites inside
the protein occupying all the potential residues that get involved
in binding with ligands have been shown in Figure 5B with
red balls showing active sites (Figure 5C). The residues that
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FIGURE 3 | The circos visualization map showing the similarities and differences for the SDRs (T4HNR like) among the five major phytopathogenic fungi, retrieved

from genome comparision (based on sequential alignment). The circos map was generated at 50% cutoff score values and drawn using percentage identity

matrices, calculated and obtained during phylogenetic clustering of the protein sequences using ClustalW, and represented the positional conservation and

relationship between the genomic intervals.

constitute the functional ligand-binding sites have been shown
(Figure 5D).

The selected model was verified for their stereochemical
quality assessment. Furthermore, in each case of qualitative
assessment, a comparative study was done with experimentally
solved crystal structures, to check the quality, reliability, accuracy,
stability and compatibility of the computationally predicted
protein. The Ramachandran plot obtained through RAMPAGE
server revealed that the predicted model FOXG_04696 had
99.3% residues [97.7% (favored) + 1.6% (allowed)] lying in
favored region [compared to the experimentally solved and
X-ray resolved template protein structure (3IS3) where we found
98.0% (favored) and 1.6% (allowed) residues against the expected
values 98.0% (favored) and 2.0% (allowed) regions]. The other
sequential homolog 1JA9 had similar results like 3IS3 98.0%
(favored) and 1.6% (allowed). The PROCHECK module of the
PDBSum server, further justified the stereochemical goodness
of the predicted model, with 94.2% residues accommodating in
the most favored regions (A, B, and L) and only 4.9% residues
occupied in the additionally allowed regions (a, b, l, and p)

with the G factor value 0.12 (Supplementary Figure S5). This
confirms the predicted model quality had good stereochemical
quality and was close to the template structure. The ProSA
results in finding the potential error in the predicted model
revealed the Z score value −8.11 (Supplementary Figure S6)
against the template (3IS3) score value −8.97. The Z score
of other template (1JA9) was found to be −9.67. The ProSA
evaluates the qualitative values of the modeled structures based
on atomic coordinates. The energy plots represent the potential
problems spotted in protein structures. The Z score revealed the
protein structures could be correlated well with crystal structures
of similar lengths, where the positive value corresponds to
problematic or erroneous parts of the input structure. ProQ is a
neural network-based predictor based on a number of structural
features predicts the quality of protein model. The ProQ result
showed LG score of 5.677 which represents that the structure
is of very good quality. The ERRAT score for the modeled
structure was found to be 90.40% against the template (99.20%)
(Supplementary Figure S7). The Verify 3D evaluated that the
predicted protein has 91.30% residues had an average 3D-1D
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FIGURE 4 | (A) The comparison of the query protein (FOXG-04696) with the protein sequences of the T4HNR (M. grisea). The two protein sequences (1JA9 with the

FOXG-04696) were aligned using the BL2seq (Blast-p). The hypothetical protein FOXG_04696 show more sequence similarity based on the percentage identities

(49%) and query coverages (97%) with the 1JA9. The other structural homolog the 17-β-hydroxysteroid dehydrogenase (3IS3) had percentage identities (46%) and

query coverages (96%). (B) Prediction of the FOXG_04696 protein encoding gene with coding sequences, transcription start sites and Poly A tail.

FIGURE 5 | (A) Predicted structure of the FOXG_04696 modeled through homology modeling using Modeller v9.19 and visualized through the Discovery Studio 3.0

visualization tool. (B) The big red sphere represents the cavities surrounding the active sites and was visualized using the visualization module of the Discovery studio

3.0. The three binding sites were explored through the meta-pocket server. (C) The three putative binding sites as shown through three different colored red balls.

(D) General view of protein-ligand interaction showing the residues from the active site (FOXG_04696) residues involved in making interaction with ligand (fungicide).

score ≥0.2 (Supplementary Figure S8 and Supplementary

Table S1). The quality assessment at various interfaces has
resulted in a combined ProTSAV score value which revealed that
the predicted protein was stable and had RMSD values in the
range of a good model (at green–yellow interface) (Figure 6).
The VADAR statistics for quantitative evaluation of the predicted
model revealed that the model structurally composed of helical

(50%) and coil (31%) with interspersed beta sheets (18%) with
extensive H bonding groups [donor and acceptor; with the
observed value of 83% against the expected 75% score values,
and mean H = bond energy −1.7; sd = 1.0 (expected −2.0
sd = 0.8)]. We superimposed the full length predicted protein
FOXG_04696 (258 residues) over both the template 3IS3 (260
residues) and the 1JA9 (259 residues) to perform structural
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FIGURE 6 | The qualitative assessment of the predicted model FOXG_04696 and its comparative evaluation with the X-Ray resoluted template proteins (1JA9) using

the ProtSAV score. (A) The qualitative assessment of the modelled protein (FOXG_04696) based on ProTSAV score. (B) The ProTSAV score for the template protein

1,3,6,8-tetrahydroxynaphthalene reductase (T4HNR) complexed with NADPH and pyroquilon (1JA9). The ProTSAV evaluated the predicted model structures, based

on some popular online servers and standalone tools, and furnishes with a single quality score in case of individual protein structure, along with a graphical

representation and ranking in case of multiple protein structure assessment. In our results, the ProTSAV score was found close to 1JA9 which predicts the model

has reasonable stability and accuracy in terms of qualitative and quantitative parameters.

alignment, using AuStrAlis server. The RMSD deviations on
superposition along the protein carbon backbone were 0.49Å
(3IS3) and 1.51Å (1JA9) with the FOXG_04696. This further
confirms the results of the qualitative assessment, and structural
conservation of SDRs proteins among the closely related group
and therefore, their crucial role in the fungal biosystem. These
results indicated that the two proteins had a similar structural
assignment and topological orientation (functional domain and
folds) that predicts their indispensable role. The final predicted
models were submitted to an online repository, protein modeling
database (PMDB) under the name SDRs (T4HNR: organism
name: Fusarium oxysporum f.sp. lycopersici) and were provided
with having accession number PM0081606.

Active Site Prediction
The putative ligand binding sites (both major and minor) for
the predicted protein were identified through Meta-pocket 2.0
server. The conserved domain databases (CDD) server prediction
revealed the conservation of the catalytic tetrad (NSYK) ASN115,
SER141, TYR154, and LYS158 in the FOXG_04696 which was
found to be conserved in 1JA9, and were replaced with
ASN138, SER164, TYR178, and LYS182 with the presence of
canonical glycine-rich NADP-binding sites (Supplementary

Figure S9 and Supplementary Table S2). By contrast, the
C-terminal residues providing specificity for substrate binding
(NADP) had conserved active site residues (GLY13, ARG16,
GLY17, ILE18, ARG36, TYR37, VAL38, SER39, SER40, ALA63,
ASP64, VAL65, ASN91, SER92, GLY93, VAL114, ILE139, SER140,
SER141, TYR154, LYS158, PRO184, THR16, ASP187, and MET188)
compared to the active site residues for template (1JA9)

(Supplementary Figure S10). The other substrate binding site in
the FOXG_04696 showed the extensive conservation of serine,
isoleucine and tyrosine residues SER141, ILE142, TYR154, and
TYR196 (represented as SER164, ILE165, TYR178, and TYR223 in
1JA9) (Supplementary Figure S11 and Table 1). However, at
some positions in the FOXG_04696, even the glycine residues
were found to be extensively conserved, which reflects their
crucial role in NADP binding including GLY13, GLY17, and
GLY93 (represented by GLY36, GLY40, GLY116, GLY209, and
GLY210 in 1JA9) which might play an indispensable role and
imparts specificity to FOXG_04696.

CATH Results
The structural classification through CATH server revealed
that the predicted model belongs to (α+β) type (3), (A) three
layer (aba) sandwich type architecture (3.40), having Rossmann
fold (3.40.50) and bearing to NADP binding Rossmann fold
(alpha/beta folding pattern with a central beta-sheet) like
domain family protein (30.40.50.720). The functional annotation
using Funfam (functional families) revealed the possible
biological role of the characterized protein based on three
ontological terms that include biological process, molecular
function, and cellular component. The first five significant GO
terms in biological processes included secondary metabolite
biosynthetic process (GO: 0044550), secondary metabolite
process (GO: 0019748), pigment biosynthetic process (GO:
0046148), and sterigmatocystin biosynthetic process (GO:
0045461). The significant terms in molecular processes found
were versicolorin reductase activity (GO: 0042469), tropinone
reductase activity (GO: 0050358), NAD+ binding (GO: 0070403),
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TABLE 1 | Comparative evaluation of the active sites and other binding site residues for T4HNR Magnaporthe grisea (1JA9) and the predicted protein FOXG_04696.

T4HNR complexed with

NADP(H) and pyroquilon

(1JA9) active site residues

(X-ray diffraction)

T4HNR Magnaporthe oryzae

(1JA9) predicted active site

(NCBI-CDD results)

FOXG_04696 active site

residues (NCBI-CDD results)

Common residues

(FOXG_04696 and 1JA9)

GLY36 ARG39 GLY40 ILE41

GLY61 SER62 SER63 ALA86

ASP87 ILE88 ASN114 SER115

GLY116 LEU137 THR162

SER163, SER164 TYR178

LYS182 PRO208 GLY209 GLY210

VAL211 THR213 ASP214 MET215

PHE216 SER220 TYR223 ILE282

Catalytic tetrad

ASN138 SER164 TYR178 LYS182

NADP-binding residues

(substrate)

GLY36 ARG39 GLY40 ILE41

ASN59 TYR60 GLY61 SER62

SER63 ALA86 ASP87 ILE88

ASN114 SER115 GLY116 LEU137

THR162 SER163 SER164 LYS182

PRO208 GLY209 GLY210 VAL211

THR213 ASP214 MET215

Chemical (fungicide) binding

residues

SER164 ILE165 TYR178 GLY210

MET215 PHE216 SER220

TYR223

Catalytic tetrad

ASN115 SER141 TYR154 LYS158

NADP-binding residues

(substrate)

GLY13 ARG16 GLY17 ILE18

VAL38 SER39 SER40

ALA63 ASP64 VAL65 ASN91

SER92 GLY93 GLU95 VAL114

ILE139 SER140 SER141 TYR154

LYS158

PRO184

LYS185 THR186 ASP187

MET188

TYR189 ALA193 TYR196

GLY13 ARG16 GLY17 ILE18

SER39 SER40 ALA63 ASP64

ASN91 SER92 GLY93 GLU95

SER140 SER141 TYR154 LYS158

PRO184 THR186 ASP187

MET188 TYR196

The active sites for 1JA9 were retrieved through the X-ray-crystal structure and those for FOXG_04696 were retrieved from the NCBI conserved domain database (CDD)

server. The common residues were obtained from structural alignment. The common residues present in both have been shown in a separate column.

(S, S)-butanediol dehydrogenase activity (GO: 0047512),
and alcohol dehydrogenase (NAD) activity (GO: 0004022).
The scattered plot diagram was generated through the ReviGO
web server was based on non-redundant GO terms with
scoring values higher is better. The first five significant terms
structured around three ontologies, which discussed biological
processes, molecular function and a subcellular component of
predicted protein has been shown (Supplementary Figure S12).
The subcellular localization and function annotation were
further revealed through the CELLO2GO server discussed the
queried protein sequence, was found to be associated with
biosynthetic and secondary metabolism processes, with having
an oxidoreductase activity (88.4%) (Figure 7A). The tag cloud
diagram describes the frequent keywords associated with the
assigned GO terms, and therefore, represents the functional
relevance of the proteins and the other associated processes in
which their function have been elucidated (Figure 7B).

Protein–Fungicide Interaction
The modeled protein FOXG_04696 was docked with all the
37 fungicides to generate their binding mode and dynamic
simulations was done to refine the best pose with allowed
conformational change in the FOXG-04696 (Rachman et al.,
2018). We have evaluated the protein–fungicide interaction
through YASARA and Glide-based molecular docking program.
It was found that both the tools have discrepancies in results
for accurate pose prediction among the various putative docking
poses, revealed through scoring functions, which might leads
into conclusion that, docking scores are not sufficiently precise
to represent the protein ligand binding affinity (Suenaga et al.,
2012). MD simulations analysis of the docked complexes
discriminated the correct docking poses from decoy poses,
as the unstable and incorrectly docked structures during MD

simulations results into unstable trajectories that finally lead
into disruption of the complex. By contrast, the realistic
complexes provide stable behavior (Yunta, 2016). Furthermore,
based on obtained MD trajectories, 1Gbind was computed
by using MM/GBSA calculations. In many studies, it has
been demonstrated that binding free energies predicted by
MM/GBSA-based rescoring of the docked complexes are in good
agreement with experimental binding affinities (Suenaga et al.,
2012; Shen et al., 2013). The Oxathiapiprolin had the least
1Gbind of –75.50 (±0.54) kcal/mol and XPG docking score of
−1.86 kcal/mol with 17 binding site residues (LEU100, VAL103,
ILE108, LEU112, VAL116, TRP146, GLY147, VAL148, PRO149,
ARG150, HIS151, ALA152, LEU153, SER155, ALA156, SER157, and
ALA160) of the T4HNR were found to involve in van der
Waals interactions with Oxathiapiprolin. The Famoxadone had
the 1Gbind of −66.90 (±0.47) kcal/mol and lower XPG score
(than Oxathiapiprolin) of −3.30 kcal/mol, it displayed two
hydrogen bonds with key binding site residues TYR154 and
THR186 and 27 residues were found to be involved in making
van der Waals interactions GLY13, SER15, ARG16, GLY17, ILE18,
GLY19, TYR37, VAL38, ASN91, SER92, GLY93, ILE94, GLU95,
ILE139, SER140, SER141, ILE142, SER143, TYR154, LYS158, PRO184,
LYS185, THR186, ASP187, MET188, TYR189, ALA192, ALA193, and
TYR196) within 4Å binding site region of Famoxadone with
T4HNR. The 3D surface view of the docked Famoxadone–
FOXG_04696 complex has been shown to represent the putative
H bond acceptor and donor group (Figure 8A). The functional
H bond acceptor and donor group from protein major binding
sites of proteins have been shown in Figure 8B. The 3D
structure of two effective ligands (fungicides) has been shown in
Figures 8C,D.

The protein–fungicide docking was further analyzed through
the YASARA, an auto dock based tool for molecular docking
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FIGURE 7 | (A) Functional annotation of the FOXG_04696 measured in the form of gene ontology enrichment analysis. The three ontological terms used were the

molecular function, biological process involved, and cellular location. The sub-cellular localization of the protein was shown as a big pie chart and were retrieved

through the Cello predictor. (B) The tag cloud diagram showing the keywords that are frequently associated with the FOXG_04696 protein and indicates its probable

function in biosynthetic mechanisms and metabolism.

and virtual screening to calculate the docking score (kcal/mol)
and dissociation constant (Kd) µM. The maximum YASARA
score was found to be associated with the Oxathiapiprolin
(7.81 kcal/mol) with least dissociation constant Kd value
1.86 (µM) followed by the Famoxadone (7.65 kcal/mol; Kd
value 2.43 µM). The protein–ligand docking through the
YASARA showed the efficient, stronger, and stable binding with
positive YASARA score∗ (YASARA scoring∗, where positive
energy means stronger binding and negative energy means no
binding) (Chen et al., 2015) with Oxathiapiprolin followed by
Famoxadone. The putative H bond acceptor and donor group
in ligand Famoxadone were shown through a receptor mesh
diagram (Figure 9A). The 3D diagram of the Famoxadone that
interacted with crucial residues from the major binding site has
been shown (Figure 9B).

The YASARA based soring, dissociation constant, and contact
receptor residues involved in binding with the FOXG_04696
have been shown in Supplementary Table S3. Since the
fungicide pyroquilon is an efficient fungicide used against
the rice blast pathogen (M. grisea PDB ID: 1JA9), and
targets the residues, forming active sites of the T4HNR

(SDR) protein. We have investigated the X-Ray determined
crystal structure of the T4HNR (1JA9) complexed with
fungicide pyroquilon to find out the residues that were
involved in binding with T4HNR in an accurate and flexible
docking poses (Supplementary Figure S13). The investigation
revealed that pyroquilon docked with maximum residues that
constituted the major binding sites (active site). In this way,
one could predict that the fungicides that target the active
site residues of T4HNR protein with maximum interacting
residues (more accurate docking pose) and better protein
ligand contacts (flexible docking) could have better binding
efficiency, and therefore, would be useful for disrupting
the functional mechanism of T4HNR. In our results, we
have evaluated the comparative docking efficiency (pyroquilon
as control) to investigate the binding affinity measured in
the form of YASARA-based docking score, and dissociation
constant of the docked complexes. The residues involved
in making feasible and accurate docking of T4HNR with
pyroquilon were GLU118, SER164, ILE165, ALA166, TYR178,
PRO208, GLY209, GLY210, MET215, PHE216, ASN219, SER220,
TYR223, LEU240, and ILE282. The computational screening
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FIGURE 8 | (A) The overall 3D surface view of the modeled protein FOXG_04696 represented to display all the possible H-bond donor and acceptor group when

complexed with ligand (Famoxadone). (B) The interaction of the ligand (Famoxadone) with protein FOXG_04696 with the possible H-bond donor and acceptor

groups, near the ligand interacting or binding sites (active sites). (C) The 3D representation of the ligand Oxathiapiprolin. (D) The 3D structure of the ligand

Famoxadone.

and docking studies of 37 fungicides with the FOXG_04696
revealed that Oxathiapiprolin followed by the Famoxadone
binds with maximum YASARA score and least dissociation
constant (Kd).

The molecular docking and virtual screening through Glide
XP ranked ligands based on an accurate pose prediction(the
ligand ability to bind for a specific receptor conformation) for
each-protein—fungicide complex in order to separate those
ligands that don’t bind, in a ranked list. Furthermore, analysis
of the YASARA results for the two top scored docked protein–
fungicide complexes (Oxathiapiprolin and Famoxadone)
revealed that Famoxadone docked with FOXG_04696 in an
accurate and flexible docking pose with residues that constituted
the major binding site (active site including the catalytic tetrad)
GLY13, SER15, ARG16, VAL38, SER39, SER40, ASP64, VAL65,
SER66, SER92, GLY93, ILE94, LYS110, and VAL114. Since, we did
not find any stable docking conformation for stable binding of
the Oxathiapiprolin at that particular specified docking site (like
Famoxadone). The lower ranking of the Oxathiapiprolin (higher
XPG score) binding over the Famoxadone (lower XPG score)
could be interpreted from the fact that the Oxathiapiprolin was
found to docked in an alternative conformation docked with
the residues that were either absent from any major or minor
binding site, or were present beyond the limit required for
an accurate docking pose prediction. The visualization of the
Glide XP docked complexes revealed that Oxathiapiprolin
bounded with LEU100, VAL103, ILE108, LEU112, VAL116,

TRP146, GLY147, VAL148, PRO149, ARG150, HIS151, ALA152,
LEU153, SER155, ALA156, SER157, and ALA160 rather than
the specified docking sites. The molecular complexes formed
after protein–fungicides interaction for different fungicides
has been visualized through the visualization tool of Discovery
studio 3.0 and have been represented (Supplementary Figure

S14).

MD Simulations
In MD simulations analysis, the FOXG_04696–Oxathiapiprolin
complex had an average potential energy of−113166.16 kcal/mol
which disclosed the steadiness of the complex. The average
RMSD for the FOXG_04696 backbone and the Oxathiapiprolin
were 2.49 and 2.42Å, respectively (Supplementary Figure S15A).
The average RMSF for backbone and side chain for the
FOXG_04696 accommodating with the Oxathiapiprolin were
1.54 and 1.70Å, respectively (Supplementary Figure S15B).
Oxathiapiprolin–FOXG_04696 complex exhibited five hydrogen
bonds with water (SER143, ALA144, VAL145, GLY147, and
SER155), three water mediated hydrogen bonds (VAL148, ARG150,
and LYS166), four hydrophobic and water-mediated hydrogen
bonds (TRP146, ALA152, ALA156, and ALA159) with seven
hydrophobic interactions (LEU100, VAL103, ILE108, LEU112,
PRO149, LEU153, and ALA160) with the key binding site residues
to form a stable complex (Supplementary Figure S15C). We
have shown the protein–ligand interaction 2D diagram as
visualized through the Discovery Studio 3.0 (Figure 10A).
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FIGURE 9 | (A) The ligand Famoxadone represented through the wire mesh diagram to show the probable H-bond donor or acceptor groups that could have crucial

role in protein–fungicide interaction. (B) 3D representation of the ligand molecule when docked with the FOXG_04696 showing the crucial residues of protein that

have important contribution in binding with the ligand donor or acceptor group.

By contrast, the FOXG_04696–Famoxadone complex has an
average potential energy of −112628.96 kcal/mol disclosed the
steadiness of this complex (Figure 10B). The average RMSD
for the T4HNR backbone and the Famoxadone were found to
be 2.83 and 1.20Å, respectively (Supplementary Figure S10C).
The average RMSF for the backbone and side chain of the
T4HNR to accommodate the Famoxadone were reported 1.30
and 1.86Å, respectively (Supplementary Figure S15D). The
Famoxadone exhibited seven hydrogen bonds (ASN91, SER92,
GLY93, GLU95, SER141, THR186 and ASP187) and 15 hydrophobic
interactions (GLY13, ARG16, ILE18, VAl38, VAL65, ILE94, ILE139,
ILE142, TRP146, LYS158, PRO184, MET188, TYR189, ALA192, and
TYR196) with the key binding site residues in forming a stable
complex (Supplementary Figure S15E). Both the complexes
were relatively stable with the lesser average potential energy
but Famoxadone displayed more interactions with FOXG_04696
compared to Oxathiapiprolin in 50 ns MD simulations, with
lesser RMSD and RMSF values and best protein ligand contacts

among all the docked 37 fungicides for the specified docking
site (active site or major binding site). The 3D representations
for the protein–fungicide interaction for both Oxathiapiprolin
(Figure 11A) and Famoxadone have been shown (Figure 11B).
The correlation plot showing the values of correlation coefficient
R2 = 0.335 based on binding affinities (kcal/mol) and MM/GBSA
binding free energy (1Gbind) calculations showing the strong
correlation between the predicted binding free energies and
ranking affinities/scoring of the fungicides for the docked
complexes (Figures 11C,D).

We have compared our docking results, both from the
Glide XP docking and the YASARA protein–ligand docking
tool. Furthermore, the docked complexes were rescored through
MM/GBSA free energy binding calculations to validate the
docking based results for ranking the binding affinities of
docked ligands (fungicides). The ultimate goal for MM/GBSA
calculations was to estimate the enthalpy change on ligand
binding, through comparison of an average enthalpy change
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FIGURE 10 | (A) The 2D representation for the docked complex of the FOXG_04696. The figure showed the putative residues involved in interaction with

Famoxadone. The different colors have been used for showing the different types of molecular interactions involved. (B) MD simulations trajectories for the

FOXG_04696–Famoxadone complex showing the average potential energies of the docked complexes during the 50-ns MD simulations. (C) Plot of the root mean

square deviation (RMSD) of Cα of T4HNR (protein) and the FOXG_04696–Famoxadone (complex). RMSDs were calculated using the initial structures as templates.

for the bound and unbound states. The MM/GBSA results
re-ranked the docked complexes in terms of their accurate
pose prediction and efficacy for binding affinities (Table 2).
We did not find any significant docking pose for the
Oxathiapiprolin–FOXG_04696 complex, particularly on the
specified docking site (active site including catalytic tetrad) of
(FOXG_04696) even at minimized grid space. However, MD
simulations of the FOXG_04696–fungicide docked complexes
revealed the stable binding of the Famoxadone over the
Oxathiapiprolin with all crucial residues occupying interactions
with ligand in MD simulations. The 2D diagram of the
protein–fungicide complexes, when visualized through the
Discovery Studio 3.0 tool, we found some interesting results.
The YASARA-based docking with Famoxadone was found
comparable to the MD simulations results, as the residues
involved in the protein–ligand contact were found to be
similar, and were found to be involved/constitute the major
binding (active sites) of the FOXG_04696. The YASARA
based docking score and dissociation constant obtained has
been plotted (Supplementary Figure S16). By contrast, the
Oxathiapiprolin–protein complexes, when analyzed were found

to have maximum interacting residues for sites that constitute the
minor binding sites or second probable binding site (metapocket
results; Supplementary Table S1). The MD simulations and
the YASARA based docking for the Famoxadone-protein was
found to have residues from a major binding site that include
GLY13 SER15, ARG16, VAL38, SER39, SER40, ASP64, VAL65,
SER66, SER92, GLY93, ILE94, LYS110, and VAL114. By contrast, the
YASARA based Oxathiapiprolin–protein complex was found to
have residues like GLY13, ARG16, VAL38, ASP64, VAL65, SER66,
LYS67, SER92, GLY93, ILE94, ASP109, LYS110, LEU112, GLY113,
and VAL114, whereas the MD simulations analysis covered the
residues not lying in major binding site (meta-pocket results) or
located at other binding cavities rather than the residues that
were involved in the main binding sites (Supplementary Table

S4).

Protein–Protein Interaction Network
The functional interactive network formed by the FOXG_04696
protein at the highest confidence level (0.90) has been
shown in Figure 12A. The predicted protein was shown
to have an interaction with the fatty acid synthase subunit
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FIGURE 11 | (A) The Oxathiapiprolin–FOXG_04696 interaction results during 50-ns MD simulations. (B) Interaction of the Famoxadone with FOXG_04696 showing

the residues involved in protein–fungicide docking with different type of molecular interactions. (C) The correlation plot showing the values of correlation coefficient

R2 = 0.335 based on binding affinities (kcal/mol) and MM/GBSA (1G) binding free energy calculations showing the strong correlation between the binding free

energies 1Gbind and binding affinities for ranking/scoring of the fungicides in the docked complexes. The three later symbols with different colors have been used for

representing the ligands. (D) The scatter plot displaying docking (XPG) and binding free energy MM/GBSA (1Gbind) scores represented in the quadrant view form for

all the 19 protein–fungicide docked complexes.

beta dehydratase (FOXG_06392) and the fatty acid synthase
subunit alpha dehydratase (FOXG_06391). However, at high
confidence level (0.70), we found the interaction of our
predicted protein FOXG_04696 with acetyl-CoA carboxylase
(FOXG_02375; interacting score 0.847). The interaction network
of FOXG_04696 at high confidence level has been shown in
Figure 12B. The interactive associative protein network formed
by various interacting partners, with their interacting score
annotation identities and accession identities values have been
shown (Supplementary Table S5).

In vitro Assessment of Fungicides
The Famoxadone solution used for in vitro assessment
against the FOL pathogen showed growth inhibition at
each and every increasing concentration of fungicides. With
increasing concentrations of fungicides, the growth rates were
correspondingly retarded and sporulation was reduced. The
maximum growth inhibition was recorded on eighth day post
inoculation. The percentage inhibitions measured in the form
of radial growth were subjected to statistical analysis. The

percent inhibitions recorded on 4th day were 90.53, 74.42,
63.04, and 44.36 at 50, 100, 150, and 200 µL concentrations,
respectively. By contrast, the percent inhibitions recorded on
8th day post inoculation were 25.73, 19.99, 11.22, and 7.04
at 50, 100, 150, and 200 µL concentrations, respectively. The
growth inhibition recorded on the 4th and 8th days at different
concentrations of fungicides has been shown in Figures 13A-I,II,
respectively. The statistical data for growth measured at different
concentrations and on even days have been shown in bar diagram
(Figure 13B).

In silico Toxicity Assessment
The Famoxadone was checked and evaluated for toxicity
assessment for its safe environmental disposition. The FAF-drugs
4.0 tool performed the computational prediction of some
ADME-Tox properties (adsorption, distribution, metabolism,
excretion, and toxicity) for Famoxadone and it was found that
the drug is non-carcinogenic and acceptable (Yadav et al., 2017).
Furthermore, the ligand (Famoxadone) was found to follow
Lipinski Rule of five for drug likeness with molecular mass
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TABLE 2 | Comparative evaluation of protein-ligand (fungicide) docking interactions from YASARA programme and XP Glide score (docking score) values.

S. No. Fungicide YASARA score Dissociation

constant (Kd) (µM)

XPG score (kcal/mol) MM/GBSA (1Gbind) (kcal/mol)

1. Oxathiapiprolin 7.81 1.86 −1.89 ± 0.32 −75.50 ± 0.54

2. Famoxadone 7.65 2.43 −3.30 ± 0.28 −66.90 ± 0.47

3. Metiram 4.10 976.17 −6.13 ± 0.25 −55.63 ± 0.38

4. Dithane 4.10 976.17 −6.13 ± 0.22 −55.63 ± 0.42

5. Pterostilbin 6.29 24.17 −4.30 ± 0.20 −50.69 ± 0.56

6. Tolclofos-methyl 4.91 249.18 1.38 ± 0.10 −40.70 ± 0.47

7. Fluberidazole 6.63 13.64 −1.79 ± 0.33 −37.50 ± 0.52

8. Tolprocarb 6.64 13.50 −4.55 ± 0.64 −35.02 ± 0.64

9. Cymoxanil 5.70 57.90 −3.35 ± 0.24 −33.39 ± 0.76

10. Carbendazim 5.78 57.09 −2.98 ± 0.38 −32.28 ± 0.49

11. Coumarin 6.13 32.05 −1.19 ± 0.19 −14.58 ± 0.36

12. Pyraclostrobin 7.05 6.69 −7.02 ± 0.10 −14.57 ± 0.39

13. Triazoquinoline 6.43 19.25 −0.45 ± 0.30 −13.19 ± 0.33

14. Fludioxonil 5.98 40.87 −3.53 ± 0.24 −8.07 ± 0.13

15. Iprodione 5.98 41.08 −4.42 ± 0.34 −3.30 ± 0.31

16. Ethyl phosphonate 5.05 197.07 −4.78 ± 0.25 −2.14 ± 0.51

17. Prothioconazole 5.53 87.65 1.64 ± 0.11 8.94 ± 0.43

18. Benomyl 5.58 80.15 2.53 ± 0.39 29.98 ± 0.74

19. Prochloraz 5.43 103.25 5.68 ± 0.36 43.86 ± 0.80

The YASARA based dissociation constant (Kd) have been given in a separate column. The docked complexes were further rescored for binding free energy assessment

using the MM/GBSA method. The MM/GBSA based binding free energies have been arranged in the increasing order, reflects the decreasing order of stability and

steadiness of the complexes. The Glide based interaction of the protein-fungicide docking complexes and binding free energy assessment through MM/GBSA were set

up with three replication and data were analyzed by Mean (± SE) was calculated from three replicates for each of the docked complexes. We have shown the docking

score values only for the significant docked protein-ligand complexes (19 fungicides; as others were found unable to dock at the intended site through Glide XP dock and

also had positive free energies as calculated through MM/GBSA approach.

FIGURE 12 | The protein–protein interaction associative network for the FOXG_04696 through STRING server. The active interaction sources were set based on the

seven parameters including experiments, co-expression, gene fusion, co-occurrence, databases, text mining, and neighborhood. (A) The interactions analyzed at

the highest confidence level (0.90) with maximum five interacting partners from both shells of interactors. (B) Interaction at high confidence level (0.70). The color

nodes describe query proteins and the first shell of interactors, whereas white nodes are the second shell of interactors. The large node size represents

characterized proteins and smaller nodes for uncharacterized proteins.

374.000000 (<500 Da), hydrogen bond donor 1, hydrogen
bound acceptor 6, with Log P score values 4.699, and molar
refractivity 103.70. The admetSAR results predicted that the
selected ligand (Famoxadone) was found to be non-carcinogen

(0.7751), non-AMES toxic (0.5395), and non-inhibitor (0.8941),
with weak hERG (the human Ether-à-go-go-Related Gene)
inhibitor (0.9732) and with non-required carcinogenetic
(0.4799).
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FIGURE 13 | In vitro assessment of the fungicide on growth response of FOL pathogen. Four different concentrations were selected 50, 100, 150, and 200 µL along

with control at 4 days interval (A-I) and at 8 days interval (A-II). (B) The growth was recorded at even day’s interval (2, 4, 6, and 8) and the percentage inhibition was

calculated using statistical tools.

DISCUSSION

Vascular wilt caused by F. oxysporum f.sp. lycopersici (FOL)
is very destructive and widespread plant disease that causes
enormous economic losses. The wilt pathogen directly penetrates
roots and colonizes the vascular tissue (Inoue et al., 2002).
One of the most important characteristics of Fusarium
wilt disease is the discoloration of vascular tissues, which
is due to the brownish-black melanoid pigment. Melanin
biosynthesis, therefore, is a good target for designing the
antifungal agents. The biosynthesis of fungal melanin is
derived from a pentaketide intermediate which cyclized into
1,3,6,8-tetrahydroxynaphthalene. The final step of the reaction
is accomplished by series of reductions and dehydrations
and forms 1,8-dihydroxynaphthalene (DHN) through the

formation of intermediates including (+) scytalone, 2,3,8-
trihydroxynaphthalene (T, H, andN). DHNmay be then oxidized
and polymerized to form melanin (Bell and Wheeler, 1986;
Feng et al., 2001). The 1,3,6,8-tetrahydroxynaphthalene/1,3,8-
trihydroxynaphthalene reductase gene has been isolated from
M. grisea (Vidal-Cros et al., 1994). The melanin biosynthetic
pathway was recently demonstrated in other Ascomycetous
fungi based on sequence similarity, percent identity to the
T4HNR protein (encoded by teh gene). Engh et al. (2007)
reported the DHN-based melanin pathway in the Sordaria
macrospora, an Ascomycetous fungal model system, which
accumulates the melanin during its sexual development. It was
found that the T4HNR protein showed sequence similarity
and homology with Aspergillus fumigatus (taxid: 746128)
(51.8% identity),Cochliobolus heterostrophus (taxid: 5016) (79.1%
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identity), M. grisea (taxid: 148305) (51.6% identity), and
Neurospora crassa (taxid: 5141) (96.3% identity). By contrast,
the polyketide synthase (encoded by pks gene) (DHN melanin
enzyme) had sequence similarity with A. fumigatus (42.2%
identity), C. heterostrophus (46.0% identity), Colletotrichum
lagenarium (66.5% identity), M. grisea (69.6% identity), and
N. crassa (85.6% identity) (Engh et al., 2007). The orthologs
for the genes encoding for enzymes polyketide synthase
(pks), a tetrahydroxynaphthalene reductase (teh), a scytalone
dehydratase (sdh), and a trihydroxynaphthalene reductase (tir)
were used from other Ascomycetous fungi (mentioned above)
to retrieve the sequences of the above genes and further
for their experimental demonstration in S. macrospora (Engh
et al., 2007). Interestingly, the polypeptide products obtained
after comparative sequence analysis had significant homology
to DHN-melanin pathway enzymes of other filamentous
ascomycetes, and confirm the role of DHN melanin in
S. macrospora. (Engh et al., 2007). By contrast, the homology
search of the FOXG_04696 (XP_018239507.1) with S. macrospora
(TER) and M. grisea (TER), the protein Blast-p results revealed
the 99% sequence query coverages and 51% sequence identity
with S. macrospora (XP_003345723.1), 93% query coverages and
49% sequence identity with M. grisea (TER) (PDB ID 1JA9),
and only 91% query coverages and 46% sequence identities
with M. grisea (TIR). Based on such in silico-based comparative
studies, one could predict the existence of DHN melanin
pathways in other filamentous fungi (Engh et al., 2007). However,
the reduction reactions in the fungal DHN melanin pathway
can be performed by only one hydroxynaphthalene reductase,
whereas other ascomycetes (M. grisea and S. macrospora) utilize
two reductases the 1,3,8-THN reductase (3HNR) and the 1,3,6,8-
THN reductase (T4HNR). In other cases, scytalone dehydratase
was considered to activate both dehydration steps, of the
scytalone and vermelone (Bell and Wheeler, 1986). Based on
Blast-p annotation, we have found only one hydroxynaphthalene
reductases (T4HNR) in the FOL pathogen, and more identical
in sequential homology to the S. macrospora rather than the
M. grisea. The Blast-p search revealed the sequential similarity
and homology with our target protein (the FOXG_04696)
with 49% identity and 93% (query coverages) (FOXG 04696:
XP_018239507.1). By contrast, the Blast-p results with the
M. grisea 1,3,8-trihydroxynaphthalene reductases (TIR) (PDB
ID: 1G0O) revealed the lesser sequence similarity with the
FOXG_04696 (46% identity and 91% query coverages) which
reflected, the identity of our target protein as the T4HNR and
were found to be more closer to the M. grisea T4HNR (1JA9).
Moreover, the scytalone dehydratase (EC: 4.2.1.94) protein
(KEGG ID: FOXG_13320; Uniprot ID: A0A0D2YAJ4; NCBI ID:
XP_018252510.1) and the mRNA (XM_018393275.1) have been
well characterized in the FOL pathogen.

The DHN pathway for melanin biosynthesis is reported
in many other fungi including Ophiostoma floccosum. It was
demonstrated that the hydroxynaphthalene reductases (HNR)
of the fungus O. floccosum, shared the functional homology
with other fungal HNR (Eagen et al., 2001). For instance, the
HNR reductases deficient buf mutant of the rice blast fungus
M. grisea when provided with the functional HNR reductases of

O. floccusm, the complemented M. grisea buf mutants produced
a black pigment like a wild-type strain, and the mutants were
found to restore the pigment biosynthesis, which predicted that
the existence of functional homology exists in between the fungal
genera for the melanin biosynthetic mechanism (Eagen et al.,
2001).

It was reported that the polyketide synthases involved in
fungal DHN melanin biosynthetic pathways belong to the
group of iterative type I polyketide synthases similar to fatty
acid synthases (Hopwood and Sherman, 1990) and the PKS
reported for S. macrospora was predicted to contain a β-ketoacyl
synthase, two acyl carrier protein domains, thioesterase, an acetyl
transferase, and two acyl carrier protein domains. Furthermore,
the comparative analysis of non-ribosomal peptide synthetases
(NRPSs) and polyketide synthases (PKSs) of 12 different species
belonging to Fusarium genera revealed the 52 NRPSs and 52
PKSs orthology group (Hansen et al., 2015). The study revealed
the conservation of eight NRPSs and (NRPS2–4, 6, 10–13) and
two PKSs (PKS3 and PKS7) (Hansen et al., 2015). However,
existence of the DHN based melanin in the FOL is rather
controversial as it was reported that the PKS encoding gene for
DHNmelanin biosynthesis is not present in bikaverin producing
Fusarium genera including F. verticilloides, F. oxysporum, and
F. fujikuroi (Kroken et al., 2003). By contrast, Amany and
Ellil (2005) characterized the brown colored melanin, in the
FOL pathogen, and also evaluated sensitivity of the FOL
pathogen against the Tricyclazole and Chlobenthiazone (melanin
biosynthesis inhibitor). In the last few years, several melanin
biosynthetic inhibitors have been designed to target various
phytopathogenic fungi. Furthermore, FOXG_04696 have been
shown to have alcohol dehydrogenase (NAD) (GO: 0004022) and
NADH binding activity (GO: 0070404). Corrales et al. (2011)
reported an alcohol dehydrogenase gene (SDR), adh1, has dual
fermentative and oxidative functions, and is involved in the
fungal (FOL) virulence in tomato plants. In this context, the
functional relevance of the FOXG_04696 could be predicted from
conserved functional motif and domains, measured in terms
of gene ontology, and/or shared domain–domain interaction.
Since, the protein structure is 3–10 times more conserved
than its sequence (Illergård et al., 2009), and the shared
protein domains might be useful for structural and functional
annotation of genes or their encoded products. This could
be possibly employed to evaluate the molecular functions
and biological processes of interacting proteins or domains.
The functional annotation as revealed through CATH server
revealed that the FOXG_04696 belong to SDR family and
might have possible role in versicolorin reductase activity
(GO: 0042469), tetrahydroxynaphthalene reductase activity
(GO: 0047039), (S,S)-butanediol dehydrogenase activity (GO:
0047512), and tropinone reductase activity (GO: 0050358). The
significant biological process measured in terms of gene ontology
was melanin biosynthetic process (GO: 0042438), secondary
metabolite (bikaverin, fumonisins, fusaric acid, and fusarins)
biosynthetic processes (GO: 0044550), pigment biosynthetic
process (GO: 0046148), sterigmatocystin biosynthetic process
(GO: 0045461), butanediol metabolic process (GO: 0034077),
and acetoin metabolic process (GO: 0045149). The structure
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of the FOXG_04696 was predicted based on comparative
modeling. It was reported that up to date, comparative
modeling is the most successful and accurate method as
evolutionarily related proteins usually share a similar structure
(sequence identity >30%) (Errami et al., 2003; Choong
et al., 2011) and structural dynamics is the cornerstone of
the protein function and its regulation (Berezovsky et al.,
2017).

The functional conservation of protein homology was also
evaluated based on the protein interaction networks. Since,
protein–protein interaction studies are mediated by a limited set
of domain–domain interactions (Itzhaki et al., 2006; Reimand
et al., 2012), and protein domains represent the structural,
functional, and evolutionary unit of proteins (Vogel et al., 2004;
Jin et al., 2009). The STRING based results for finding the T4HNR
interacting partner in S. macrospora revealed that at confidence
level from high to highest the T4HNR (teh) interacted with
fatty acid synthase alpha subunit reductase (XP_003349949.1),
fatty acid synthase beta subunit dehydratase (XP_003349948.1),
and 3-oxoacyl (acyl carrier protein) synthase (XP_003351602.1).
Moreover, the STRING based results for our characterized and
predicted model the FOXG_04696, revealed the same interacting
partner at highest confidence level values such as fatty acid
synthase subunit alpha-reductase (FOXG_06391), fatty acid
synthase subunit beta hydratase (FOXG_06392) (enoyl-[acyl
carrier protein] reductase (NADH) activity) fatty acid synthase
subunit beta hydratase (FOXG_15138), and fatty acid synthase
subunit beta-dehydratase (FOXG_14342) indicating the similar
functional association with the FOXG_04696 protein.

In silico Characterization and Model
Validation
The functional characterization of both template 1JA9 and
the predicted model FOXG_04696) through the ScanPROSITE
program revealed that the input protein sequences have signature
sequences, belonging to SDR family. A broad range of different
activities is catalyzed by the enzyme (SDRs) that includes
metabolism of organic biomolecules such as carbohydrates,
lipids, amino acids, steroids, cofactors, and aromatic compounds
and act in redox sensing (Tang and Le, 2014). Sequence
analysis revealed that the FOXG_04696 belongs to classical
SDRs and has the conserved catalytic tetrad (NSYK) composed
of ASN115 SER141 TYR154 and LYS158. The three conserved
residues including SER141, TYR154, and LYS158 form the
structural motif with ASN115 through H bonding with other
residues. The superimposition of the template protein over the
predicted model resulted into the structural resemblances with
the minimum RMSD (0.47Å) and the relative RMSD values
(0.025Å). The superposition results also aligned the identical
residues found in between the T4HNR and the FOXG_04696
protein. The optimized model was found to be suitable based
on several qualitative backgrounds including the RAMPAGE,
ProSA, ERRAT, PROCHECK (PDB Sum), and Verify-3D. The
Ramachandran plot which evaluated that the predicted models
were closer to the template (98% residues lying in the favored
regions). The ERRAT score values (92%) and Verify-3D results

were good enough signifying the consistency of the model
prediction and explained that the predicted model was reliable
and satisfactory, as it was reported that, for a model having
good resolution (approximately 2.5–3.0Å), the ideal score values
for Verify-3D should be 80%, and that for the ERRAT around
95% (Colovos and Yeates, 1993). Furthermore, the predicted
model was measured in terms of its quality from PROSA score
values. The Z score value for the predicted structure was -8.07
(against the X-ray resolved template protein having Z score value
−9.63), which is within the range observed for the native set
of proteins of the same size. It was reported that the Z score
values for any modeled structure lying outside the range of native
proteins that were resolved through X-ray and NMR predict the
erroneous structure (Wiederstein and Sipp, 2007). This was also
confirmed from the ProtSAV score values as all the qualitative
parameters measured the predicted model lying in the zone of
good resolution (2.5–3.0Å).

In our results, we have evaluated and compared the binding
efficacy of commercial fungicides that could be used against the
FOL pathogen to control the Vascular wilt disease. The crystal
structure of the T4HNR complexed with the NADP(H) and
pyroquilon (1JA9) revealed that fungicide pyroquilon binds with
the crucial residues forming active site of the T4HNR protein
and therefore, interrupt its functional mechanism. The fungicides
that interact with the residues forming active sites or interact
with the major residues that form the catalytic center of protein
might have good results, for disrupting the functional aspect of
proteins and therefore, would affect its possible biological roles.
The metapocket server analyzed all the possible binding sites that
might be occupied with the ligands, during the protein–fungicide
interactions. The structural alignment unravelled the conserved
T4HNR and replaced the key residues such as TYR178 with
TYR154, LYS182 with LYS158, PRO208 with PRO184, THR213 with
THR186, ASP214 with ASP187, MET215 with MET188, and TYR223

with TYR196 in the FOXG_04696. It was found that all the
replaced residues in the FOXG_04696 were present in either
major or another major (first two) cavities predicted by the
metapocket server. In our previous studies, the structure of the
functional domain of the proteins that belong to theWRKY gene
superfamily members has been modeled for its qualitative and
quantitative evaluation, to unravel the DNA–protein interaction
studies, in a stimulus-specific manner in tomato (Aamir et al.,
2017, 2018). In our results, the computational screening revealed
the docking site and energy score values for all the 37 fungicides,
to evaluate their efficacy against the FOL pathogen. The fungicide
Famoxadone interacted with maximum energy (kcal/mol) with
the key residues that constituted the prominent active site.

Protein–Fungicide Docking and MD
Simulations Analysis
The MD simulations of the protein–fungicide interaction
reflected the time-dependent behavior of the biological
complexes. The molecular docking and virtual screening
revealed the two better fungicides including the Oxathiapiprolin
and Famoxadone. The stability of the protein–fungicide docked
complexes was measured at 50-ns MD simulations. It was
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found that both Oxathiapiprolin and Famoxadone disclosed
the steadiness of the docked complexes, with an average
potential energy of −113166.16 and −112628.96 kcal/mol,
respectively. However, Famoxadone had comparatively better
docking with XPG score of −3.30 kcal/mol (compared to
Oxathiapiprolin; XPG score of −1.87 kcal/mol) along with lower
values of RMSD and RMSF for protein–ligand contact, and
better interaction within the particular specified docking site
(within 4 Å binding site region of FOXG_04696). The lower
XPG score −3.30 kcal/mol (more negative), and lesser RMSD
and RMSF values for Famoxadone-FOXG_04696 (compared
to Oxathiapiprolin_FOXG_04696) predicted the stability and
reproducibility of the docking results, to find the crystallographic
relevant and accurate binding pose.

We analyzed our docking results from two different molecular
docking and virtual screening platforms including the Glide
XP dock and an auto docked-based YASARA server. Finally,
the complexes having good docking score, better Kd values,
and accurate docking poses were further refined and rescored
through the MD simulations, and MM/GBSA methods, to
validate the top scored docking results. In each case, we found
that the Famoxadone docked complex with FOXG_04696 had
good docking score, with accurate docking pose, and was
reliable and reproducible. The YASARA results evaluated the
docking calculations based on YASARA score and dissociation
constant (Kd). Based on YASARA results, one could predict
that fungicides having high YASARA scores and low Kd
must bind with the receptor protein FOXG_04696 in a good
docking pose. However, MD simulations analysis for these
complexes (top docking score) were either failed to bind with
the target receptor protein or were reported to be docked in
an alternative conformation (other binding sites). Moreover,
the fungicides having low dissociation constant (Kd) values for
the docked complexes such as Thiophanate methyl (Kd value
4.85), Trifloxystrobin (Kd value 4.86), Boscalid (Kd value 5.27),
Pyraclostrobin (Kd value 6.69), and Isopyrazam (Kd value 6.84),
despite of having good docking score and lesser Kd values, did
not bind in a good docking pose in the MD simulations, or
bound with sites in altered conformation (residues that were
not involved in binding active sites, or other minor binding
sites). By contrast, fungicides such as Carbendazim (Kd value
57.09), Cymoxanil (Kd value 22.45), Dithane (Kd value 976.17),
Famoxadone (Kd value 2.43), Fluberidazole (Kd value 13.64),
Metiram (Zineb) (Kd value 976.17), Pterostilbin (Kd value 24.47),
Tebuconazole (Kd value 39.05), and Oxathiapiprolin (Kd value
1.86) bounded with some of the core residues that constituted,
the major or minor binding sites of receptor protein in a
good docking pose as revealed through YASARA. The YASARA
score, Kd values, and MM/GBSA free energy binding values
for Metiram (Zineb) and Dithane were found to be similar
−55.63 (±0.38) as both share similar structure, and Dithane
is the dimer unit of Metiram. The docking conformation of
the Famoxadone and Oxathiapiprolin with the FOXG_04696
analyzed, and reported to be good from all the docking
servers. Moreover, the MD simulations of Famoxadone and
Oxathiapiprolin protein complexes showed better results with
minimum interaction energies (Oxathiapiprolin followed by

famoxadone), and also had lesser Kd (Oxathiapiprolin followed
by Famoxadone). The MD simulations of Oxathiapiprolin
complex had minimum interaction energy and Kd values, but
the residues involved in interaction were non-significant, and
were present beyond the binding sites (both major and minor)
of target receptor protein. The residues that were found to be
involved in Oxathiapiprolin binding during MD simulations
were LEU100, VAL103, ILE108, LEU112, VAL116, TRP146, GLY147,
VAL148, PRO149, ARG150, HIS151, ALA152, LEU153, SER155,
ALA156, SER157, and ALA160. Moreover, Famoxadone had good
binding affinity from all the platforms with having maximum
residues from first binding site (major) including catalytic
tetrad, of the FOXG_04696. The residues involved with the
Famoxadone binding duringMD simulations were GLY13, SER15,
ARG16, GLY17, ILE18, GLY19, TYR37, VAL38, ASN91, SER92,
GLY93, ILE94, GLU95, ILE139, SER140, SER141, ILE142, SER143,
TYR154, LYS158, PRO184, LYS185, THR186, ASP187, MET188,
TYR189, ALA192, ALA193, and TYR196 (exclusively forming
major binding site of the receptor protein) (Supplementary

Table S4).
It has been reported that multiple orientations (multiple

different conformations adopted by ligands upon binding)
could be involved in binding a ligand with proteins, and
small conformational changes might have big effects on
binding affinities (Mobley and Dill, 2009). Furthermore, these
binding events are highly affected by multifarious factors,
such as waters, ions, or cofactors, protonation state (changed
protonation state on ligand binding), and/or conformational
or solvation entropies that could have unexpected involvement
and therefore, play unpredictable roles, in deforming the
protein and ligands (Mobley and Dill, 2009). It has been
demonstrated through several studies that the free energy
calculations and MD simulations were done for refining and
docking the docked complexes, starting from the docked poses,
could be effective in increasing the accuracy of binding affinity
predictions (Claussen et al., 2001; Andér et al., 2008). Numerous
studies on molecular docking program have demonstrated
that the computational screening for ranking the affinities
of ligands binding to receptor proteins may results into a
higher enrichment of active compounds than random screening
(Stahl and Rarey, 2001; Wyss et al., 2003). However, they
may suffer from sufficient false positive and false negatives,
and are not sufficiently accurate to rank the compounds
according to their binding affinities (Pearlman and Charifson,
2001).

In our results, we found the discrepancies in the ranking of
ligand binding affinities from two different popular molecular
docking programs (Glide XP and YASARA scores). In the
YASARA binding energy function, the energy was calculated
as the difference between the sum of potential and solvation
energies of the separated compounds, and the sum of potential
and solvation energies of the complex in the YAMBER3 force
field. Thus, more positive YASARA score (difference) means
higher affinity (Jakubík et al., 2013, 2015). In this context,
Jakubík et al. (2015) analyzed the performance of four molecular
modeling and docking programs (Autodock and Glide for
docking; AutoDock binding energy function, Glide XP, Prime
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MMGB/SA, and YASARA binding function for pose scoring)
in the pose evaluation of re-docked antagonists/inverse agonists
to 11 original crystal structures of the aminergic G protein-
coupled receptors (GPCRs), and found differences in the ranking
of ligand binding affinities, from all the four molecular docking
programs. In one study, Suenaga et al. (2012) reported that
in the docking process, the top-scored docking pose does not
always correspond to the optimal docking structure. Thus, the
abilities to determine the optimal docking structure among
multiple docking poses generated by the docking process,
as well as to correctly rank the ligands according to their
binding affinities, are important for successful computational
screening. Furthermore, investigation of top posed protein–
ligand interactions revealed substantial differences from actual
crystallographic structures. In this way, the discrepancies
observed in top docked poses and actual crystal structures,
or bad ranking of top poses render all current docking and
scoring schemes completely inefficient to rank-order drug leads
for efficient drug optimization (Warren et al., 2006; Whalen
et al., 2011; Suenaga et al., 2012; Ramírez and Caballero,
2016).

It has been reported that docking calculations performed
through different servers and tools has several limitations
such as a wrong binding site of target receptor protein, the
choice of docking poses, high docking scores, but failed in
MD simulations (Chen, 2015). Furthermore, sometimes MD
simulations results revealed docking poses, that were actually
unstable, but possess high docking score (Chen, 2015). In this
regard, MD simulations could be deployed for calculating the
conformational entropic changes upon receptor–ligand binding.
This could be derived from time-dependent changes in atomic
coordinates of the protein and ligand in both bound and
unbound forms (Du et al., 2016). The stability and reliability of
the docked complexes over the simulation time course provides
a good indication for their reliability, accuracy, and stability as
it was demonstrated that the unstable and incorrectly docked
structures during MD simulations results into an unstable
trajectories, that finally lead into disruption of the complex. By
contrast, the realistic complexes provide stable behavior (Yunta,
2016). It has been shown that MD simulations are necessary
for some systems to identify the correct binding conformations
(Hou et al., 2011; Sakano et al., 2016). Therefore, MD can
additionally be used to estimate the stability of a ligand–receptor
complex proposed by molecular docking (Alonso et al., 2006).
However, the more accurate prediction of binding affinity
can be obtained through free energy calculations, dependent
on thermodynamically important parameter that includes the
interaction of protein and ligands in complexes, their interaction
with water and other counter ions in unbounded formed, explicit
inclusion of the solvent protein dynamics/flexibility (Du et al.,
2016).

Molecular Mechanics and Binding
Energy Assessment
The binding energy calculations for molecular complexes could
be calculated from MM/GBSA methods, which calculate binding
free energies for molecules by combining molecular mechanics

calculations and continuum (implicit) solvation models. With
this view, the computational calculation for estimating the free
binding energies are predicted from the difference between
the free energy of each ligand bound to the protein and
the free energies of the components of the complex, i.e.,
1Gbinding = 1Gcomplex − (1Gfree receptor + 1Gfree ligand). The
enthalpic contributions for docked complexes are assessed
through molecular mechanics. MM/GBSA1Gbind negative value
indicates stronger binding of the ligands with receptor protein.
MM/GBSA (1Gbind) can be expected to agree reasonably well
with ranking based on experimental binding affinity. The results
obtained for binding energies calculations of the protein–ligand
interactions through MM/GBSA calculation were reported to
be highly reproducible and stable (Genheden and Ryde, 2015),
and independent of solvation of the receptor protein, selection
of alternative conformation in the starting crystal structure,
uncertainty in protonation and conformation of various groups
(if employed with care) (Genheden and Ryde, 2015). The
calculations set up by different groups and procedures are likely
to give similar results, in spite of the many more or less arbitrary
choices made during the setup (Genheden and Ryde, 2015).
Furthermore, MM/GBSA provides more rigorous solutions for
better prediction of reliable and accurate binding positions,
and to estimate the free energies of the bound molecular
complexes (Zhang et al., 2017). This could be attributed due
to the fact that MM/GBSA based scoring is physics-based
term, which contains explicit terms for hydrophobic, VDW ,
or solvation components. By contrast, other docking and
scoring based programs calculate an empirical scoring function
likewise machine based learning procedure, and with having no
relevance with other physical parameters. The binding energy
was calculated as the difference between the MM/GBSA energy
of the complex and the sum of MM/GBSA energies of the
unliganded receptor and the free ligand. It has been found
that the top docking ranked poses are the lowest ranked poses
using MM/GBSA rescoring, that indicates the rescoring of few
top poses, if binding could not be determined through docking
programs or binding is nonspecific. In many studies it has been
well demonstrated that MM/GBSA approach is most accurate
and reliable for ranking (“scoring”) the efficacy/affinities of a
ligand binding to the receptor proteins in the protein–ligand
docked complexes (Singh and Warshel, 2010; Sun et al., 2014;
Wright et al., 2014; Genheden and Ryde, 2015; Maffucci et al.,
2018). MD simulations analysis therefore, could be employed
for accurate ranking of ligands following the post docking
program in terms of their binding affinities (Okimoto et al.,
2009; Chen, 2015). Recently, MM/GBSA based on short MD
simulations has been employed for prediction of the accurate
poses among the generated docking poses (Terayama et al.,
2018).

Overall, one important conclusion from our study revealed
that, docking studies must be harmonized with MD simulations,
as MD simulations provide core information to complement
the docking prediction, and unravelled the docking poses
that were actually unstable. The MD simulations equilibrate
the system to achieve a stable conformation. If the initial
structure was energetically unstable, the system appropriately
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changes the conformation in subsequent MD simulations
(Sakano et al., 2016). Moreover, MD simulations consider the
natural motion of protein whereas docking usually utilizes a
single structure obtained by experiment. The binding energy
predictions were highly correlated with a correlation coefficient
r2 = 0.335 for the selected protein–fungicide docked complexes,
and reported Famoxadone and Oxathiapiprolin having better
binding efficiency with FOXG_04696 than other fungicides.

The selected fungicide (Famoxadone) was further evaluated
for in vitro inhibitory test against the FOL pathogen. It was
found that the selected fungicide was good enough as the
mycelial growth was found to be inhibited at every increased
concentration at an increased time interval. The in silco toxicity
assessment tools further predicted the toxicity assessment of the
fungicide and was found to be acceptable for environmental
disposition, and could be used safely against the FOL pathogen
for controlling the vascular wilt disease.

It is well known that fungal SDRs are large family enzymes
and play a crucial role in various metabolic processes, their
functional characterization in the FOL pathogen, is an interesting
approach. The predictive function of the desired protein could
be useful in understanding the virulence mechanism and
resistance of the FOL pathogen to target fungicides. Moreover,
this protein could be better deployed in structure-based
drug design and catalysis. The functional relevance of the
FOXG_04696 (T4HNR like) is not quite understood. In
this context, we could predict that the hypothetical protein
FOXG_04696 might have possible functional role in secondary
metabolic process (3-oxoacyl-[acyl-carrier protein] reductase),
versicolorin reductase (melanin pigment biosynthesis), or play
crucial role in the FOL virulence (alcohol dehydrogenase)
(based on the results of significant hits of Blast-p annotation).
The possible functional relevance of the in silco predicted
protein could be deduced and determined experimentally using
mutant analysis and genetic complementation studies. The
data from our study will drive future experimentation for
determining the predictive function of this protein in the FOL
pathogen.

CONCLUSION

The present research work provides an insight into the structural,
functional, and dynamical aspects of fungal SDR (T4HNR like)
in the FOL pathogen. The computational modeling of protein 3D
structures, with high accuracy and functional characterization,
revealed the core information regarding the homology and
conservation of SDRs among the closely related fungal taxonomic
groups. The fungal SDRs play a crucial role in various
metabolic processes including biosynthesis of melanin and
other pigments, mycotoxin biosynthesis, secondary metabolism,
fungal defense response, and fungal pathogenicity; these enzymes
could be deployed as novel targets, for the discovery of
novel agrochemicals against the phytopathogenic fungi. We
reported the interaction of Famoxadone with FOXG_04696
(T4HNR like) with best protein ligand contacts through the
core residues from major binding site of receptor protein.

The protein–ligand interaction also targeted the functional
residues that constituted the (active sites) and in a good
docking pose with least binding energy. Interestingly, the X-ray
diffracted crystal structures or NMR-derived solution structures,
of protein–ligand complexes, could be used for interaction
studies with unknown hypothetical proteins. Moreover, the
inhibitors discovered through hierarchical in silico screening
approach (pharmacophore modeling and molecular docking)
could be employed for comparative binding studies of an
experimentally derived molecular complex, with unknown
hypothetical protein and novel ligands. The experimental data
available for protein–ligand interaction at good resolutions could
help in analyzing the other relevant proteins and complexes
for the better modulation of their functional activity in a more
efficacious and reliable manner. The computational screening
for getting a novel inhibitor (fungicide) followed by in vitro
assessment, could be useful to develop commercial formulations
either alone or in combination with other better fungicides,
or used with other integrated approaches, for the better
management of the Fusarium wilt disease.
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