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Abstract: Norovirus (HNoV) is a leading cause of gastroenteritis globally, and there are currently
no treatment options or vaccines available to combat it. RNA-dependent RNA polymerase (RdRp),
one of the viral proteins that direct viral replication, is a feasible target for therapeutic development.
Despite the discovery of a small number of HNoV RdRp inhibitors, the majority of them have
been found to possess a little effect on viral replication, owing to low cell penetrability and drug-
likeness. Therefore, antiviral agents that target RdRp are in high demand. For this purpose, we
used in silico screening of a library of 473 natural compounds targeting the RdRp active site. The
top two compounds, ZINC66112069 and ZINC69481850, were chosen based on their binding energy
(BE), physicochemical and drug-likeness properties, and molecular interactions. ZINC66112069
and ZINC69481850 interacted with key residues of RdRp with BEs of −9.7, and −9.4 kcal/mol,
respectively, while the positive control had a BE of −9.0 kcal/mol with RdRp. In addition, hits
interacted with key residues of RdRp and shared several residues with the PPNDS, the positive
control. Furthermore, the docked complexes showed good stability during the molecular dynamic
simulation of 100 ns. ZINC66112069 and ZINC69481850 could be proven as potential inhibitors of
the HNoV RdRp in future antiviral medication development investigations.

Keywords: Norovirus; gastroenteritis; RdRp; viral replication; natural compounds

1. Introduction

Human norovirus (HNoV) is the foremost cause of acute gastroenteritis, affecting
approximately 685 million individuals worldwide, including ~200 million children under
five years of age, with an estimated 0.2 million fatalities and a social cost of $60 billion each
year [1]. While HNoV infection causes a self-limiting sickness in healthy people, it can be
lethal in immunocompromised persons, children, and the elderly [2,3]. HNoV infection is
the leading cause of mortality in people suffering from viral gastroenteritis because HNoVs
are sporadic and highly infectious, and humans are the sole confirmed host. There are
presently no treatment alternatives or vaccinations available [4,5], prompting extensive
studies into the discovery of antiviral agents that may be utilized for viral infection control
and outbreak prevention.
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The human HNoV genome is 7.7 kb in size and is organized into three open reading
frames (ORF). ORF1 translates polyproteins that are cleaved into non-structural proteins,
such as the VPg-like protein, RNA-dependent RNA polymerase (RdRp), and viral pro-
teases [6]. Among them, the RdRp is an important and potential therapeutic target for
anti-HNoV drug discovery because of its critical function in viral replication [7,8]. Although
only a few HNoV RdRp inhibitors have been discovered, most of these agents have been
shown to have little effect on viral replication in cellular systems, presumably due to low
cell penetrability and drug-like qualities [9,10]. Hence, the development of anti-HNoV
small-molecule therapies or prophylactics is an imperative medical need.

The employment of a rapid and lucrative process in the development of novel medica-
tion leads has forced the pharmaceutical sector to reconsider its research and development
strategy. A computer-assisted drug design technique that makes extensive use of comput-
ing power has emerged as one of the most efficient methods of searching for novel lead
molecules [11–13]. Various computational tools have been developed and used during the
last two decades to assist researchers in saving time and cost. These methods involve dis-
covering lead compounds by virtual screening (VS) and computational simulations, as well
as chemical and biological data on ligands and molecular targets of possible leads [14–16].
The combination of these techniques makes it simpler to reject compounds with attributes
outside of ideal ranges and identify viable compounds for optimization [17–20]. Here,
we used high-throughput VS and molecular dynamics studies to identify new natural
leads that target the RdRp active sites and could be employed to combat HNoV. The flow
diagram representation of this study is illustrated in Figure 1.
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2. Results and Discussion

RdRp is a multifunctional RNA virus enzyme that is required for viral genome repli-
cation and amplification, making it a key target for antiviral drug development [21,22].
Here, we screened a natural compound library against the active site residues of RdRp
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proteins. Out of 473 compounds, only twelve were found to have better binding efficacy
in terms of binding energy than the PPNDS (Table 1). These twelve compounds were
further evaluated for their physicochemical properties (Table 2) and visual inspection of
their binding poses. We observed that ZINC66112069 and ZINC69481850 are the most
appropriate to bind with active site residues of the 4LQ3. All these twelve compounds
showed no mutagenic, tumorigenic, reproductively effective, or irritant properties, thereby
exhibiting good drug-like potency.

Table 1. List of compounds with higher binding affinity than the positive control.

Ligand Binding Energy
(Kcal/mol)

ZINC69482526 −9.9

ZINC69482529 −9.9

ZINC66112069 −9.7

ZINC69481856 −9.6

ZINC69482059 −9.5

ZINC69481850 −9.4

ZINC69482023 −9.3

ZINC69481956 −9.3

ZINC69482024 −9.3

ZINC69482510 −9.2

ZINC04097720 −9.1

ZINC69482364 −9.1

PPNDS −9

Table 2. Physicochemical and drug-likeness properties of selected compounds.

Molecule
Name

Mol
Weight

cLogP cLogS
H-Bond Drug

Likeness
Score

Mutagenic Tumorigenic Reproductive
Effective Irritant

Drug
ScoreAcceptor Donor

ZINC69482510 392.493 4.5121 −4.402 4 1 1.0176 N N N N 0.51537

ZINC66112069 436.59 4.4475 −4.742 4 2 0.4587 N N N N 0.433376

ZINC69482023 414.651 4.4768 −5.443 3 2 0.37333 N N N N 0.312927

ZINC69482526 544.639 1.2624 −4.575 9 2 −2.3645 N N N N 0.294769

ZINC69482059 497.737 4.4729 −6.538 4 0 −0.333 N N N N 0.255883

ZINC69482024 430.65 3.5501 −4.936 4 3 −2.6117 N N N N 0.248718

ZINC69481856 532.631 3.1858 −5.326 7 0 −3.4332 N N N N 0.238752

ZINC69482529 613.769 2.2649 −5.844 9 2 −1.6313 N N N N 0.220738

ZINC69481956 472.707 5.4045 −5.643 4 2 0.36826 N N N N 0.177611

ZINC69481850 520.704 3.2548 −4.713 7 4 −0.02161 N N N N 0.14069

ZINC04097720 426.726 7.5888 −6.968 1 0 −3.3053 N N N N 0.132645

ZINC69482364 424.754 8.5403 −7.379 0 0 −7.4295 N N N N 0.119384

Even the binding energy of a few compounds was found to be higher than these, but in
the visual inspection of the binding poses, those were not binding exactly with the targeted
residues such as Thr418, Asn505, Ser410, Gln439, and Arg392 [23,24].

Hits ZINC66112069 and ZINC69481850 interacted with key residues of the RdRp
protein with BE values of −9.7, and −9.4 kcal/mol, respectively (Table 3). ZINC66112069
interacted with Arg392, Leu406, Ser410, Ile411, Arg413, Gln414, Arg419, Gln435, Gln439,
Leu443, Val504, Asn505, and Asp507 residues of RdRp. Of these, Arg392 and Gln439
residues are H-bonded to ZINC66112069, whereas Ser410, Ile411, Arg413, Gln414, Gln435,
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Asp507, and Asn505 residues interacted with ZINC66112069 via van der Waals interac-
tion (Figure 2). Further, ZINC69481850 interacted with Arg392, Leu406, Ser410, Ile411,
Arg413, Gln414, Thr418, Arg419, Gln435, Arg436, Ile438, Gln439, Ser442, Leu443, Val504,
Asn505, and Asp507 residues of RdRp. Thr418, Ser410 and Asn505 residues are H-bonded
to ZINC69481850, whereas Arg392, Leu406, Ile411, Arg413, Gln414, Gln435, Arg436, Ile438,
Gln439, Ser442, and Leu443 residues interact with ZINC69481850 via van der Waals inter-
action (Figure 3).

Table 3. 2D structure of hits and list of H-bonded residues of RdRp-hits complexes.

Compound Structure H-Bonded Residues Van der Waals Interactions

ZINC66112069
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Moreover, to get a clearer view of RdRp interacting residues with ZINC66112069, and
ZINC69481850, RdRp interacting residues with its co-crystallized molecule (PPNDS) was
analyzed by re-docking PPNDS with RdRp. This showed that Asp167, Glu168, Arg419,
Glu510, Val509, Arg413, Gln414, Leu406, Ser410, Ile411, Val504, Leu443, Arg392, Asp507,
and Phe28 were important in binding with PPNDS (Figure 4). Interestingly, Leu406, Leu443,
Ile411, Gln414, Arg413, Ser410, Val504, Arg392, Asp507, and Arg419 were the common
residues of RdRp that interacted with ZINC66112069 and ZINC69481850 as well as the
PPNDS (Figures 2–4), demonstrating that these hits bound at the same pocket of the sRdRp
protein as PPNDS.

BE represents the degree of interaction between the compound-protein complex.
A high (negative) value implies that the compound binds to its target effectively [25].
Interestingly, hits (ZINC66112069 and ZINC69481850) have higher BEs than that of the
PPNDS, revealing that these hits have strong interactions with the RdRp protein.
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The hunt for anti-HNoV compounds has long been a priority for medicinal chemists.
Various techniques have been used to find possible antiviral compounds to battle the
virus [26–28]. CMX521 is a therapeutic candidate that inhibits HNoV in mice and is
the first nucleoside analog to enter phase one clinical trials to cure human HNoV [10].
The nonnucleoside medication nitazoxanide has been shown in clinical studies to be
effective against HNoV. Nonetheless, the specific mechanism against HNoV has remained
unidentified to the researchers [29,30]. Other nonnucleoside compounds that effectively
inhibit human HNoV include suramin, NF203, and PPNDS. However, the development of
these compounds was hampered in the past by toxicity issues. Additionally, modifications
to the suramin structure reduced the toxicity while sustaining the ability to effectively
inhibit both human and murine HNoV RdRp [31]. Therefore, in the absence of vaccines
and conventional medicines, it is imperative to find innovative antivirals that are effective
and affordable for the management of viral infections. Natural compounds have been a
key source of pharmaceuticals since ancient times, and ~50% of today’s pharmaceutical
medications are derived from natural sources [32]. Many natural compounds and herbal
substances have been shown to possess potent antiviral action, and their discovery can aid
in the development of derivatives and therapeutic leads. These substances have antiviral
mechanisms that target interactions between viruses and their hosts as well as viral life
cycle stages including replication and assembly [33]. The selected hits in this study are
natural compounds that have been suggested to inhibit viral replication by binding with
the RdRp of HNoV.

To determine the stability of a complex, MD simulation studies were performed. The
root means square deviation (RMSD) measures protein structural similarity and stability;
lower values indicate more stability. RdRp-PPNDS, RdRp-ZINC69481850, and RdRp-
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ZINC66112069 had RMSD average values of 0.38, 0.34, and 0.25 nm, respectively. The
RMSD plot exposed that the RdRp-ZINC69481850 and RdRp-ZINC66112069 complex
showed more binding stability than the PPNDS (Figure 5A). The bound structure of the
RdRp-PPNDS complex was showing high deviation from its initial conformation, which
indicated that the catalytic pocket of RdRp made a quite stable interaction with the screened
compound. Further, the ligand RMSD showed that RdRp-PPNDS and RdRp-ZINC66112069
had the least deviation, and interestingly, the RdRp-ZINC69481850 complex showed a high
deviation (Figure 5B).
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The average fluctuation of all residues, along with the root mean square fluctua-
tion (RMSF) of RdRp during binding with PPNDS, ZINC69481850, and ZINC66112069,
were plotted as a function of RdRp residue numbers. The RdRp-ZINC69481850 and
RdRp-ZINC66112069 backbones showed steady fluctuations, presumably due to divergent
orientations, and RdRp- PPNDS showed high fluctuation found in region 370–380 residues
(Figure 5C). On the other hand, RdRp-ZINC69481850, and RdRp-ZINC66112069 complexes
showed the overall least fluctuations. It showed that both leads were more stable than
the control.

The Radius of gyration (Rg) analysis was used to gain insight into a biological sys-
tem’s complex compactness profile. The RdRp-PPNDS, RdRp-ZINC69481850, and RdRp-
ZINC66112069 complexes resulted in average Rg values of 2.34, 2.25, and 2.23 nm, respec-
tively. The Rg plot showed less compactness in the RdRp-PPNDS complex than in the
RdRp-ZINC69481850 and RdRp-ZINC66112069 complexes. It was inferred that the binding
of both compounds made RdRp stable, as RdRp showed fewer Rg values than the positive
control (Figure 6A).

Solvent-accessible surface area (SASA) is the part of the surface of a protein that
can interact with molecules of its solvent [34]. The average SASA values for the RdRp-
PPNDS, RdRp-ZINC69481850, and RdRp-ZINC66112069 complexes were plotted, and the
values for the 100 ns simulation for the RdRp-PPNDS, RdRp-ZINC69481850, and RdRp-
ZINC66112069 complexes were 228.09, 205.10, and 215.01 nm2, respectively (Figure 6C).
This analysis indicated that upon binding of ZINC69481850 and ZINC66112069, surface
exposure has been reduced, and control increases the surface area of solvent accessibility.
Further, H-bond analysis was performed on the ligand-target complex. The binding
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stability of protein-ligand complexes was established using 100 ns simulations of RdRp-
PPNDS, RdRp-ZINC69481850, and RdRp-ZINC66112069 in a solvent environment. The
PPNDS and ZINC66112069 showed an average 3–6 H-bond with RdRp protein, whereas the
ZINC69481850 showed a 2–4 H-bond (Figure 6B). The complex RdRp-ZINC69481850 and
RdRp-ZINC66112069 showed less H-bond interaction with solvent, whereas RdRp-PPNDS
showed higher H-bond interaction. It was inferred that the ZINC66112069 might work as a
potential drug against the RdRp protein (Figure 6D).
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3. Material and Methods
3.1. Target Protein and Compound Library Preparation

The protein data bank (PDB) was utilized to retrieve the 3D structure of RdRp (PDB
ID: 4LQ3). It was then prepared for further screening purposes by assigning bond ordering
in ‘Protein Preparation Wizard’ and performing a restrained energy minimization using
Discovery Studio (DS) 2021. A library of natural compounds was retrieved from the ZINC
database in .sdf format and was prepared using DS and converted to .pdbqt format utilizing
the Open Babel tool.

3.2. Structure-Based Virtual Screening (SBVS)

VS is useful for expanding databases with active compounds and filtering inactive
compounds before they are validated in the wet lab. When combined with other drug-
discovery methods, SBVS can lead to interesting results and reduce process costs and
time [17]. It uses computational approaches to analyze vast datasets of known 3D struc-
tures [35]. The PyRx 0.8 tool [36] was used to screen the prepared library of compounds
against the RdRp active site. The protein’s grid center was set to X = −19.528, Y = −25.848,
and Z = −2.556. Following the SBVS, extensive interaction analysis and visualization
inspections have been carried out, considering the lower binding energy (BE) values, to
determine the most stable complex.

3.3. Estimation of Physicochemical, and ADMET Properties

The physicochemical properties of the top-screened compounds, as well as their
toxicity properties, were predicted using the Osiris DataWarrior software V5.5.0 [37].
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3.4. Molecular Dynamics (MD) Simulation

Gromacs package 5 of the GROMOS96 43a1 force field [38,39] was used to carry out
MD simulations, and the PRODRG server [40] was used to create the topology file for the
ligands. MD was performed at 100 ns for each hit-protein complex, and the produced MD
simulation trajectories were used for further study.

4. Conclusions

In this study, natural compounds were screened against HNoV RdRp using high
throughput VS, followed by ADMET prediction and MD simulation analysis. Hits
ZINC66112069 and ZINC69481850 bind tightly to the RdRp protein, interact with key
RdRp residues, were stable at 100 ns in MD simulation analysis, and have good druglike
properties. Further experimental studies are needed to optimize them as RdRp inhibitors.
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