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Genotoxicity tests can detect compounds that have an adverse effect on the process of heredity. The

in vivo micronucleus assay, a genotoxicity test method, has been widely used to evaluate the presence and

extent of chromosomal damage in human beings. Due to the high cost and laboriousness of experimental

tests, computational approaches for predicting genotoxicity based on chemical structures and properties

are recognized as an alternative. In this study, a dataset containing 641 diverse chemicals was collected

and the molecules were represented by both fingerprints and molecular descriptors. Then classification

models were constructed by six machine learning methods, including the support vector machine (SVM),

naïve Bayes (NB), k-nearest neighbor (kNN), C4.5 decision tree (DT), random forest (RF) and artificial

neural network (ANN). The performance of the models was estimated by five-fold cross-validation and an

external validation set. The top ten models showed excellent performance for the external validation with

accuracies ranging from 0.846 to 0.938, among which models Pubchem_SVM and MACCS_RF showed a

more reliable predictive ability. The applicability domain was also defined to distinguish favorable predic-

tions from unfavorable ones. Finally, ten structural fragments which can be used to assess the genotoxi-

city potential of a chemical were identified by using information gain and structural fragment frequency

analysis. Our models might be helpful for the initial screening of potential genotoxic compounds.

Introduction

In daily life, human beings are exposed to diverse chemicals,

especially drugs, pesticides, food additives and cosmetic ingre-

dients. It is necessary to evaluate these chemicals by means of

toxicity tests, such as genotoxicity tests.1 Genetic toxicology is

the study of the adverse effects of chemical and physical

agents on the process of heredity. Several methods can be

used to measure the genetic toxicity of compounds, such as

the comet assay,2 micronucleus assay (MN),3 chromosomal

aberration assay,4 bacterial reverse mutation test,5 and sister

chromatid exchange assay.6 Among them, the in vivo micro-

nucleus assay is the most commonly used method to investigate

the in vivo genotoxic potential of chemicals, and it has been

successfully performed for following the testing of positive

in vitro results.7 Negative results in vitro are usually considered

sufficient to indicate the lack of mutagenicity, whereas a posi-

tive result is not considered sufficient to indicate that the

chemical represents a mutagenic hazard, which could be a

false positive. The in vivo micronucleus assay can detect

chemicals with the ability to disrupt the process of mitosis

and form a “micronucleus”. It is morphologically similar to a

normal nucleus but it has a smaller size. Since animal model

assays are time-consuming, highly expensive and unethical,

in silico methods are gradually developed as alternatives to

experimental tests. In addition, REACH (Registration,

Evaluation, Authorization and Restriction of Chemicals) has

provisions that facilitate the use of data generated by non-

testing methods, specifically of the (quantitative) structure–

activity relationship.8

With the development of computer science and cheminfor-

matics, in silico modeling has become a powerful tool to assist

the drug discovery and predict pharmacokinetic and toxic pro-

perties.9 Over the past few decades, many structure–activity

models10–12 have been constructed to assess the genotoxicity

of chemicals, such as the chemical Ames mutagenicity, carci-

nogenicity and chromosome aberration test. Most of the

models were built with molecular fingerprints or descriptors,

and showed excellent predictive power. For the micronucleus

assay, there are few models for predicting in vivo micronucleus

results. Romualdo Benigni et al.13 have studied structural

alerts (SAs) based on a database. However, in their research

SAs were applied to an unbalanced database with a large pro-
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portion of micronucleus negative chemicals. Meanwhile, the

SAs had a low frequency in the micronucleus positive chemi-

cals. In view of the lack of available structure–activity relation-

ship models (SAR) for predicting chemical genotoxicity,

models for predicting chemical genotoxicity based on in vivo

micronucleus assay results were built to fill this gap.

In this study, a large dataset containing 641 diverse com-

pounds was used for modeling. On the basis of this dataset,

binary classification models were built by using six kinds of

machine learning methods. In order to validate the effective-

ness of the models, five-fold cross validation and an external

validation set were applied, and they showed excellent predic-

tive ability. Meanwhile, high-frequency structural fragments in

micronucleus positive chemicals were identified using infor-

mation gain and structural fragment frequency analysis.

Furthermore, in line with the organization for economic co-

operation and development (OECD) principle (http://www.

oecd.org/chemicalsafety/risk-assessment/validationofqsar-

models.htm), we defined the application domain to improve

the predictive reliability of our models. This study may provide

a useful tool to identify the genetic toxicity of chemicals.

Materials and methods
Data collection and preparation

In this study, the dataset was collected from a report14 and the

webserver of eChemPortal which is a part of OECD. The com-

pounds were labeled as negative or positive according to the

in vivo micronucleus assay results. If a compound shows the

ability to induce chromosomal damage or disrupt the cell divi-

sion, it would be labeled as positive. Conversely, it is labeled

as negative. All the data were prepared by the following steps

by using Pipeline Pilot 7.5. Firstly, entries containing inorganic

compounds, organometals, and mixtures were removed.

Secondly, salts were converted into the corresponding acids or

bases, and water molecules were removed from the hydrates.

Thirdly, chemicals that were duplicated and contradictory in

different sources were removed. As a result, a total of 641

chemicals (including 264 micronucleus positive chemicals and

377 micronucleus negative chemicals) were obtained. The

dataset is comparatively balanced compared with the previous

publication.13 Finally, the dataset was randomly split into a

training set and external validation set in the ratio of 9 : 1. The

detailed statistical description of the datasets is listed in

Table 1. The names, SMILES and CAS number of all com-

pounds are available in the ESI (Table SI1†).

Calculation of molecular fingerprints

Molecular fingerprints are a string representation of chemical

structures designed to enhance the efficiency of chemical data-

base searching and analysis. A molecule is described as a

binary string in which each bit corresponds to a particular

structural fragment. Six commonly used fingerprints were cal-

culated for all molecules by PaDEL-Descriptor, respectively.15

They are CDK fingerprint (FP, 1024 bits), CDK Extended finger-

print (Ext, 1024 bits), Estate fingerprint (Estate, 79 bits),

MACCS fingerprint (MACCS, 166 bits), Pubchem fingerprint

(Pubchem, 881 bits) and Substructure fingerprint (Sub, 307

bits).

Calculation of molecular descriptors and feature selection

In this study, five feature groups of molecular descriptors (con-

stitutional descriptors, Basak descriptors, Burden descriptors,

CATS descriptors and MOE-type descriptors) were calculated

by ChemSAR.16 325 features, which are related to the physico-

chemical and structural properties of the studied molecules,

were contained in these five groups.

The selection of molecular descriptors is very important for

model building.17 And the selection of features was only

applied to the training set. Four methods were used to select

molecular descriptors. Firstly, if the values of the descriptor

are all zero or with a variance lower than the threshold of 0.05,

it would be removed. Then, correlations across all pairs of

descriptors were calculated, and any two descriptors with cor-

relation values higher than 0.95 were regarded as redundant,

between which the less correlative one was abandoned.

Besides, the importance of each feature was calculated by tree-

based estimators which in turn can be used to remove irrele-

vant descriptors. Furthermore, recursive feature elimination

(RFE) with the linear kernel support vector machine was per-

formed in a cross-validation loop to select an optimal number

of features. This algorithm can calculate and update the

importance ranks, and eliminate the least important feature

accordingly. Finally, the subset of descriptors that showed the

best prediction performance was selected.

Model building by machine learning methods

Machine learning is widely used in building models. Six

different machine learning methods were used to build

models implemented by Orange 2.0 (freely available at https://

orange.biolab.si/). They are the support vector machine

(SVM),18 naïve Bayes (NB),19 k-nearest neighbor (kNN),20 C4.5

decision tree (DT),21 random forest (RF)22 and artificial neural

network (ANN).23 The SVM algorithm was operated in the

open source LIBSVM 3.2 package,24 and the Gaussian radial

basis function (RBF) was used as the kernel function.

Meanwhile, its parameters were optimized through a python

script in the LIBSVM 3.2 package. The parameters of the other

five machine learning methods were optimized through a grid

search approach to find the highest area under the receiver

operation characteristic curve (AUC) value based on a five-fold

Table 1 Statistical data of chemicals used in the training set and the

external validation set

Datasets Positive Negative Total

Training set 237 339 576
External validation set 27 38 65
Total 264 377 641
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cross-validation. The detailed grid parameters for different

machine learning methods are listed in Table SI2.†

Assessment of the models

The classification models are assessed by five-fold cross-vali-

dation and a diverse external validation set.25 All the models

are assessed by the counts of true positive (TP), true negative

(TN), false positive (FP) and false negative (FN). Accuracy (CA)

is the total percentage of chemicals that were correctly pre-

dicted. Specificity (SP) denotes the predictive accuracy of the

micronucleus negative chemicals. Sensitivity (SE) means the

predictive accuracy of the micronucleus positive chemicals and

the AUC value is the area under the receiver operating charac-

teristic curve (ROC). The equations of SE, SP and CA are shown

as follows.

CA ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ ð1Þ

SP ¼ TN=ðTNþ FPÞ ð2Þ

SE ¼ TP=ðTPþ FNÞ ð3Þ

Definition of the applicability domain

It is well known that the predictive reliability is an important

issue in the consideration of the fact that any QSAR/QSTR

model is characterized by its applicability domain (AD).

Moreover, the OECD has recommended a strict requirement to

define the applicability domain.26 A similarity-based applica-

bility domain analysis was conducted by comparing the simi-

larity between a query chemical and the chemicals in the train-

ing set.27 If there is a high similarity between the query chemi-

cal and the molecules in the training set, the molecule would

be reliably predicted by our models. The Tanimoto coefficient

(T ) was used to assess the similarity between two molecules

with the MACCS fingerprint. The average Tanimoto coefficient

(T̄) represents the average similarity between a query chemical

and each compound in the training set. The Tanimoto coeffi-

cient and the average Tanimoto coefficient are defined as

follows:

TðA;BÞ ¼
jA> Bj

jA< Bj
ð4Þ

T̄ðxÞ ¼
1

n

Xn

i¼1

Tðx; xiÞ ð5Þ

where A and B are the fingerprints of two chemicals. x rep-

resents the MACCS fingerprint of a query chemical, and xi rep-

resents the fingerprint of the i-th chemical in the training set.

The higher the T̄ value is, the more similar the molecule is to

the training set.

AD was optimized in order to not only guarantee the

reliability of the models but also to cover a wide range of com-

pounds. Several thresholds were used to divide the chemicals

into in-domain (ID) and out-of-domain (OD). The AUC values

were used to assess the performance of our models.28 The AUC

values of different models for predicting ID and OD chemicals

in the external validation set were calculated.

Privileged substructure analysis

Structural alerts (SAs) are defined as chemical substructures,

whose presence shows the relationship with the capability of a

substance to cause certain adverse effects on organs.29 Several

methods can be used to identify privileged substructures, such

as MoSS (graph-based)30 and SARpy (fragment-based).31 For

the identification of SAs, our previous publication has reported

that SARpy could detect highly accurate substructures.32 So in

this study, SARpy was used to identify the high-frequency frag-

ment in the micronucleus positive chemicals.33 The privileged

substructures were assessed by information gain (IG) and sub-

structure fragment analysis. IG measures the information

entropy of a classification system obtained for class prediction

by knowing the presence or absence of a pattern in a mole-

cule.34 If a substructure showed a high frequency in the micro-

nucleus positive molecules, this substructure would be

defined as a privileged substructure. Their appearance in a

molecule can alert researchers to pay more attention to this

molecule. The frequency of a fragment is defined as follows:

Frequency of a fragment ¼
Nfragment class � Ntotal

Nfragment total � Nclass
ð6Þ

where Nfragment_class is the number of chemicals containing the

fragments in micronucleus positive chemicals; Ntotal rep-

resents the total number of chemicals; Nfragment_total is the

total number of chemicals containing the fragments and Nclass

represents the number of micronucleus positive chemicals.

Results
Dataset analysis

A total of 641 non-duplicated chemicals were collected to build

the models. In order to investigate the chemical space distri-

bution, we calculated the molecular weight (MW) and Ghose-

Crippen LogKow (A log P) for the training set and the external

validation set. The distribution scatter diagram is presented in

Fig. 1(A). The MW of the training set was distributed from 30

to 804 (mainly from 50 to 500), and A log P ranged from −6 to

16 (mainly from −2 to 5). It can be observed that the chemical

space of the external validation set shared a similar chemical

space and it was within the scope of the training set.

To further explore the chemical diversity of the dataset, the

Tanimoto coefficient was calculated for the whole dataset by

using the MACCS fingerprint. The average Tanimoto index is

0.19. As shown in Fig. 1(B), red points indicate the high simi-

larity between two compounds and blue points indicate the

low similarity. It can be concluded that the structure of the

compounds in the dataset was diverse.

Selection of molecular descriptors

The aim of the selection of descriptors is to remove redundant

and irrelevant descriptors. Approximately 325 descriptors were
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calculated for each compound by using the feature groups of

constitutional descriptors, Basak descriptors, Burden descrip-

tors, CATS descriptors and MOE-type descriptors.35 After a

stream of descriptors’ analysis procedure, 49 representative

molecular descriptors were selected for modeling. Among

them, 20 constitutional and CAST descriptors, such as the

number of H-bond donors, the count of heteroatoms, the

number of rings, lipophilicity and the average molecular

weight descriptors, described the molecular structural infor-

mation and physicochemical properties. 14 Basak descriptors

reflected the molecular polarity and polarizability.36 Besides, 6

Moe-Type descriptors are related to the van der Waals surface

areas, such as MRVSA6, MRVSA8, MRVSA9, VSAEstate7,

VSAEstate8 and PEOEVSA12. Furthermore, 9 Burden descrip-

tors characterized the atomic masses, atomic van der Waals

volumes and atomic Sanderson electronegativities. Molecular

polarity, electronegativity and the number of heteroatoms are

important characteristics, which promote the insertion of

chemicals into DNA, and thus destroy the structure of DNA.37

The detailed information of these descriptors can be found in

the ESI (Table SI3†). And the heat map of these descriptors’

inter-correlation is shown in Fig. SI1.† The average correlation

coefficient is 0.26, which showed a low correlation for the

descriptors.

Performance of cross-validation

In this study, the models were built by six kinds of machine

learning methods combined with six fingerprints and 49 mole-

cular descriptors. On the basis of their accuracy, the top ten

models built from fingerprints and the five models resulting

from descriptors are presented in Table 2, the CA of the fifteen

models ranged from 0.821 to 0.889; the SE of the fifteen

Fig. 1 (A) Diversity distribution of the training set and the external validation set. The chemical space is defined by molecular weight (MW) as the

X-axis, and A log P as the Y-axis. N represents the number of chemicals in different datasets. The training set is shown as black squares, while the

external validation set is in red circles. (B) Heat map of the molecular similarity plotted by the Tanimoto similarity using the MACCS fingerprint.

Table 2 Performance of the classification models (top ten models developed by fingerprints and five models developed by descriptors) for the

five-fold cross validation using different fingerprints as well as descriptors

Molecule representation Methoda CA SE SP AUC

Fingerprint Pubchem_SVM 0.889 0.923 0.840 0.948
MACCS_RF 0.882 0.841 0.910 0.947
FP_SVM 0.877 0.917 0.819 0.928
Estate_SVM 0.872 0.929 0.789 0.930
Pubchem_ANN 0.872 0.906 0.823 0.938
MACCS_SVM 0.872 0.897 0.835 0.931
Estate_ANN 0.865 0.912 0.797 0.927
Ext_SVM 0.865 0.917 0.789 0.926
Sub_SVM 0.863 0.909 0.797 0.925
MACCS_NB 0.852 0.885 0.806 0.904

Descriptor SVM 0.882 0.853 0.901 0.952
RF 0.861 0.845 0.872 0.933
kNN 0.859 0.797 0.901 0.932
NB 0.842 0.819 0.858 0.900
DT 0.821 0.754 0.866 0.810

a ANN: artificial neural network, DT: C4.5 decision tree, kNN: k-nearest neighbor, NB: naïve Bayes, RF: random forest, SVM: support vector
machine; Estate: Estate fingerprint, Ext: CDK extended fingerprint, FP: CDK fingerprint, MACCS: MACCS fingerprint, Pubchem: Pubchem finger-
print, and Sub: Substructure fingerprint.
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models ranged from 0.754 to 0.929; the SP ranged from 0.789

to 0.910 and AUC values ranged from 0.810 to 0.952. Based on

the value of CA, the top three models are Pubchem_SVM (CA =

0.889, SE = 0.923, SP = 0.840, AUC = 0.948), MACCS_RF (CA =

0.882, SE = 0.841, SP = 0.910, AUC = 0.947) and

descriptors_SVM (CA = 0.882, SE = 0.853, SP = 0.901, AUC =

0.952).

According to the results of the five-fold cross-validation, the

Pubchem fingerprint and MACCS fingerprint combined with

SVM and RF have higher accuracy, which is consistent with

our previous study.10 Meanwhile, the descriptors combined

with SVM and RF outperformed other machine learning

methods. Generally, compared with the descriptor used in this

study, a fingerprint is a better way to represent molecules and

has a better performance. The detailed performance of the

five-fold cross-validation for all models can be found in the

ESI (Table SI4†).

Furthermore, Y-randomization was carried out to validate

the robustness of the models.38 Keeping the original indepen-

dent variable constant, the dependent variable vector was ran-

domly shuffled, and then a new model was developed. This

procedure was repeated three times. The AUC values of the

three new models for external validation are shown in Fig. 2.

As was expected, the three new models had low AUC values,

which indicated that the results in our original models are not

accidental.

Performance of the external validation set

The external validation set was used to validate the perform-

ance of the fifteen models mentioned above. The results of the

fifteen models for the external validation set are shown in

Fig. 3. Considering the values of CA, all the models showed

excellent predictive ability with a CA higher than 0.840. The

top four models were MACCS_RF (CA = 0.938, SE = 0.947, SP =

0.926, AUC = 0.963), Pubchem_ANN (CA = 0.923, SE = 0.921,

SP = 0.926, AUC = 0.963), Descriptor_RF (CA = 0.922, SE = 0.903,

SP = 0.939, AUC = 0.974) and Pubchem_SVM (CA = 0.908, SE =

0.895, SP = 0.926, AUC = 0.980) with the CA value over 0.900.

The best model was MACCS_RF, which showed an accuracy of

0.937 and ranked second in the cross-validation. The accuracy

of Pubchem_SVM is 0.908, which ranked fourth in the external

validation results and performed best in the cross-validation.

It can be concluded that the fingerprints of Pubchem and

MACCS in SVM, and the RF algorithm performed better, which

is consistent with the five-fold cross-validation. Meanwhile,

the SP and SE of the models were relatively balanced, which

may be ascribed to the comparatively balanced dataset.

Analysis of the structural alerts

To investigate privileged structural fragments in micronucleus

positive chemicals, substructure frequency analysis and infor-

mation gain were performed for all the datasets. Substructure

frequency analysis was implemented by SARpy. Ten structural

fragments were identified, which showed a higher frequency

in micronucleus positive chemicals than in micronucleus

negative chemicals.

The privileged fragments and corresponding representative

chemicals are shown in Table 3. These structural fragments

are aromatic nitro compounds, benzimidazole, benzidine,

aniline, aziridine, epoxy propane, thiophosphate, aromatic

diazo, formamide or thioformamide and cyanide. A new com-

pound containing one or more structural fragments has a high

Fig. 2 AUC values of different models after Y-randomization tests three times. Blue, green and orange represent three Y-randomization tests,

respectively.
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possibility to be micronucleus positive. The higher the infor-

mation gain value, the more important the substructure.

Six of these fragments were covered in Toxtree, in which

four were different. The first structural fragment is benzimida-

zole. Many herbicidals belong to the benzimidazole deriva-

tive,39 and 20 benzimidazole derivatives were shown in the

micronucleus positive chemicals. The second fragment is for-

mamide or thioformamide. A total of 69 chemicals contained

Fig. 3 Performance of the fifteen models for the external validation set using different algorithms combined with different fingerprints or

descriptors.

Table 3 Representative structural alerts and the corresponding value of information gain (IG) and the frequency value of privileged substructures

No. Description General structure Representative structures IG Fm

1 Aromatic nitro compounds 0.086 2.428

2 Benzimidazole 0.040 2.428

3 Benzidine 0.020 2.428

4 Aniline 0.138 2.150

5 Aziridine 0.012 2.428

6 Epoxy propane 0.008 1.820

7 Thiophosphate 0.012 2.428

8 Cyanide 0.020 2.428

9 Formamide or thioformamide 0.054 1.970

10 Aromatic diazo 0.047 2.428
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the fragment of formamide or thioformamide. Among them,

56 chemicals are micronucleus positive. The third is thio-

phosphate. For the thiophosphate, six micronucleus positive

chemicals contain the fragment. The last is cyanide, which can

cause toxicity via multiple routes, including inhalation, inges-

tion, parenteral administration and dermal or conjunctival

contact.40 There are 10 types of cyanide in the micronucleus

positive chemicals.

Discussion
Comparison of different methods

Six algorithms combined with six kinds of fingerprints were

utilized to build models. Comparing the six machine learning

methods, SVM and RF algorithms performed better than

others when combined with fingerprints. Meanwhile, they also

showed excellent predictive ability combined with descriptors,

which indicates that SVM and RF algorithms are more suitable

to predict chemical genotoxicity. As for the RF method, it per-

formed best when combined with the MACCS fingerprint,

which indicated that the RF method is more suitable for the

MACCS fingerprint.

As is well known, random forest is currently considered one

of the best QSAR methods available for prediction.41 The SVM

algorithm is widely used in building QSAR models with a great

power to fit the nonlinear relationship.10 Many experiments

have validated that the SVM algorithm can result in a higher

accuracy than other algorithms.42

Comparison of the models built by fingerprints and

descriptors

The fingerprint consists of structural fragments. It can reflect

the structural characteristics of a molecule, while molecular

descriptors represent the physicochemical and topological pro-

perties of a molecule. In this study, the fingerprints and the

descriptors were used to represent molecules to build the

classification models. The results indicate that both molecular

fingerprints and descriptors can build excellent models

(Tables 2 and SI4†). For some algorithms, using molecular

descriptors showed a higher CA than using fingerprints. For

example, models built by molecular descriptors with kNN

algorithms had better performance than models built by

fingerprints with the same algorithms. However, comparing

Table 4 The number of chemicals determined to be in-domain and

out-of-domain in the validation sets using application domain assess-

ment methods with different thresholds

Threshold In-domain (ID) Out-of-domain (OD)

0 65 0
0.17 42 23
0.16 49 16
0.15 52 13
0.14 57 8

Fig. 4 The performance of different models to predict in-domain (ID) and out-of-domain (OD) chemicals. (A) The AUC values of ID chemicals in

different models with the MACCS fingerprint. (B) The AUC values of OD chemicals in different models with the MACCS fingerprint. (C) The AUC

values of ID chemicals in different models with the Pubchem fingerprint. (D) The AUC values of OD chemicals in different models with the Pubchem

fingerprint. The black line represents the undivided external validation set, the red line represents the threshold of 0.17, the blue line represents the

threshold of 0.16, magenta represents the threshold of 0.15, and the green line represents the threshold of 0.14.
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the top models, we found that using molecular fingerprints is

more suitable to build the classification models for genotoxi-

city. For instance, for the RF algorithm, a model built by the

MACCS fingerprint outperformed the model constructed by

descriptors.

Comparison with the Toxtree software

Toxtree is a flexible and user-friendly predictive toxicology

open-source application (https://sourceforge.net/projects/

toxtree/). It places chemicals into categories and predicts

various kinds of toxic effects by applying decision tree

approaches. For the micronucleus assay, 36 structural alerts

were used to identify in vivo micronucleus positive chemicals

in Toxtree.13 In our study, 10 structural alerts were identified.

Six of these structural alerts were also covered in Toxtree.

These structural alerts have a higher positive prediction ability,

which may be ascribed to a larger proportion of positive

chemicals in our data.

Analysis of the applicability domain

In order to find the optimized AD, four different thresholds

(ranging from 0.17 to 0.14 with a step size of 0.01) were deter-

mined according to the average Tanimoto coefficient of the

training set (0.18). The chemical is treated as the ID chemical

in case the average Tanimoto coefficient is higher than the

threshold. Otherwise, it is considered as the OD chemical. As

shown in Table 4, with the decrease of the threshold, more test

compounds were considered as structurally similar to the train-

ing set. Models built by MACCS and Pubchem fingerprints

were used to validate the optimum threshold in consideration

of the better performance in the five-fold cross-validation.

To investigate their respective impact on the predictive

accuracy, their performance with different thresholds was com-

pared. The AUC values of different models for ID and OD

chemicals are summarized in Fig. 4. The threshold of zero rep-

resents the undivided external validation set, i.e., all the com-

pounds would be ID chemicals. On one hand, an improvement

of AUC values can be observed after using the AD to pick out

ID chemicals. On the other hand, as the threshold decreased

from 0.17 to 0.14, fewer and fewer compounds were divided

into OD. And the predictive power for OD chemicals declined,

which indicated that our models had a relatively worse predic-

tive ability for OD chemicals. Compared to the models built by

the Pubchem fingerprint, models built by the MACCS finger-

print improved greatly after using AD to pick out ID chemicals,

which may result from the fact that the MACCS fingerprint was

used to calculate the Tanimoto coefficient. In conclusion, con-

sidering the prediction ability and application range of

models, the threshold of 0.16 is more suitable.

Conclusion

In this study, binary classification models were developed to

predict chemical genotoxicity based on a diverse dataset. Five-

fold cross-validation was utilized to validate the robustness of

our models and an external validation set was used to validate

the predictive ability of the models. The models showed high

predictive accuracy by using molecular fingerprints or descrip-

tors as attributes. The Pubchem fingerprint combined with

the SVM algorithm and the MACCS fingerprint combined with

the RF algorithm performed better. Meanwhile, ten privileged

structural fragments were identified by information gain and

structural frequency analysis. If a molecule contains structural

fragments, it has a high possibility of genotoxicity. These

structural fragments can make researchers pay more attention

to chemicals that contain structural fragments. The applica-

bility domain was defined to improve the predictive accuracy

of the models. Furthermore, all the tools used in this study are

free and easy to access. This study provided a useful strategy

for evaluating the genotoxicity property of chemicals. And the

modeling methods used in this article can also be applied to

other genotoxicity assay end points.
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