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Abstract: Tuberculosis (TB) remains a serious threat to global public health, responsible for an

estimated 1.5 million mortalities in 2018. While there are available therapeutics for this infection,

slow-acting drugs, poor patient compliance, drug toxicity, and drug resistance require the discovery

of novel TB drugs. Discovering new and more potent antibiotics that target novel TB protein targets

is an attractive strategy towards controlling the global TB epidemic. In silico strategies can be applied

at multiple stages of the drug discovery paradigm to expedite the identification of novel anti-TB

therapeutics. In this paper, we discuss the current TB treatment, emergence of drug resistance,

and the effective application of computational tools to the different stages of TB drug discovery when

combined with traditional biochemical methods. We will also highlight the strengths and points

of improvement in in silico TB drug discovery research, as well as possible future perspectives in

this field.
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1. Introduction

In 1882, Mycobacterium tuberculosis (Mtb) was identified by Robert Koch as the causative agent

of tuberculosis (TB), an infectious disease that continuous to be a relevant threat to global public

health, especially in low- to middle-income countries. The pathogenesis of TB has several risk factors,

including HIV infection, malnutrition, air pollution, type 2 diabetes, alcoholism, and smoking [1–5].

TB is encountered either as latent TB infection (LTBI), which is non-communicable and

asymptomatic [6], or active TB, which is communicable and has symptoms such as fever, weight loss,

productive cough, and hemoptysis [7]. Active infection is also classified depending on the strain:

(1) drug-sensitive, (2) multidrug-resistant TB (MDR-TB), which is resistant to isoniazid and rifampicin,

and (3) extensively drug-resistant TB (XDR-TB), which shows resistance to isoniazid, rifampicin, any

fluoroquinolone, and aminoglycoside. Around 1.7 billion people are projected to suffer from LTBI and

are at risk of progressing into active TB infection [8]. The World Health Organization (WHO) stated

that active TB disease can be found in approximately 10 million people and has caused approximately

1.5 million deaths in 2018. An estimated half million individuals have rifampicin-resistant TB (RR-TB),

of which 78% had MDR-TB. Furthermore, approximately 6.2% are suggested to have XDR-TB from

these MDR cases [8].
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2. Current Tuberculosis Management

One of the major challenges in managing TB is the estimated three million ‘missing’ individuals

who have developed active infections but remained undetected or undiagnosed. TB can be deadly if

not treated. With the help of conventional regimen, an estimated 58 million infected individuals were

saved from 2000 to 2018. Global treatment outcome in 2017 shows a success rate of 85% for new TB

cases and 56% for those with drug-resistant TB [8].

2.1. Latent Tuberculosis Infection

Treatment for LTBI are only provided for select groups that have a high risk of transitioning to

active TB infection, including HIV-positive patients, people who were exposed to those with active

TB, patients undergoing dialysis for end-stage renal disease, taking anti-tumor necrosis factor (TNF)

medications, preparing for transplant surgery, or those with silicosis. Depending on whether it is

beneficial or not, especially for children below 5 years of age, exposure to patients with active MDR-TB

would require personalized treatment regimens and close observation. WHO recommended several

different treatment regimens for LTBI, including 3 months of rifapentine and isoniazid, 3–4 months

of isoniazid and rifampicin, 3–4 months of rifampicin, and 6–9 months of isoniazid [9,10]. While all

these have established efficacy, poor patient compliance continues to be an issue especially with long

treatment periods [9–11].

2.2. Active Drug-Sensitive Tuberculosis

In the last several decades, the treatment strategy for active drug-sensitive TB has not changed

from the standard regimen of first-line drugs rifampicin, isoniazid, pyrazinamide and ethambutol

(Figure 1) for the first 2 months continued by isoniazid and rifampicin for the next 4 months [12,13].

While this treatment procedure is highly efficacious and successful, its long duration primarily leads to

poor patient compliance. This has long been an issue in TB management, necessitating monitoring

protocols like the directly observed therapy (DOT), wherein a health professional directly supervises

each dose intake [14]. Another issue brought about by the prolonged treatment is drug toxicity resulting

in numerous adverse effects such as skin rash, gastrointestinal intolerance, neuropathy, arthralgia,

increase in liver enzymes, hepatitis, immune thrombocytopaenia, agranulocytosis, haemolysis, renal

failure, optic neuritis, and ototoxicity [15,16].
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Figure 1. First- and second-line drugs approved for tuberculosis treatment.

2.3. Multiple and Extensively Drug-Resistant Tuberculosis

Failure to complete the full TB regimen leads to disease relapse and drug resistance, which is

more challenging to treat. A specific regimen can be designed depending on the resistance profile

of the TB strain in a patient [17,18]. These treatments are often of longer duration (18 months or

more) and utilize the more expensive second-line drugs (Figure 1) which have uncertain efficacy and

high toxicity, resulting in poorer compliance and undesirable outcomes. To mitigate these issues,

an updated seven-drug regimen guideline for the treatment of drug-resistant TB lasting 9 to 12 months

was released by the WHO last 2016 [19].

With the increasing threat of treatment-resistant TB infection, a number of drugs have been

fast-tracked to aid with the efforts in controlling TB worldwide. At the end of 2012, the US Food and

Drug Administration (FDA) conferred accelerated approval to the drug bedaquiline for the treatment of

resistant TB [20]. Bedaquiline’s anti-mycobacterial activity is due to its inhibition of the mycobacterial

ATP synthase, a key enzyme in ATP synthesis, resulting in bacterial death. However, its use was
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shown to have an increased risk of death, thereby causing concerns about its approval. During

clinical trials, roughly 11.4% of patients who took bedaquiline died as compared with 2.5% of those

who took placebo treatments [21]. In 2014, the use of delamanid, a nitro-dihydro-imidazooxazole

derivative, in the treatment of MDR-TB in adults was given conditional approval by the European

Medicines Agency (EMA) [22]. Delamanid inhibits mycolic acid biosynthesis to block the formation

of mycobacterial cell wall leading to improved drug permeation and more effective treatment [23].

Just recently, pretomanid in combination with bedaquiline and linezolid has also been approved by

the FDA for treatment-resistant TB [24]. Pretomanid is a prodrug activated by nitroreductase, which

reduces pretomanid’s imidazole ring to generate active metabolites. Specifically, a des-nitro metabolite

leads to elevated levels of nitric oxide, which displays antimycobacterial activities due to its work as a

poison for bacterial respiration under anaerobic conditions [25]. In aerobic conditions, it works like

delaminid by targeting cell wall mycolic acid biosynthesis [26], and while there were several potential

targets for this drug, its exact protein target is not yet known [27].

An increasing number of XDR-TB cases, such as in India, China, South Africa, Russia, and in

eastern Europe, have proved difficult to treat even with the more intensive drug-resistant TB treatment

regimen [18]. Novel therapeutics such as bedaquiline, delamanid, and pretomanid might help in

curing these patients, though a suitable treatment regimen still has to be carefully designed. However,

there is an additional difficulty in acquiring these drugs, especially in developing countries, resulting

in a pool of patients that may remain untreated. Essentially, TB can be cured completely with the use

of currently available and newly approved anti-tubercular drugs. However, difficulties in diagnosing

and reporting infection, long treatment durations leading to drug toxicity and poor patient compliance,

emergence of drug resistant strains, and limited acquisition of required treatment urgently necessitates

the discovery and development of newer and effective drugs for TB.

3. Rise of Computer-Aided Drug Design in TB Drug Discovery

The drug discovery paradigm covers a wide range of fields, including biochemistry, chemical and

structural biology, chem- and bioinformatics, computational chemistry, physical chemistry, organic

synthesis, and others. The whole process entails large investments of time, money, and effort in order

to produce promising candidates for the pipeline. Over the years, the drug discovery process for

new antitubercular therapeutics have changed due to the increase in biological and chemical data,

number of identified and validated targets, and advances in high-throughput screening technologies

and software development. Moreover, the progress in data storage capacities, supercomputing powers,

and parallel processing in the last several years allowed computer-aided drug design (CADD) to

become an integral part of TB pharmaceutical research. This continuing expansion in computing

power can soon potentially allow the exploration of the vast chemical space, thought to comprise of

approximately 1060 organic molecules below 500 Da, in order to identify therapeutically interesting

scaffolds [28]. Moreover, the boom in protein structural data, including over 150,000 macromolecular

structures found in the Protein Data Bank (PDB, www.rcsb.org) [29], proved beneficial in elucidating

important molecular and computational concepts for drug design studies. As with any other disease,

TB has been the subject of continuous and numerous drug discovery studies, including thousands of

published CADD investigations. Despite this, a paper by Ekins et al. noted gaps in the application of

these methods in TB research [30], resulting in the slow output of candidates into the TB drug pipeline

despite the apparent need and urgency for this disease. This suggests that more rigorous efforts are

needed in TB drug discovery to maximize the advantages provided by computational tools.

Computational or in silico methods are knowledge-driven, rationally exploring available data to

investigate protein function and design new molecular entities (NMEs) that can effectively regulate its

behavior. Computational drug discovery approaches are generally divided into structure—(SBDD)

and ligand-based drug design (LBDD), depending on the availability of structural data (Figure 2).

However, it has been a common practice to integrate these methods in a complementary manner in

order to increase the success rate of current drug discovery projects (Figure 2). SBDD requires the

www.rcsb.org
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target’s three-dimensional (3D) structure to be able to examine and use the binding pocket for screening

and design of suitable ligands, which can then be experimentally validated and optimized. In the

absence of protein structural data, LBDD utilizes knowledge gained from a collection of diverse ligands

with known activity to create predictive models for hit discovery and lead optimization [31]. Different

types of SB and LB strategies, or a combination thereof, can be applied at different stages of TB drug

discovery and development in order to alleviate the challenges involved with experimental methods.

With the availability of TB genome and proteome, as well as abundant structural data, data mining

and docking strategies can be employed for target identification. Virtual screening (VS) can then be

applied to pick out the best potential candidates from a database containing millions of molecules for a

chosen TB target. After validation of candidates, structure-activity or -property relationship (SAR/SPR)

studies can be implemented to understand mechanism of action and ADMET (absorption, distribution,

metabolism, excretion, and toxicity) properties in order to design compounds with better activity and

pharmacokinetics. Data (both positive and negative results) taken from these investigations can be

kept and used for further iteration and method optimization in the design of novel TB compounds.

Both commercial and free software and webservers have been developed covering different SBDD and

LBDD techniques, some of which are listed in Table 1.

Figure 2. In silico tools that can be applied to TB drug design and development.
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Table 1. Free and commercially available programs, webservers, and source codes for SBDD and LBDD.

Function
Software/

Webserver Name
Availability Website

Comparative modeling SWISS-MODEL [32] Free webserver https://swissmodel.expasy.org/

Structural geometry
confirmation

MODELLER [33]

Free standalone program for
academic license or

commercially available
through BIOVIA

https://salilab.org/modeller/
https://www.3dsbiovia.com/

Robetta [34] Free webserver http://new.robetta.org/

Prime [35]
Commercially available

through Schrödinger
https://www.schrodinger.com/prime

I-TASSER [36–41]
Free webserver or

standalone program for
academic license

https://zhanglab.ccmb.med.umich.edu/I-TASSER/

HHPred [42–44] Free webserver https://toolkit.tuebingen.mpg.de/tools/hhpred

Structural geometry
confirmation

PROCHECK [45]
Free webserver and source

code
https://www.ebi.ac.uk/thornton-srv/software/

PROCHECK/

Druggability and
binding site prediction

Druggability and
binding site prediction

ProSA [46] Free webserver https://prosa.services.came.sbg.ac.at/prosa.php

VERIFY3D [47] Free webserver https://servicesn.mbi.ucla.edu/Verify3D/

ERRAT [48] Free webserver https://servicesn.mbi.ucla.edu/ERRAT/

PockDrug [49] Free webserver
http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-

bin/index.py?page=home

DoGSiteScorer [50] Free webserver https://proteins.plus/

fpocket [51,52] Free/open source platform https://github.com/Discngine/fpocket

CASTp [53–55] Free webserver http://sts.bioe.uic.edu/castp/calculation.html

PocketQuery [56] Free webserver http://pocketquery.csb.pitt.edu/

PASS [57] Free/open source platform
http://www.ccl.net/cca/software/UNIX/pass/

overview.html

SiteMap [58]
Commercially available

through Schrödinger
https://www.schrodinger.com/sitemap

Docking,
pharmacophore, and

virtual screening
Docking,

pharmacophore, and
virtual screening

ConCavity [59] Free webserver https://compbio.cs.princeton.edu/concavity/

PrankWeb [60] Free webserver http://prankweb.cz/

ProFunc [61] Free webserver
http:

//www.ebi.ac.uk/thornton-srv/databases/ProFunc/

AutoDock [62] and
AutoDock Vina [63]

Free standalone program http://autodock.scripps.edu/

DOCK [64] Free/open source platform http://dock.compbio.ucsf.edu/

GOLD [65]
Commercially available

through CCDC
https://www.ccdc.cam.ac.uk/solutions/csd-

discovery/components/gold/

Glide [66]
Commercially available

through Schrödinger
https://www.schrodinger.com/glide/

Induced Fit [67]
Commercially available

through Schrödinger
https://www.schrodinger.com/induced-fit

FlexX [68]
Commercially available

through BioSolveIT
https://www.biosolveit.de/flexx/index.html

RosettaLigand [69]
Free/open source platform

for academic license
https://www.rosettacommons.org/software

CDOCKER [70]
Commercially available

through BIOVIA
https://www.3dsbiovia.com/

SwissDock [71,72] Free webserver http://www.swissdock.ch/docking

Pharmer [73] Free/open source platform http://smoothdock.ccbb.pitt.edu/pharmer/

CATALYST [74]
Commercially available

through BIOVIA

https://www.3dsbiovia.com/products/
collaborative-science/biovia-discovery-studio/

pharmacophore-and-ligand-based-design.html

PharmGist [75] Free webserver http://bioinfo3d.cs.tau.ac.il/pharma/php.php

LigandScout [76]
Commercially available

through Inte:Ligand
http://www.inteligand.com/ligandscout/

SwissSimilarity [77] Free webserver http://www.swisssimilarity.ch/

https://swissmodel.expasy.org/
https://salilab.org/modeller/
https://www.3dsbiovia.com/
http://new.robetta.org/
https://www.schrodinger.com/prime
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://toolkit.tuebingen.mpg.de/tools/hhpred
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://prosa.services.came.sbg.ac.at/prosa.php
https://servicesn.mbi.ucla.edu/Verify3D/
https://servicesn.mbi.ucla.edu/ERRAT/
http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=home
http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/index.py?page=home
https://proteins.plus/
https://github.com/Discngine/fpocket
http://sts.bioe.uic.edu/castp/calculation.html
http://pocketquery.csb.pitt.edu/
http://www.ccl.net/cca/software/UNIX/pass/overview.html
http://www.ccl.net/cca/software/UNIX/pass/overview.html
https://www.schrodinger.com/sitemap
https://compbio.cs.princeton.edu/concavity/
http://prankweb.cz/
http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/
http://www.ebi.ac.uk/thornton-srv/databases/ProFunc/
http://autodock.scripps.edu/
http://dock.compbio.ucsf.edu/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.schrodinger.com/glide/
https://www.schrodinger.com/induced-fit
https://www.biosolveit.de/flexx/index.html
https://www.rosettacommons.org/software
https://www.3dsbiovia.com/
http://www.swissdock.ch/docking
http://smoothdock.ccbb.pitt.edu/pharmer/
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/pharmacophore-and-ligand-based-design.html
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/pharmacophore-and-ligand-based-design.html
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/pharmacophore-and-ligand-based-design.html
http://bioinfo3d.cs.tau.ac.il/pharma/php.php
http://www.inteligand.com/ligandscout/
http://www.swisssimilarity.ch/
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Table 1. Cont.

Function
Software/

Webserver Name
Availability Website

LEA3D [78] Free webserver https://chemoinfo.ipmc.cnrs.fr/LEA3D/index.html

PyRx [79]
Free (no support) or

commercially available
https://pyrx.sourceforge.io/

Phase [80]
Commercially available

through Schrödinger
https://www.schrodinger.com/phase

Molecular Dynamics

AMBER [81,82] Commercially available https://ambermd.org/

CHARMM [83]
Free or commercially

available through
CHARMM or BIOVIA

http://charmm.chemistry.harvard.edu/
https:

//www.3dsbiovia.com/products/collaborative-
science/biovia-discovery-studio/simulations.html

CHARMMing [84] Free webserver https://www.charmming.org/charmming

GROMACS [85,86] Free/open source platform http://www.gromacs.org/

NAMD [87] Free/open source platform https://www.ks.uiuc.edu/Research/namd/

Desmond [88]
Commercially available

through Schrödinger
https://www.schrodinger.com/desmond

SwissParam [89] Free webserver http://www.swissparam.ch/

CHARMM-GUI [90] Free webserver http://www.charmm-gui.org/

ParamChem CGenFF
[91–93]

Free webserver https://cgenff.umaryland.edu/

VMD [94] Free/open source platform https://www.ks.uiuc.edu/Research/vmd/

Molecular Descriptors,
Fingerprints, and

Quantitative
Structure-Activity

Relationship

Dragon [95]
Commercially available

through Talete
http://www.talete.mi.it/products/dragon_

description.htm

E-Dragon [96] Free webserver http://146.107.217.178/lab/edragon/start.html

Canvas [97]
Commercially available

through Schrödinger
https://www.schrodinger.com/canvas

RDKit [98] Free/open source platform
https://www.rdkit.org/docs/source/rdkit.ML.

Descriptors.MoleculeDescriptors.html

PyDescriptor [99] Free/open source platform https://ochem.eu/home/show.do

Mordred [100] Free/open source platform https://github.com/mordred-descriptor/mordred

Open3DQSAR [101] Free/open source platform http://open3dqsar.sourceforge.net/?Home

ChemSAR [102] Free webserver http://chemsar.scbdd.com/

SeeSAR [103]
Commercially available

through BioSolveIT
https://www.biosolveit.de/SeeSAR/

Pharmacokinetic
properties

QikProp [104]
Commercially available

through Schrödinger
https://www.schrodinger.com/qikprop

ADMET Predictor [105]
Commercially available

through SimulationsPlus,
Inc.

https:
//www.simulations-plus.com/software/overview/

ACD Percepta [106]
Commercially available

through ACD/Labs
https:

//www.acdlabs.com/products/percepta/index.php

FAF-Drugs4 [107] Free webserver http://fafdrugs4.mti.univ-paris-diderot.fr/

PatchSearch [108] Free webserver
http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/

portal.py#forms::PatchSearch

TOPKAT [109] and
ADMET [110]

Commercially available
through BIOVIA

https://www.3dsbiovia.com/products/
collaborative-science/biovia-discovery-studio/

qsar-admet-and-predictive-toxicology.html

PASS Online [111]
Free webserver or

commercially available
standalone program

http://pharmaexpert.ru/Passonline/index.php

SwissADME [112] Free webserver http://www.swissadme.ch/

MetaSite [113]
Commercially available

through Molecular
Discovery

https://www.moldiscovery.com/software/metasite/

ToxPredict [114] Free webserver https://apps.ideaconsult.net/ToxPredict#

VirtualToxLab [115–118] Free standalone software http://www.biograf.ch/index.php?id=home

admetSAR [119–121] Free webserver http://lmmd.ecust.edu.cn/admetsar1/home/

MetaTox [122,123] Free webserver http://way2drug.com/mg2/

More available tools and detailed descriptions for the programs and servers can be found at https://www.click2drug.org/.

https://chemoinfo.ipmc.cnrs.fr/LEA3D/index.html
https://pyrx.sourceforge.io/
https://www.schrodinger.com/phase
https://ambermd.org/
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https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/simulations.html
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/simulations.html
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http://www.gromacs.org/
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https://www.schrodinger.com/desmond
http://www.swissparam.ch/
http://www.charmm-gui.org/
https://cgenff.umaryland.edu/
https://www.ks.uiuc.edu/Research/vmd/
http://www.talete.mi.it/products/dragon_description.htm
http://www.talete.mi.it/products/dragon_description.htm
http://146.107.217.178/lab/edragon/start.html
https://www.schrodinger.com/canvas
https://www.rdkit.org/docs/source/rdkit.ML.Descriptors.MoleculeDescriptors.html
https://www.rdkit.org/docs/source/rdkit.ML.Descriptors.MoleculeDescriptors.html
https://ochem.eu/home/show.do
https://github.com/mordred-descriptor/mordred
http://open3dqsar.sourceforge.net/?Home
http://chemsar.scbdd.com/
https://www.biosolveit.de/SeeSAR/
https://www.schrodinger.com/qikprop
https://www.simulations-plus.com/software/overview/
https://www.simulations-plus.com/software/overview/
https://www.acdlabs.com/products/percepta/index.php
https://www.acdlabs.com/products/percepta/index.php
http://fafdrugs4.mti.univ-paris-diderot.fr/
http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PatchSearch
http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PatchSearch
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https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://pharmaexpert.ru/Passonline/index.php
http://www.swissadme.ch/
https://www.moldiscovery.com/software/metasite/
https://apps.ideaconsult.net/ToxPredict#
http://www.biograf.ch/index.php?id=home
http://lmmd.ecust.edu.cn/admetsar1/home/
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3.1. Databases

The era of big data has greatly affected the current drug discovery paradigm through innovations

in data storage, management, and mining. Moreover, drastic cost reductions in sequencing technologies

allowed the study of multi-omics (e.g., genomics, transcriptomics, proteomics, and metabolomics) for

several species including M. tuberculosis [124–129]. In order to take advantage of the benefits provided

by SB and LB techniques, these biological and/or chemical data must be acquired for analysis via

numerous publicly accessible databases on the internet [130–132]. Given that TB is an old disease,

vast amounts of data points have already been gathered and are waiting to be used in the fight against

this infection.

One of the most extensive and widely-used protein information resource is UniProt (https://www.

uniprot.org/) [133], which consists of annotations from several other databases for protein function, omics,

and structural data. More specific to TB, the TB Database (http://tbdb.bu.edu/tbdb_sysbio/MultiHome.

html) [134,135] contains information on mycobacterium genomes, genes, gene expression correlation,

gene epitopes, and experimental and computational models of TB molecular pathways. Alternatively,

genomic and proteomic data for various pathogenic mycobacteria can also be found in the Mycobrowser

(https://mycobrowser.epfl.ch/) [136], which is linked to UniProt for mycobacterium protein information.

On the other hand, patient clinical data is provided by the TB Portals (https://tbportals.niaid.nih.gov/) [137],

which is an open-access platform containing socioeconomic, geographic, clinical, laboratory, radiological,

and genomic data from patients infected with drug-resistant TB, from the National Institute of Allergy

and Infectious Diseases (NIAID) in collaboration with data scientists and clinicians and scientists from

countries suffering from heavy TB burden.

Advances in structural and computational biology techniques led to the surge in structural data,

resulting in thousands of three-dimensional protein structures generated from X-ray crystallography,

nuclear magnetic resonance (NMR), cryo-electron microscopy (EM), homology modeling, and molecular

dynamics (MD) simulations. Data from these experiments are customarily deposited to structure

databases such as PDB [29], PDBsum [138], etc. Associated with this, the size of the virtual chemical

space [28] and improvements in combinatorial chemistry [139] also permitted the availability of

chemical libraries (Table 2).

Table 2. Publicly available compound libraries.

Database
Size

(Approximate)
Website

GDB-17 [140] 166 billion http://gdb.unibe.ch/
Enamine REAL [141] 700 million https://enamine.net/

PubChem [131] 97 million https://pubchem.ncbi.nlm.nih.gov/
ChemSpider [142] 77 million http://www.chemspider.com/

ZINC [143] 230 million http://zinc.docking.org/
ChEMBL [144] 1.9 million https://www.ebi.ac.uk/chembl/

NCI [145] 460,000 https://cactus.nci.nih.gov/download/roadmap/

Protein subcellular localization databases are also available for study, such as eSLDB (eukaryotic

Subcellular Localization database) for general eukaryotes [146], LOCATE for human and other

mammals [147], and PSORTdb for bacteria and archaea [148]. Lead optimization and drug repurposing

researches can also benefit from protein binding databases like ReLiBase, which consists of interaction

information for receptor-ligand complexes from PDB [149], BindingDB, which describes interactions

and affinity information between protein target and drug-like molecules [150,151], and Database of

Interacting Proteins (DIP) [152], Biological General Repository for Interaction Datasets (BioGRID) [153]

and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [154], which contains data on

protein-protein interactions.

https://www.uniprot.org/
https://www.uniprot.org/
http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html
http://tbdb.bu.edu/tbdb_sysbio/MultiHome.html
https://mycobrowser.epfl.ch/
https://tbportals.niaid.nih.gov/
http://gdb.unibe.ch/
https://enamine.net/
https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
http://zinc.docking.org/
https://www.ebi.ac.uk/chembl/
https://cactus.nci.nih.gov/download/roadmap/
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3.2. Structure-Based Tools

3.2.1. Comparative Modeling, Binding Site Prediction, and Druggability

Employment of SBDD tools (Figure 2 and Table 1) require not only the availability of 3D structural

data but also information on its druggability and potential binding sites. In the absence of structural

data obtained from experiments, such as X-ray crystallography and NMR, a computational model

can also be generated either through homology modeling or protein threading techniques (Table 1),

which are well-established methods in protein comparative modeling. Homology modeling entails

the use of a structural template with suitably similar sequence as the target protein [155]. The most

critical stage of any homology modeling procedure is the initial sequence alignment. While there

are numerous bioinformatics tools available for this, such as NCBI Blast [156–158], COBALT [159],

Clustal Omega [160], KAlign [161], etc., manual inspection and modification of the alignment is crucial,

especially if a researcher’s knowledge about specific protein folds and domains need to be further

incorporated. Then, the secondary structures (i.e., alpha helices, beta strands, loops, etc.) are copied

from the template based on the final sequence alignment in order to approximate the target structure.

The final model is then refined through minimization or MD and its stereochemical quality is checked

using tools like those listed in Table 1 until the structure has improved and is suitable for further

computational studies.

Druggability is the capacity of a protein target to be modulated by a ligand. It is important

to characterize this property as it helps avoid intractable proteins and allows the identification and

prioritization of significant targets. Some predictive approaches that include this property are listed in

Table 1. A druggability database, the Druggable Cavity Directory (DCD), is also publicly available to

allow researchers to submit protein pocket and druggability information, which is later verified and

made available to other researchers [162]. After ascertaining that a given target is indeed tractable,

binding pocket information should be acquired either from protein structures complexed with natural

substrates or known inhibitors, or from mutational data distinguishing key interaction residues. Ideally,

a binding pocket is a concave area in the receptor that is characterized by chemical features with which a

ligand can desirably interact to attain the required receptor behavior (e.g., inhibition or activation) [163].

However, if binding information is unknown, several in silico methods and webservers (Table 1) are

available to identify potential receptor binding sites from a given structure and have been described in

detail elsewhere [31]. Otherwise, a number of studies have also used ‘blind’ docking [164], wherein

the whole protein is set as the binding site, allowing ligands to freely bind anywhere in the structure in

the hopes of finding a suitable pocket.

It is also prudent to remember that other potential binding sites may be present on the target

surface, i.e., allosteric sites. Conventional drug discovery efforts often target the primary (orthosteric)

binding site to block substrate binding. But, as in the case of uncompetitive and noncompetitive

inhibitors, ligands can also allosterically modulate activity within the protein structure. Such is the

case in the study done by Shi and colleagues, where they identified a second druggable binding site in

Mtb UDP-galactopyranose mutase (UGM) [165]. NMR and kinetics studies classified MS-208, a known

MtbUGM inhibitor, as a noncompetitive/mixed inhibitor and therefore binds in another site in the

enzyme to allosterically affect substrate binding. Blind docking in AutoDock Vina [63] was performed

to identify possible allosteric sites for MS-208. Two regions, A- and S-site, were initially identified and

docked complexes featuring binding to either sites were further subjected to simulation studies using

Amber [81]. The A-site-bound structure exhibited the most stable complex formation with excellent

interaction energy, as well as the most number of contacts, suggesting that this is the second druggable

binding site in MtbUGM [165].

3.2.2. Pharmacophore Modeling and Molecular Docking

Virtual screening is one of the most popular in silico drug discovery approaches as it allows

researchers to quickly extract data from unexplored chemical space in a cost-effective manner. It has
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become customary to complement high-throughput screening with VS for the prioritization and

identification of novel ligands with the most potential as starting points for drug discovery efforts [166].

Two of the most common VS methods are pharmacophore modeling [167] and docking [168].

Pharmacophore models can be generated from a receptor alone or a receptor-ligand complex.

Previously, due to lack of protein structural data, ligand-based pharmacophore has been more

customarily used (see Section 3.3.2). A pharmacophore is a group of geometrically-mapped chemical

features, such as H-bond donors and acceptors, hydrophobicity, and ionizable groups, required for

optimal interactions to elicit a response between a receptor target and its partner molecule [169,170].

In line with 3D-mapping in a pharmacophore, exclusion volumes can also be included in the model to

incorporate binding site shape [171]. After generating a 3D model, large chemical databases can be

efficiently searched for candidates that match pharmacophore elements. However, the pharmacophore

database screen only provides a fit score that cannot be translated as affinity. The fit score weighs

the alignment quality between the ligand substructures and center of model features. Weights and

penalties can also be employed for features deemed significant to activity [171]. These models can also

be used for scaffold hopping, allowing for the discovery of novel chemotypes based on fit of interaction

and geometric characteristics [171,172].

Another well-established in silico method is docking, which can be used to facilitate the

investigation of how ligands can fit and complement receptor binding pocket features in order

to modulate its activity [168]. Numerous docking methods (Table 1) have been developed and

comparative studies and detailed reviews about these have been published elsewhere [173–177].

In the early days of computational drug discovery, docking was developed to be able to predict the

bioactive conformation within a set of docking results. However, protein-ligand interactions need

to be evaluated using a scoring function to find the best pose using estimated affinity, distinguish

actives from inactives, and prioritize candidates for further testing and optimization. This was soon

discovered to be the most challenging part of docking due to approximations applied to other crucial

factors, such as protein flexibility, solvent involvement, and system entropy [168]. Despite advances

in scoring functions through increased understanding of protein-ligand interactions, it is difficult to

handle all these aspects while still maintaining method efficiency. Moreover, scoring functions often

depend on the protein families and ligand sets from which it was generated and validated [31,178].

And while there is currently no ideal scoring function that can be utilized across all druggable targets,

implementation of method validation before starting any VS project establishes whether a chosen

docking method and scoring function can be applicable or not [171].

Both pharmacophore modeling and docking have been applied in combination with other in silico

tools for the identification of novel antimycobacterial agents. Pharmacophore screening followed by

docking can be employed as complementary screening tools, resulting in faster processing and more

optimized results. A recent study published by our group exemplifies both pharmacophore-based and

docking VS by targeting Mtb 7,8-diaminopelargonic acid aminotransferase (BioA), an important enzyme

in its lipid biosynthesis pathway with no corresponding human ortholog [179]. A receptor-based

pharmacophore was generated in Discovery Studio [180] using the BioA structure, characterizing

25 functionalities (nine hydrophobic, nine H-bond donors, and seven H-bond acceptors), and was

employed to screen 4.5 million compounds from the Enamine REAL database. Compounds with

good pharmacophore fit, as well as the co-crystallized inhibitor, were subsequently docked to the

BioA protein via CDOCKER [70] and ligands with better binding energy values than the known

inhibitor were chosen for the TOPKAT protocol [109] to filter out potentially toxic compounds.

This step-by-step screening led to the identification of 45 virtual hits, 17 of which were available for

purchasing and validation. Whole-cell assay was performed to eliminate compounds that cannot

penetrate the distinctive thick, waxy lipid layer of the mycobacterium, identifying compound 7

((Z)-N-(2-isopropoxyphenyl)-2-oxo-2-((3-(trifluoromethyl)-cyclohexyl)amino)acetimidic acid) as a

potential BioA inhibitor with a minimum inhibitory concentration of ~25 µM [179].
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Throughout the years, various improvements have been harnessed to enhance ranking

performance, such as rescoring or consensus scoring. Given the different strengths and limitations of

each scoring function, rescoring with the help of a separate scoring function not used in a docking

study provides users with a different perspective for selection of final hits. For instance, a faster scoring

function can be employed for pose prediction while another one is used for affinity prediction and

ranking [171]. Currently, consensus scoring is more commonly used for docking studies and has

already been examined by several groups in the last couple of decades as an improved protocol for

finding potential hits [181–185]. This strategy aims to characterize the intricacy of target molecular

recognition based on various energy functions which can be covered by several scoring schemes,

resulting in decrease in false positives [184]. However, there is also a risk of rejecting true positives,

which have favorable scores in only 1 function used. Thus, it is also imperative to validate a consensus

scoring workflow against specific targets [171]. An exemplary case features salicylate synthase MbtI,

a critical enzyme in the biosynthesis of siderophore mycobactins, which is used by Mtb to chelate iron

required for growth and survival in the host. Absence of siderophores prevents bacterial growth in the

persistent state after engulfment by macrophages [186]. Previously identified MbtI inhibitors include

those based on the MbtI reaction intermediate isochorismate [187], benzimidazole-2-thione [188],

and chromane scaffolds [189]. Chiarelli et al. [190] discovered furan-based MbtI inhibitors through

structure-based pharmacophore and consensus docking. The pharmacophore model was generated

from important binding features in the MbtI-inhibitor complex, including interaction with the

conserved Y385, lipophilic interactions, and ionizable interaction with the Mg2+ ion. Screening of

1.5 M compounds from Enamine [141] led to over 2,000 pharmacophore hits which were subjected

to consensus docking. Docking methods including AutoDock [62], AutoDock Vina [63], DOCK [64],

FRED [191], GOLD [65] (comprising four scoring functions), and PLANT [192] were first evaluated

using several MbtI-inhibitor complexes to identify which methods are most reliable. GOLD and

PLANT were employed for the consensus procedure of the pharmacophore hits, and those with similar

binding modes and consistent scores across all scoring functions were further examined if the docked

conformation still matched the 3D arrangement of the pharmacophore model. From these, five virtual

hits progressed to bioassays, wherein two compounds showed potent MbtI inhibitory activity. MD

simulation was additionally applied to study enzyme-ligand interactions and provide information

for further optimization. The furan scaffold from the more potent hit was used as a starting point

for lead optimization, resulting in a candidate with promising activity against MbtI and suitable

antimycobacterial activity [190].

Inclusion of limited protein flexibility, such as in the binding pocket, while still maintaining

efficiency has been considered in methods like induced fit docking (IFD) and ensemble docking. IFD

incorporates the principle that ligand binding induces changes in residue side chain conformations

within the specified pocket, thereby inciting tighter binding with the receptor [193,194]. However,

backbone movement should also be considered as it increases the accuracy of side chain positioning

and orientations [31]. An example of this is shown in Figure 3, in which Mtb InhA exhibits

backbone and side chain conformational differences between its apo (PDB ID: 4DRE) [195], fatty acyl

substrate-bound (PDB ID: 1BVR) [196] and isoniazid (INH)-bound (PDB ID: 4TRO) structures [197].

These movements can change the binding pocket shape and volume, potentially affecting VS results.

The utilization of several experimentally—(X-ray crystallography, NMR, or cryo-electron microscopy)

or computationally-derived (MD trajectory) protein structures to integrate both backbone and side

chain movements has also been employed in ensemble docking [198]. Structural ensembles provide

better reproducibility of experimental conditions as rigid protein structures, such as those obtained from

X-ray crystallography experiments, only provide a snapshot of a dynamic ensemble of conformations.
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Figure 3. Backbone and sidechain flexibility shown by Mtb InhA, apo vs. fatty acyl-bound vs.

INH-bound. (A) Structural overlay of apo, fatty acyl-bound, INH-bound Mtb InhA shows backbone

movement upon substrate (fatty acyl) binding. Binding site comparison of (B) fatty acyl-bound and

(C) INH-bound vs. apo Mtb InhA structure shows distinct changes in residue side chain positions

and conformations. Black arrows indicate movement of alpha helices, side chains that showed large

conformational change upon fatty acyl or INH binding are labelled in black.

Various docking approaches were applied by Brindha et al. [199] for drug repurposing against

Mtb murE, which is an attractive target due to its significance in the peptidoglycan biosynthesis

of tuberculosis bacteria and lack of eukaryotic homolog. VS of compounds from DrugBank [200]

was first implemented through the parallel use of Glide Standard Precision (SP) [66] and AutoDock

Vina [63]. To improve prioritization of compounds through the incorporation of binding site flexibility,

common hits from both methods were further subjected to IFD [67]. Final rankings were done

using Glide eXtra Precision (XP) scoring and AutoDock Vina binding energy prediction, resulting

in 17 common top hits identified as repurposed antitubercular drug candidates [199]. In another

example, ensemble docking using three enzyme structures was performed to better elucidate ligand

binding interactions, especially due to the binding site flexibility of the Mtb Type II dehydroquinase

(MtDHQase), an essential virulence factor in TB [201]. Conformation of key residues were determined

by analyzing superimposed MtDHQase structures and rotamer distribution of each residue from the

penultimate rotamer library [202]. The benzene sulfonamide containing compound with the best

activity, a Schaeffer’s acid amide, was docked using GOLD [65] and scored using ChemPLP [203].

Varying the side chain flexibility during the docking procedure led to the identification of residues

that are required to transition the binding site into an open conformation, which is the preferred

conformation of the inhibitor to display its activity. Along with the interaction and flexibility data,

Schaeffer’s acid amide can be optimized into a potent antitubercular therapeutic compound [201].

3.2.3. Molecular Dynamics

The availability of 3D structural information has greatly helped in structure-based drug design by

presenting atomic-level insights into molecular interactions. Nonetheless, these provide only partial

interpretations of biomolecular structures, as well as related aspects of molecular recognition and

binding. In physiological conditions, proteins frequently undergo conformational changes upon
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binding with a partner, such as a small molecule, peptide, or another protein, to perform a specific

function. At times, these transformations only involve side chain conformations and small to medium

movements in the backbone. However, there are cases in which significant deviations are seen in the

overall protein fold and/or subunit arrangement [204–207].

Molecular dynamics simulation, a method that was first developed in the 70s [208], can be

employed to analyze these protein dynamics and study the binding energy landscape. The availability

of MD platforms (Table 1) allowed for the routine assimilation of simulation studies for systems

containing ~50,000–100,000 atoms. The investigation of even larger systems is made possible using

graphics processing units (GPUs), which are high-performance processors that can support heavy

computational load, and high-performance computing (HPC) technologies featuring messaging passing

interface (MPI), a system which employs multiple cores in parallel to distribute computational load

and reduce the time required for simulation [206,209]. Popular MD packages have been adapted

for these tools, and while MD simulation projects commonly use a combination of both, the speedy

development of more advanced GPUs increasingly allows for the use of personal workstations [206].

To start an MD simulation, a 3D protein structure of the required system (e.g., apo protein,

protein-ligand or protein-protein complex) must be obtained experimentally or through homology

modeling, and represented based on the duration and details of study [206,210]. Another critical aspect

of system preparation in MD is the solvent model, which can be explicit or implicit. Explicit solvent is

more frequently used due to its simplicity and its proficiency in recovering native solvent effects to

protein structure [211]. However, large system size resulting from this model makes conformational

sampling challenging. To speed up conformational sampling, an implicit solvent model can be

generated by adding approximations to the system, but this may affect the free energy landscapes [212].

Once a solvent model has been chosen, the next step is to select an appropriate force field, which is

used to define the forces acting on every atom in the system and to calculate the potential energy

within the molecular structure. While there are numerous force fields that have been and are still being

developed and improved, some of the most popular force fields applied in simulation systems are

currently CHARMM [213], Amber [214], GROMOS [215], and OPLS-AA [216,217]. Different force

fields use different parameterization to characterize atomistic molecular simulations, distinguishing

their applicability in atomistic molecular simulations of diverse target structures and systems, but are

often equivalent [206]. To ensure efficiency while keeping the calculations accurate, simple molecular

representations in force fields include springs depicting bond length and angles, periodic functions

depicting rotations and Lennard-Jones potentials, and Coulomb’s law characterizing van der Waals

and electrostatic interactions within the system [206]. Newton’s law of motion is then employed for the

computation of accelerations and velocities during atom movement. Minimization and equilibration

are typically performed ahead of a production run to adjust the system to the applied force field, relax

steric clashes, and to stabilize system temperature and pressure. Once the prepared system is correctly

minimized and equilibrated, the production run can be performed for a suitable amount of time (ps, ns,

µs, etc.) depending on research needs (Figure 4). A timestep of 1 or 2 fs is frequently used for atomistic

MD simulations [206].

Figure 4. Typical molecular dynamics simulation workflow.

After obtaining simulation trajectories, this information can be used for additional analyses,

including but not limited to: (1) verifying stability through root-mean-square deviation (RMSD),

root-mean-square fluctuation (RMSF), or radius of gyration (RoG) [218,219], which can identify

critical components for protein flexibility, (2) investigating protein structural or energy networks

through network analysis [220], which can pinpoint residues that are pivotal in allosteric or long-range

communications within the protein, (3) studying protein energy landscape by mapping trajectories [221],
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providing information about protein folding and function, as well as most stable populations within a

given trajectory. Findings from each analysis provide crucial information that would otherwise be

imperceptible with other techniques, thereby increasing our understanding of a given system.

With current computational capabilities, simulation times are nearly of biological relevance,

allowing researchers to observe biological events, such as allosteric regulation, transient protein

changes and binding, and enzyme catalysis. A number of MD studies have already been done

for the structural and functional elucidation of validated TB targets and design new antitubercular

agents [222–224]. One such study investigated the differences of inhibitor binding against wild-type

and mutant structures of InhA, a very well-known TB target [223]. Mutations for this protein led

to lower affinity for its co-factor, NADH, resulting in isoniazid resistance. MD simulations of the

wild-type and mutant structures of InhA bound to NADH were performed using Amber [81] to

understand the underlying aspects affected by structural mutations. Schroeder and colleagues found

that mutations in the glycine-rich loop (I21V and I16T) disturbed the NADH binding conformation,

specifically that of its pyrophosphate moiety, and decreased its direct and indirect H-bond contacts

within the binding pocket. Isoniazid requires the formation of a covalent adduct with NADH within

the InhA binding site. Changes in binding interactions and conformation of NADH can negatively

affect this, hence, contributing to isoniazid resistance [223]. A very recent MD study for TB drug

discovery using Amber [81] has been published by Cruz et al. [224], wherein the binding mechanisms

of Tam1 and its analogs against polyketide synthase 13 (Pks13), an enzyme that carries out the final step

in mycolic acid biosynthesis [225], were investigated to obtain insights that can aid in the design of new

antitubercular agents [224]. Fluctuation analysis revealed distinct flexibility in the protein lid domain

of Mtb Pks13, which was decreased upon ligand binding, suggesting that residues from this domain

are critical for ligand interaction. Binding free energy calculations from trajectory data agreed with

experimental data, identifying Tam16 as the most potent of the Tam analogs due to conformational

stability offered by H-bond interactions at both ends of the ligand structure that was not observed for

other compounds. Energy decomposition analysis further specifically identified residues that greatly

contributed to inhibitor binding, which can then be targeted for optimization of Tam16 and the design

of other analogs [224].

3.3. Ligand-Based Tools

3.3.1. Similarity-Based and Quantitative Structure-Activity/Property Relationship Methods

Even before the upsurge of available target structural data, rational inhibitor design has been

employed with the help of substrate or product structures, and thus termed as ligand-based drug discovery

and design (Figure 2). The simplest and most inexpensive LBDD approach is the similarity-based method,

wherein compound candidates were designed and optimized through the principle of chemical similarity,

i.e., similar (untested) ligand structures are posited to have similar activities as known inhibitors or

modulators [226,227]. A typical workflow requires one or more reference structures with existing

bioactivity information against a specific target. This is then used as a template to select new potential

candidates from a chemical database to prioritize for assay testing.

Different molecular descriptors and parameterizations can be employed to characterize compounds

and efficiently determine similarities. Descriptors can be generated as one-, two- or three-dimensional

(1D, 2D, or 3D), wherein 1D descriptors comprise of global ligand properties (e.g., molecular weight,

logP, number of H-bonds, etc.), 2D descriptors include topological and connectivity properties (e.g.,

aromaticity, degree of branching, etc.), and 3D descriptors involve geometrical properties (e.g., shape,

volume, surface area, etc.) [228,229]. Additionally, fingerprints can also be used to depict template

and database compounds by rendering structural features, such as those based on substructure (i.e.,

scaffold or functional groups), topology or path (i.e., fragmentation following a linear path of bonds),

circular or radial (i.e., surrounding features of an atom up to a certain radius), and pharmacophoric

(i.e., distance-based features, incorporating molecular shape, and interactions required for biological
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activity) elements [230]. Well-known platforms that generate molecular descriptors and fingerprints

are listed in Table 1.

To compare structural similarity after obtaining simplified molecular features, similarity coefficient

and weighing scheme are required to measure and highlight the importance of certain aspects of a

compound’s structure in relation with its activity. Given that there are multiple tools available for both

components, careful selection of analysis tools is crucial to have successful VS campaign. Tanimoto

coefficient, which uses the ratio of shared features in both fingerprints to the total number of features

between each fingerprint sets, is used as a standard for similarity evaluation of any two vectors.

This coefficient returns values between 1 and 0 to depict chemical similarity [231]. Other known

similarity measures include Manhattan distance, Euclidean distance, Dice index, Cosine coefficient,

and others [232]. In terms of weighing schemes, some features may be ‘silenced’ or set as optional

depending on its importance for a specific activity. There is not one method that can be considered

the best for the full range of known targets and chemicals, as each method have their own data set

applicability [233,234]. In this case, data fusion can be employed to obtain a consensus of outputs from

different methods [235,236]. Both 2D and 3D similarity methods have been successful in identifying

hits for various targets and have been established to have comparable or even better enrichment than

docking [237]. While similarity-based approaches are known for their efficiency, there is a risk of

obtaining low diversity hits as most similarity methods are highly dependent on the input structures

used to calculate descriptors [238]. Moreover, there is a potential occurrence of ‘activity cliffs,’ in which

small modifications in a ligand structure lead to significant difference in activity [239–241].

The similarity concept is also applied in studies involving quantitative structure-activity/property

relationship (QSAR/QSPR), a method which is used to investigate the correlation between structural

and physicochemical properties of ligands with known biological activities. QSAR modeling depends

on the premise that ligand 2D and 3D properties can provide information to establish a statistical

model of the desired biological activity, which can then be employed for activity prediction of ligand

candidates [242,243]. The statistical model is generated based on an appropriate data set, consisting

of compound structures with known bioactivity against a specific target, which must be checked

and pre-processed. This data set should contain an adequate number of samples (i.e., a minimum of

20 experimentally-validated compounds) and, if from separate studies, identified using same assay

protocols such that equivalent activities are obtained. Included in the data set preparation, especially

for higher dimensions of QSAR modeling, is the conformational selection and alignment which allows

the identification of scaffolds and functional groups that are critical to activity and therefore has more

weight in the statistical model [242]. In this case, it is important to remember that the lowest energy

conformation is not always equivalent to the bioactive conformation [244,245] and that ligands chosen

for the training set should interact with the same binding site [242]. Typical alignment methods include

the analysis of molecular fields, structural shapes, or pharmacophores. Pharmacophore generation

for ligand alignment is more favorable as it aligns compounds based on feature similarity rather

than chemical substructure [246]. As with similarity-based methods, QSAR makes use of molecular

descriptors with dimensionality depending on the information available. Descriptors applied to the

model should be carefully chosen to avoid autocorrelation and over-fitting. Before proceeding with

and in silico prediction study, the model must be validated with internal and/or external data sets to

establish its predictivity and applicability against a desired target [31,247].

Different QSAR methods have been developed and incorporated in various open-source platforms

and commercial software (Table 1). The earliest QSAR-based algorithms include Comparative Molecular

Field Analyses (CoMFA) [248] and Comparative Molecular Similarity Indices Analysis (CoMSIA) [249],

both of which are still widely used today for various drug discovery endeavors [250–253]. 3D-QSAR

CoMFA was used by Singh and Supuran [252] for the discovery of novel Mtb carbonic anhydrase

inhibitors. A number of sulfonamides that target Mtb carbonic anhydrase 2 to regulate bacterial growth

were used as the data set for QSAR modeling. The best developed model had excellent predictivity

and good fit with an r2 value of 0.93 and cross-validated coefficient q2 value of 0.88. From the CoMFA
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results, it was also determined that several steric and electrostatic features play critical roles in the

inhibition of Mtb carbonic anhydrase 2. Using this information, nine compounds were designed and

later observed to have better predicted inhibitory activities compared to the test set used. However,

experimental validation is still required to determine the feasibility of these findings [252].

3.3.2. Ligand-Based Pharmacophore Modeling

Pharmacophore modelling have already demonstrated its value in ligand-based drug discovery

studies. Ligand substructures required for optimal bioactivity can be aligned and characterized as

a spatial arrangement of features in 3D space, which can be directly used for screening or applied

to 3D-QSAR modeling [169,170,246]. Several software and webservers (Table 1) are available for the

generation of ligand-based pharmacophores.

As with any other ligand-based methods, a data set of diverse ligands with known bioactivity

against a specific target is required for pharmacophore generation. The training ligands used for

ligand-based pharmacophore modeling must bind to the same pocket and have similar binding

interactions, much like in QSAR studies. After obtaining a pharmacophore, its validity is assessed

using a separate test set. It is then employed for virtual search of candidate compounds from

libraries of untested molecules, wherein compounds are taken as potential hits if it ‘fits’ well with the

pharmacophore (Figure 5). The main advantage of pharmacophore modeling is the use of molecular

features rather than structural groups in depicting critical functionalities for activity, which allows

for the identification of novel ligands with diverse structures (i.e., scaffold hopping) [172]. Moreover,

pharmacophores can also be used for target profiling and polypharmacological studies to avoid adverse

effects resulting from off-target binding [254]. This is especially useful when designing antitubercular

and other antibiotic or antiviral agents as to avoid harmful interactions with human proteins.

Due to the numerous parallels between pharmacophore and 3D-QSAR modeling, these methods

have been used in combination for a number of ligand-based drug discovery efforts. A study by Tawari

et al. used PHASE [80] to target the Mtb aryl acid adenylating enzymes known as MbtA, which are

involved in siderophore biosynthesis in tuberculosis [255]. A set of nucleoside bisubstrate analogs with

known whole cell assay activity and bioactivity against siderophore biosynthesis in Mtb were used

for pharmacophore and QSAR model development. H-bond donor, H-bond acceptor, and aromatic

features were found to be critical for the inhibition of MbtA. The pharmacophore was also used to align

molecules for the 3D-QSAR model, which exhibited suitable predictability and applicability with a Q2

value of 0.71, RMSE of 0.65, and Pearson-R of 0.85 when assessed against a test set. The SAR studies

additionally revealed the disadvantageous effects of bulky groups at the adenyl moiety C-6 position.

Information taken from these models can be used for the rational design of new MbtA bisubstrate

inhibitors as antitubercular agents [255].

Figure 5. Typical ligand-based pharmacophore generation and screening workflow.
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3.3.3. Density Functional Theory

Density functional theory (DFT) is quantum mechanical method established in the 1960s [256,257],

which can be used in material science, computational chemistry, and computational physics to study

the electronic properties of a many-particle (e.g., atom, molecule, condensed phase) system. DFT is

based on two Hohenberg-Kohn (HK) theorems. First, the ground state properties of the many-particle

system can be determined using only three spatially determined electron densities. Second, the HK

theorem describes an energy functional, which can be minimized by the correct ground state electron

density [258]. The use of DFT circumvents the computational expense of conventional methods like

Hartree-Fock (HF) Theory since DFT relies on the premise that energies, intricate motions, and pair

correlations can be derived directly from the electron probability density alone, instead of using

wavefunctions. Theoretically, quantum mechanical wavefunctions consist of all the information

required from a target system, and while the Schrödinger equation can be solved for a simple system,

such as that of a hydrogen atom, it needs extensive computational efforts and it is impossible to solve

this for a many-body system. In this case, DFT is used as an equivalent and efficient alternative to the

Schrödinger equation [259], making DFT a popular tool in several computational fields [260].

In tuberculosis research, DFT has found uses in studies involving catalytic mechanisms [261,262],

structure-activity relationship analysis [263], and inhibitor potency [264]. Chi and colleagues applied

DFT to support their initial observations regarding a change in inhibitor binding mode in the MbtI

enzyme after the addition of a substituted enolpyruvyl group to the parent compound structure

previously designed from isochorismate [264]. X-ray crystal structures of MbtI complexed with its

inhibitors depicted two different binding modes (Mode 1 and 2), suggesting binding site flexibility to

accommodate ligand binding. The global minimum conformation of (E)-3-(1-carboxyprop-1-enyloxy)-

2-hydroxybenzoic acid (AMT), Z-methyl-AMT, and E-methyl-AMT inhibitors in solution were

calculated using Gaussian09 [265] with the B3LYP hybrid functional [266,267]. Global minimum

conformation of free Z- and E-methyl-AMT were found to be similar to its bound conformation (Mode

2), indicating prearranged conformations to facilitate its binding to MbtI. Calculation of conformational

entropy values for the three compounds revealed that Z-methyl-AMT is the least disordered, which may

be due to the methyl conformational lock in its structure. Although a pure Z-isomer has not yet been

obtained to experimentally differentiate it from the E-isomer, this finding rationalizes potent binding

of methyl-AMT to MbtI and offers more information for the future design of novel and potent MbtI

inhibitors [264].

Despite the success and popularity of DFT, it still has deficiencies due to approximations used

in the development of functionals. Systems predominantly comprised of dispersion (van der Waals)

forces, such as gaseous systems, or those wherein dispersion has a considerable contribution, such as

biomolecular systems, are challenging to characterize using DFT [268]. However, several studies

have already investigated the inclusion of van der Waals to improve this method [269–271]. Other

major limitations of DFT application in computational chemistry include the characterization of charge

transfer excitations, transition states, and global potential energy surfaces [272].

3.4. Integrated Tools

With the variety of available tools and structural data for drug discovery nowadays, it is more

common to find studies that employ a combination of structure- and ligand-based approaches

rather than exclusive application of each (Figure 2). Additionally, integration of these strategies

often produces better results owing to more effective exploration of chemical and biological space.

Moreover, the strengths of one method can overcome the limitations of the other, resulting in a

highly complementary drug discovery process [171,238,273]. Integrated in silico workflows include

sequential and parallel or data fusion methods [274–276], though hybrid methods have also already

been developed [277,278]. Sequential methods involve the successive use of computational methods

with the aim of increasing the selectivity of the VS workflow by continually reducing the number of

potential hits before experimental evaluation [31]. However, it has been established that structure- and
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ligand-based methods have similar enrichment and frequently yield hits with different scaffolds [276],

indicating that these methods are better applied in parallel rather than sequentially [279]. Parallel

application, through simultaneous employment of various computational tools, often produce a more

diverse hit profile [31,280]. Nonetheless, since results from these methods are often fused to produce a

final ranking, a large number of virtual hits is obtained from this approach [31].

In silico methods have already been applied to tuberculosis studies in several different ways and

combinations depending on the goal of the study implemented, such as for drug discovery [179,281],

understanding protein structure and function [282,283], and others [284]. One example showing the

integration of computational methods is a study implemented by Li et al. involving 3D-QSAR, binding

pocket prediction, docking, and MD simulation studies for FtsZ, which is a validated Mtb target and

plays a significant role in cell division [285]. Trisubstituted benzimidazoles were found to target this

protein and used for 3D-QSAR CoMFA [248] analysis in order to elucidate important structural factors

related to their inhibitory activities. Homology modeling using the SWISS-MODEL server [32] was

required to obtain the GDP-bound structure of Mtb FtsZ using S. aureus FtsZ as template. Afterwards,

binding site prediction using ProFunc [61] was performed to identify potential binding pockets (other

than the GDP binding site) for the candidate compounds. Selected trisubstituted benzimidazole analogs

were docked into the Mtb FtsZ model using AutoDock, after which the lowest binding energy docked

complex was refined using MD simulation. Using the MD-refined Mtb FtsZ structure, all trisubstituted

benzimidazoles were docked using Surflex-Dock [286]. In the lowest energy state of the compounds,

the benzimidazole scaffold and cyclohexyl group were located in a highly hydrophobic pocket within

FtsZ, while the carbamate groups were oriented towards the hydrophilic area. These interactions are

posited to be crucial for ligand binding stabilization and inhibition of Mtb FtsZ. The results of this study

display how the concerted application of different in silico methods can lead to better understanding of

protein structure, ligand design, and inhibitory activities [285].

4. Edges and Pitfalls of In Silico Methods

There are roughly 2500 protein structures for tuberculosis in the PDB and perhaps thousands

of ligand candidates published. All these pieces of information are available with a few keyboard

strokes and a click of the mouse. Along with existing technologies, it is now possible to analyze TB

enzymes and lead candidates at the atomic level in order to understand their function and how to

regulate them. While computational methods have been widely used in drug discovery nowadays

due to their successful applications [287–289], it is still important to remember that these tools are like

any other experimental approaches—prone to limitations dependent on the system and other various

parameters being studied [290–292].

VS has been known to successfully screen millions of compounds to identify potential inhibitors

for a given target [287,289]. This lends efficiency to cost, time, and efforts used in drug discovery

projects as only the most promising compounds are brought forward for more rigorous experimental

testing and drug development. However, optimization and validation of these methods are far from

perfect and are highly dependent on the protein system and compound classes used, leading to possible

bias in the computational model. Thus, it is challenging to determine which method has the advantage

over another; many benchmark studies have been published regarding this matter [293,294]. Other

major limitations include difficulties in incorporating protein flexibility and solvent effects due to

the computational burden attached to these factors [31]. Fortunately, available technologies seem to

be catching up as enhance sampling methods, HPC, and MD platforms are now routinely applied

in drug discovery projects and are known to calculate up to milliseconds of simulations for various

protein targets [295–297]. In terms of ligand-based drug design, its main advantage is its simplicity and

efficiency. Indeed, LBDD has a long history and numerous candidates have already been discovered

even with the lack of protein structural information [298–300]. Nonetheless, several factors should

be considered when applying ligand-based tools. Firstly, ligand alignments are based on the lowest

conformation energy, which is often different from the bioactive conformation [244,245], as well as
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on the assumption that ligands bind in the same site and display the same conformation. Secondly,

compounds should be evaluated by the same group (preferred) or tested using the same assay with the

same parameters to be considered comparable [242]. Thirdly, the basic premise of ‘similar structures

display similar activities’ are contradicted by the existence of activity cliffs [239–241], and so care

should be taken when selecting potential candidates from a pool of virtual hits. Finally, it is also a

challenge to incorporate the effects of solvation and protein flexibility due to the nature of the analysis.

As mentioned in the previous section, integration of several in silico methods have become

common practice when designing and optimizing lead candidates to overcome the shortcomings of

each individual tools. Despite requiring more computational resources, assimilation of computational

methods result in better accuracy and enrichment of hits. In addition, the combination of a researcher’s

innate knowledge with the computational efficiency of these tools is perhaps the best integration of all,

as a human’s touch continues to be irreplaceable in the interpretation of all the data produced by in

silico methods.

5. Conclusions and Future Perspectives

TB remains to be a relevant public health threat worldwide, necessitating accelerated discovery

and design of novel antimycobacterial agents. Computer-aided drug design has become one of anchors

of drug discovery research and continues to be a formidable tool in the hunt for promising drug leads,

especially for tuberculosis. Continuous advancements in computing power and available software can

enhance current computational tools and their application to different stages in the drug discovery

pipeline. Nonetheless, these methods are not invincible as each tool have their own restrictions,

and approximations are often used during the analysis. To overcome these, it is best to assimilate

several in silico tools to complement the strength and limitations of each method used. The application

of CADD in TB research has led to the identification of several antimycobacterial compounds that have

already reached clinical evaluations, promoting its value in the drug discovery paradigm. Nonetheless,

more work has to be done in order to expedite the discovery of anti-TB therapeutics.

Machine learning (ML) methods are making a comeback in drug discovery studies due to the

upsurge in available data and enhanced computational powers. This has resulted in a wave drug

discovery studies involving artificial intelligence (AI), wherein ML and deep learning (DL) techniques

are applied to efficiently and ‘intelligently’ solve problems. This new shift in the drug discovery

landscape is observed in personalized medicine and a number of relevant illnesses like cancer. While

there are already several FDA-approved uses of AI in healthcare and diagnostics [301], it has yet to

produce a successful drug candidate but it might not be far off. Currently, AI studies involving TB

frequently covers diagnostics and treatment outcomes. This is perhaps one of the gaps that needs to be

filled to be able to fast-track the discovery of novel and efficacious anti-TB drugs and finally alleviate

the heavy burden of this infection around the globe.
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