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In silico studies evidenced the role 
of structurally diverse plant 
secondary metabolites in reducing 
SARS‑CoV‑2 pathogenesis
Hariprasad Puttaswamy1,2*, Hittanahallikoppal Gajendramurthy Gowtham1,2, 
Monu Dinesh Ojha1,2, Ajay Yadav1,2, Gourav Choudhir1,2, Vasantharaja Raguraman1,2, 
Bhani Kongkham1,2, Koushalya Selvaraju1,2, Shazia Shareef1,2, Priyanka Gehlot1,2, 
Faiz Ahamed1,2 & Leena Chauhan1,2

Plants are endowed with a large pool of structurally diverse small molecules known as secondary 
metabolites. The present study aims to virtually screen these plant secondary metabolites (PSM) 
for their possible anti‑SARS‑CoV‑2 properties targeting four proteins/ enzymes which govern viral 
pathogenesis. Results of molecular docking with 4,704 ligands against four target proteins, and data 
analysis revealed a unique pattern of structurally similar PSM interacting with the target proteins. 
Among the top‑ranked PSM which recorded lower binding energy (BE), > 50% were triterpenoids 
which interacted strongly with viral spike protein—receptor binding domain, > 32% molecules which 
showed better interaction with the active site of human transmembrane serine protease were 
belongs to flavonoids and their glycosides, > 16% of flavonol glycosides and > 16% anthocyanidins 
recorded lower BE against active site of viral main protease and > 13% flavonol glycoside strongly 
interacted with active site of viral RNA‑dependent RNA polymerase. The primary concern about these 
PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found 
fulfilling most of the drug‑likeness characters as per Lipinski’s rule (Coagulin K, Kamalachalcone C, 
Ginkgetin, Isoginkgetin, 3,3′‑Biplumbagin, Chrysophanein, Aromoline, etc.). Natural occurrence, bio‑
transformation, bioavailability of selected PSM and their interaction with the target site of selected 
proteins were discussed in detail. Present study provides a platform for researchers to explore the 
possible use of selected PSM to prevent/ cure the COVID‑19 by subjecting them for thorough in vitro 
and in vivo evaluation for the capabilities to interfering with the process of viral host cell recognition, 
entry and replication.

Coronaviruses (CoV) are spherical or pleomorphic, enveloped, non-segmented particles contain positive-sense 
single-stranded  RNA1. �ere are several types of low to high pathogenic CoV which cause mild to severe respira-
tory symptoms. In general, it is classi�ed under four genera such as α, β, γ, and δ CoV. α and β-CoV are reported 
to cause fatal respiratory tract infections in mammals, among which Severe Acute Respiratory Syndrome-CoV 
(SARS-CoV) is grouped under β-CoV. Whereas, γ, and δ CoV are reported to infect  birds2. In last three decades, 
several CoV virus related diseases have been frequently reported in human and animals such as human CoV 
OC43, 299E, Bovin CoV, Canine CoV, Feline CoV, Porcine CoV, etc., indicating their increasing competence to 
expand their host  range3. But, their capabilities to cause fatality in human was realized with the SARS outbreak 
occurred during 2002 and  20034,5. Recent addition to this list is, Coronavirus disease 19 (COVID-19) caused by 
SARS-CoV-2 which is much more fatal to humans than their earlier versions.

COVID-19 was �rst spotted in a seafood market of Wuhan city, Hubei Province of China, and now it had 
reached all continents across the  globe6. Based on genomic sequence evidence, bat CoV RaTG13 shares 96.2% 
similarity with SARS-CoV-2. Hence, bats are suspected as a primary source of SARS-CoV-2 and infected humans 
through several intermediate  hosts7,8. However, this hypothesis is yet to be proved. �e SARS-CoV-2 virus causes 
SARS by the onset of pneumonia, acute respiratory distress syndrome (ARDS) and multi-organ dysfunction. 
Moreover, the SARS-CoV-2 enters the human body through the mouth and other openings and spreads primarily 
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through droplets, saliva, or discharges from the nose/ mouth of an infected person a�er sneezing or  coughing9. 
On 11th March 2020, the World Health Organization (WHO) declared COVID-19 as a pandemic. As on 27th 
July, 2020 the global COVID-19 data show 1,61,14,449 con�rmed cases and 6,46,641 con�rmed deaths (http://
www.who.int).

At present, there are no pharmaceutical products approved by the Food and Drug Administration (FDA) 
as safe and e�ective for the treatment of COVID-19. Further, as precautionary measures, surveillance borders, 
personal hygiene, social distancing, lockdown, supportive care and personal protective equipment are practiced 
across the world to prevent disease spreading among the communities. Preliminary in vitro studies and clinical 
trials carried out by scientists on COVID-19 patients disclosed the e�ectiveness of hydroxychloroquine, an anti-
malarial drug in combination with azithromycin, a broad spectrum anti-bacterial drug in reducing the disease 
 severity10. Similarly, the use of several o�-label medicines (such as lopinavir-ritonavir, favipiravir, remdesivir, 
ribavirin, anti-Interleukin-6 inhibitors, etc.) have been suggested to treat COVID-19 as potential investigational 
drugs. But, on 4th July, 2020, based on the results obtained from the solidarity trials, WHO ruled out the possible 
use of hydroxychloroquine and lopinavir-ritonavir as anti-COVID-19 drug (WHO, 2020). Similarly, research-
ers across the world attempting to identify/ develop drug molecule targeting several viral pathogenicity factors 
such as, spike protein-human Angiotensin-converting enzyme 2 (hACE2) mediated viral entry, main protease 
 (Mpro), papain-like protease 2 (PLP2), RNA-dependent RNA polymerase (RdRp), SARS-CoV helicase,  etc11. Any 
new drug molecule requires thorough scienti�c evaluation in terms of their anti-viral potencies, e�cacy, bio-
availability, adverse e�ect on non-target site, safety, di�erent stages of preclinical and clinical trials, etc. before 
available for the public use.

Plants are known to inherently contain a large number of structurally diverse secondary metabolites which 
are developed during the course of evolution, primarily as defence mechanisms against herbivores and preda-
tors, mediating pollination and for protection against abiotic  stress12. �e variability of metabolites can be seen 
across di�erent plant families, genera, species and di�erent parts of the same plant  species13. �e concentrations 
of PSM vary according to the growth stages and in response to biotic and abiotic stress to which plant exposed. 
�e development of drugs from phytopharmaceuticals is a trending approach to look for eco-friendly therapeutic 
molecules with no or minimal side-e�ects. �is time-bound situation requires an e�cient and e�ective method 
to develop therapeutics which disables the virus molecular machinery. Considering the safety of the users, any 
conventional drug discovery plan is a time-consuming process that sometimes takes decades to complete. �us, 
repurposing the already available FDA approved drugs, use of plant-based herbal medicines, or edible plant parts 
rich in anti-viral PSM are other strategies appears to be promising under current situations.

In silico or computational approaches are algorithm-based virtual screening methods developed for screen-
ing a large number of molecules in shorter time and identi�cation of probable potent drug candidate. In recent 
research, 1,903 approved drugs were virtually screened through molecular docking, and binding free energy 
calculations suggested nel�navir as a potential inhibitor against SARS-CoV-214. Similarly, phytomolecules such 
as kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuro-
pein, curcumin, catechin, and epicatechin-gallate have been reported as potential viral  Mpro  inhibition15.  El�ky16 
reported Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir as potent drug candidates against RdRp 
of SARS-CoV-2 through molecular docking studies.

Most of the earlier PSM based virtual screening performed were either limited by the number of PSM, struc-
tural diversity of test ligands and number of target proteins. Hence, the present study is aimed to (i) creating 
a structurally diverse PSM library, (ii) �nding potent PSM which binds to the target site of selected proteins/ 
enzymes with low binding energy (BE), (iii) studying structural and functional relation of top scored PSM, and 
(iv) analyzing the physicochemical characters and bioavailability of selected PSM using SwissADME.

Results and discussion
�e PSM library contains 4,704 molecules collected from 203 plant species belong to diverse plant families (Sup-
plementary File 1). Over 22,000 docking reactions were run (which include replications, to con�rm the activity 
of several molecules with BE) using 4,704 ligands against four selected target proteins/ enzymes involved in 
host cell recognition, entry and replication of SARS-CoV-2. Upon molecular docking, a wide range of BE was 
obtained for all four target proteins. �e obtained results were arranged in ascending order of BE. For the ease 
of the study, we selected the top 268 molecules against  Mpro and 250 molecules for all other target proteins for 
further analysis (Supplementary File 2) viz., structural similarity and activity relationship, and physicochemical 
characterization to evaluate their drug-likeness. Binding energy, physicochemical characters and bioavailability 
score (BAS) of ten top ranked molecules against four target proteins are compiled in Table 1.

SARS‑CoV‑2 spike protein. Spike protein is a class I fusion protein present within the envelope as a homo-
trimer and consists of three S1-S2 heterodimers. �e receptor-binding domain (RBD) is located on the head of 
 S117 and binds with the cellular receptor  hACE218. Any PSM interacts with these selected Amino acid residues 
(AARs) of spike protein by forming multiple H bonds and other interactions with lower BE may interfere with 
the spike protein -hACE2 interactions, thereby preventing the early recognition of host cell by SARS-CoV-2.

Interestingly, the large pool of PSM found interacting with the exposed surface of spike protein was found 
belonging to class triterpenoids. More than 50% of the PSM among top 250 molecules belong to triterpenoids and 
their derivatives, largely include triterpenes and sterols. Here, sterol lactones alone represent > 14% of total PSM 
(Fig. 1a). Few bi�avonoids, �avonoid glycoside and hydrolysable tannins were also showed promising results.

Coagulins from Withania coagulans (Stocks) Dunal were recorded lower BE with target AARs of the spike 
protein. Similar observations were made with structurally similar triterpene and steroid, i.e., steroidal lactones, 
steroidal saponins, steroidal glycoalkaloids, triterpene glycosides, triterpene saponins, and triterpene sterols. 

http://www.who.int
http://www.who.int


3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20584  | https://doi.org/10.1038/s41598-020-77602-0

www.nature.com/scientificreports/

Table 1.  Binding energy of top ranked plant secondary metabolites against four targets of SARS-CoV-2 
pathogenesis and their physicochemical properties. Only top 10 ranked molecules against each target are 
represented here. Details of all the plants secondary metabolites studied are available in Supplementary Files 
2 and 3. BE, binding energy (Kcal/mol); MW, molecular weight (g/mol); RB, number of rotatable bonds; HA, 
number of H-bond acceptors; HD, Number of H-bond donors; TPSA, total polar surface area (Å2); MLogP, 
predicted octanol/water partition coe�cient; PGP-S, pgp substrate; GI, GI tract crossing, LV, Number of 
Lipinski’s rule violation; BAS: bioavailability score. *Kaempferol 3-O-(6′’-galloyl)-beta-D-glucopyranoside; 
*Delphinidin-3-O-(6-p-coumaroyl) glucoside.

Code Name BE MW RB HA HD TPSA MLogP PGP GI LV BAS

SARS-CoV-2 Spike protein

B0162-10327320 Bismahanine − 9.1 692.8 7 4 4 90.50 6.18 Yes Low 2 0.17

C0572-100920596 Coagulin N − 9.1 648.7 4 12 6 192.44 − 0.36 Yes Low 3 0.17

A0297-16162334 Arecatannin A3 − 8.9 1443.2 9 30 25 551.90 − 3.21 Yes Low 3 0.17

C0563-15970528 Coagulin K − 8.9 616.7 4 10 4 151.98 1.16 Yes Low 1 0.55

G0134-16129878 Tannic acid − 8.9 1701.2 31 46 25 777.98 − 4.24 Yes Low 3 0.17

K0070-101721039 Kamalachalcone C − 8.8 530.5 4 8 4 147.14 1.92 No Low 1 0.55

A0155-5281600 Amento�avone − 8.7 538.4 3 10 6 181.80 0.25 No Low 2 0.17

P0479-16398499 Pseudojervine − 8.7 587.7 3 9 5 137.71 1.02 Yes High 1 0.55

F0096-643975 Flavin adenine dinucleotide − 8.6 785.5 13 20 9 382.55 − 3.77 Yes Low 3 0.11

G0075-156783 Graecunin E − 8.6 1047.1 11 22 12 335.06 − 3.68 Yes Low 3 0.17

SARS-CoV-2 RNA-dependent RNA polymerase (RdRp)

E0189-3564542 Eriodictyol-7-O-rutinoside − 9.9 596.5 6 15 9 245.29 − 3.24 Yes Low 3 0.17

N0007-442431 Narirutin − 9.7 580.5 6 14 8 225.06 − 2.77 Yes Low 3 0.17

H0135-191266 Hippomannin A − 9.6 634.4 6 18 11 318.50 − 2.90 Yes Low 3 0.17

I0135-5318569 Isoginkgetin − 9.5 566.5 5 10 14 159.80 0.63 No Low 1 0.55

K0010-5491813 *Kaempferol − 9.5 600.4 7 15 9 257.04 − 2.30 No Low 3 0.17

M0284-44259428 Myricetin 3-rutinoside − 9.5 626.5 6 17 11 289.66 − 4.35 Yes Low 3 0.17

R0047-441943 Rotundioside B − 9.5 1184.3 15 26 13 428.71 − 3.89 Yes Low 3 0.11

T0047-73179 Tellimagradin I − 9.5 786.5 9 22 13 385.26 − 3.08 Yes Low 3 0.17

A0245-5281599 Agathis�avone − 9.4 538.4 3 10 6 181.80 0.25 No Low 2 0.17

E0140-119058016 Emblicanin A − 9.4 782.5 6 22 12 374.26 − 2.33 Yes Low 3 0.11

Human transmembrane serine protease (TMPRSS2)

G0154-14982 Glycyrrhizic acid − 9.5 822.9 7 16 8 267.04 0.02 Yes Low 3 0.11

C0387-366355 cis-Miyabenol C − 9.4 680.7 6 9 7 160.07 3.43 No Low 2 0.17

P0126-124025 Proanthocyanidin A2 − 9.2 576.5 2 12 9 209.76 0.14 No Low 3 0.17

G0038-131752181 Granatin B − 9.1 952.6 3 27 14 450.25 − 3.45 Yes Low 3 0.17

H0134-101601938 Hippophaenin B − 9.1 1104.7 7 31 19 542.17 − 3.90 Yes Low 3 0.11

C0126-101710863 3-Ca�eoyl-5-Feruloylquinic Acid − 9 530.4 10 12 16 200.28 − 0.15 Yes Low 3 0.11

B0138-183757 3,3′-Biplumbagin − 8.9 374.3 1 6 2 108.74 0.62 No High 0 0.55

A0245-5281599 Agathis�avone − 8.9 538.4 3 10 6 181.80 0.25 No Low 2 0.17

A0156-362574 Aromoline − 8.9 594.7 2 8 2 83.86 3.37 No High 1 0.55

C0453-6324923 Chrysophanein − 8.9 416.3 3 9 5 153.75 − 1.26 Yes Low 0 0.55

SARS-CoV-2 Main protease (Mpro)

H0349-3663 Hypericin − 10.4 504.4 0 8 6 155.52 1.36 No Low 2 0.17

A0155-5281600 Amento�avone − 9.7 538.4 3 10 6 181.80 0.25 No Low 2 0.17

T0163-44584734 Ter�avin B − 9.7 784.5 8 22 13 385.24 − 2.83 Yes Low 3 0.17

M0522-21593828 Mudanpioside J − 9.6 630.5 11 14 5 199.90 − 0.04 Yes Low 2 0.17

Q0019-44259101 Quercetin 3,5-digalactoside − 9.6 626.5 7 17 11 289.66 − 4.62 No Low 3 0.17

V0041-168165 Vescalagin − 9.6 934.6 0 26 16 455.18 − 3.23 Yes Low 3 0.17

G0227-5271805 Ginkgetin − 9.5 566.5 5 10 4 159.80 0.63 No Low 1 0.55

I0135-5318569 Isoginkgetin − 9.5 566.5 5 10 14 159.80 0.63 No Low 1 0.55

C0163-44256718 Cyanidin 3,5-diglucoside − 9.4 611.5 7 16 11 272.59 − 3.82 No Low 3 0.17

D0307-15922818 *Delphinidin − 9.4 611.5 8 14 9 239.97 − 1.18 No Low 3 0.17
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Figure 1.  (a) Structural activity relationship: correlation of canonical SMILES structure similarity (data points 
are joined by colored lines) and binding energy (represented in di�erent color shades of data point) of selected 
plant secondary metabolites (PSM) evaluated against SARS-CoV-2 spike protein using Data Warrior so�ware. 
Structurally similar molecules are grouped in dotted lines and a representative molecule with low binding 
energy (kcal/mol) (values in parenthesis) is represented in box. More than 50% of the PSM among top 250 
molecules studied belong to triterpenoids and their derivatives, with > 14% Sterol lactones. (b) Data analysis 
of selected PSM against SARS-CoV-2 spike protein. (A) Bioavailability radar chart representing lipophilicity 
(LIPO), Molecular weight (SIZE), Topological polar surface area (POLAR), Solubility (INSOLU), Flexibility 
(FLEX) and Saturation (INSATU) along with Bioavailability score (BAS) of selected molecules, (B) 3D 
visualization of protein–ligand interaction using PyMOL (selected amino acid residue of target site of protein 
are colored in cyan, and (C) 2D visualization of di�erent types of interactions between ligand and target site of 
protein using Discovery Studio so�ware (di�erent types of interactions are represented in color codes).
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Figure 1.  (continued)
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Coagulin N recorded a least of − 9.1 BE followed by Coagulin K (BE -8.9). Coagulin N forms H bond with 
ARG403, TYR449 and GLY496 of spike protein, whereas Coagulin K forms H bond with ARG403, GLY496, 
GLN498 and TYR505, which may interfere with viral host cell recognition process. Also, both Coagulin N and 
Coagulin K recorded 0.55 BAS, and passed all the Lipinski’s rule of drug-likeness except molecular weight (MW) 
(Fig. 1b, Supplementary File 2).

Withanolides are naturally occurring  C28-Steroidal lactone triterpenoids build on an intact or rearranged 
estrogen  framework19–21, commonly found in Withania somnifera (L.) Dunal and W. coagulans (Stocks) Dunal. 
Withanolide E recorded the least BE of − 8.4 followed by Withanone (-8.3), Ashwagandhanolide (-8.3) and 
Withastramonolide (− 8.2) (Supplementary File 2). Withanolide E showed H bond formation with GLN493 
and TYR453 AARs of spike protein (Fig. 1b, Supplementary File 2) with BAS 0.55. Withanolides are smaller 

Figure 1.  (continued)
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in molecular weight with high GI absorption and follow all the characters of the drug-like molecules as per 
Lipinski’s rule (Supplementary File 3).

Saponins are naturally occurring plant glycosides found in a wide range of plant species. �ey are high 
molecular weight amphiphilic compounds having triterpenoids and steroid aglycon as lipophilic moiety and 
sugars as hydrophilic  moiety22. Another class of basic steroidal saponins contains nitrogen analogues of steroid 
sapogenins as aglycones. �e bio-transformation of saponins mainly occurs at intestine with the aid of gut 
microbes leading to the generation of the rare low molecular weight saponins containing no or lower number 
of sugar  moiety23. �ese hydrolyzed products are higher in bioavailability and bioactivity compared to their 
parental  compounds24–26. In our study, Graecunin E (from Trigonella foenum-graecum L.)27 recorded a least 
of − 8.6 BE and found interacting with THR415 and GLN493 AARs of spike protein (Fig. 1b, Supplementary 
File 2). Other Graecunin related compounds, Trigofoenoside E1 (BE − 8.2), Uttronin B (BE -8.3), Stigmasteryl 
glucoside (BE − 7.9) and Yuccagenin (BE − 7.6) also showed promising results. It was noticed that BE of above-
mentioned molecules was related to their number of the sugar moiety. As the number of sugar moiety reduces, 
BE also found reducing. However, with the loss of sugar moiety, their bioavailability was increasing as observed 
between Greacunin E and Yuccagenin (aglycon form) (Fig. 1b, Supplementary Files 2 and 3). Also, Yuccagenin 
was found forming H bonds with GLY496 and ASN501 AARs of spike protein which is crucial to interact with 
AARs of hACE2 and found ful�lling all drug-likeness characters as per Lipinski’s rule (Fig. 1b).

Bismahanine, a carbazole alkaloid isolated from leaves of Murraya koenigii (L.)  Spreng28,29 and some other 
Rutaceae  members30. Bismahanin and related compounds are reported for their broad biological activities such 
as anti-oxidant, anti-diabetic, anti-in�ammatory, anti-microbial, anti-cancerous, anti-viral, etc.31–33. In our stud-
ies, physicochemical properties of Bismahanin revealed it as a low polar, non-soluble, high MLOGP value and 
high molecular weight PSM according to Lipinski’s rule of drug-likeness, which reduces its bioavailability (BAS 
0.17). �e molecule interacted with residue GLU406 through H bonds and showed Van der Waals interaction 
with other residues (TYR495, LEU455, ASN501 and GLY502) of spike protein which are not reported to involve 
in interaction with AARs of hACE2 (Fig. 1b, Supplementary File 2). Pseudojervine, a steroidal alkaloid was �rst 
isolated from the rhizome of Veratrum album L. by Wright and  Lu�34 which is regularly used in Chinese tradi-
tional medicine. In the present study, Pseudojervin recorded − 8.7 BE and found interacting with AARs GLN493, 
GLY496 and SER494 of spike protein through H bonds. Also, it passed all the Lipinski’s rule except molecular 
weight (587.74 g/mol) and recorded 0.55 BAS (Fig. 1b, Supplementary Files 2 and 3).

Tannic acid is a high molecular weight polyphenolic compound, highly soluble in water (low lipophilicity). 
Its GI absorption is almost nil in its original form. However, it is hypothesized that bio-transformed products 
may enter into plasma and exert biological activities which still need a thorough study. In our study, Tannic 
acid recorded lower BE of − 8.9, and some of the structurally related hydrolysable tannins such as Strictinin (BE 
− 8.6), Punicalagin (BE − 8.5), Terchebulin (BE − 8.4), Tercatain (BE − 8.3), Ter�avin A (BE − 8.1) also showed 
promising results (Supplementary File 2).

Arecatannin A3 (a condensed tannins) contains epicatechin-epicatechin-epicatechin-epicatechin-catechin 
as their basic structure and in its original form it is poorly bioavailable because of their unfavourable physico-
chemical properties (Supplementary File 3). But, its bio-transformed products, especially monomers, dimers or 
trimers, may show a varied degree of bioavailability and bioactivity. �eir monomers catechin and epicatechin 
are reported as bioavailable better than their parental  molecules35. However, their dimer and trimers are poorly 
bio-available36. In our studies, none of the catechin or epicatechin, and their derivatives were appeared in top 
250 PSM rank indicating their inability to bind an open surface of the spike protein. Some Arecatannin related 
molecules such as Arecatannin B1 (BE − 8.1), Proanthocyanidine A-6 (BE − 7.9) and Proanthocyanidine A1 (BE 
− 7.6) also found interacting with spike protein (Supplementary File 2).

Kamalachalcone C is a dimeric chalcone �rst isolated from Mallotus philippensis (Lam.) Müll. Arg. by Furu-
sawa et al.37. It recorded − 8.8 BE and was found interacting with AARs GLN493, GLN492, ARG403 and GLU406 
of the spike protein. Bioavailability score of 0.55 was recorded by Kamalachalcone C, indicating it as a potent 
drug candidate (Fig. 1b, Supplementary File 2). Amento�avone, a bi�avone also recorded a lower BE of − 8.7 and 
showed H bond formation with AARs GLN493, SER494 and GLY496 of SARS-CoV-2 spike protein (Fig. 1b).

Recent studies also reported several PSM such as Pavetannin-C1 (BE − 11.1), Hesperidin (BE − 10.4), Can-
nabinoids (BE − 10.2), Cinnamtannin-B1 (BE − 10.2) with lower BE as a potential molecules to reduce the 
pathogenicity of SARS-CoV-2 by blocking the spike protein RBD and hACE2 interactions (Supplementary File 4).

Human transmembrane serine protease (TMPRSS2). TMPRSS2 plays a key role in priming spike 
protein of SARS-CoV-2. �e cellular protease cleaves at S1/S2 and S′2 sites thereby facilitating the fusion of 
viral and host cell  membrane38. Hence, reducing the protease activity of TMPRSS2 using PSM is considered as 
another potential way to manage COVID-19. In our study, structural similarity and BE correlation analysis indi-
cated that a large number of �avonoid glucoside (> 32%) were found interacting with the target site of TMPRSS2, 
followed by ellagitannins and triterpenoids. Interestingly, two triterpenoid saponins (Liquorice and Glycyrrhizic 
acid) and a stilbenoid (Cis-Miyabenol C) recorded the lowest BE (Fig. 2a). �e data obtained from this study 
indicated the possibilities of developing �avonoid glycoside or triterpenoid based drug molecules targeting 
human TMPRSS2 which process SARS-CoV-2 spike protein and facilitate the entry of the virus into the host cell.

In our study, a large number of �avonoid glycosides were found e�ciently binding to the target site of pro-
tein with lower BE. Similarly, in most of the earlier in vitro studies, �avonoid glycosides are proved to be better 
candidates for enzyme inhibition activity related to health bene�ts. However, signi�cant concern about �avonoid 
glycosides is their bioavailability. Upon consumption, at the small intestine, they absorbed mostly in their agly-
con form at the cellular level. Absorption of glycosidic form mainly depends on their number of sugar moiety. 
�rough many research studies, it was con�rmed that �avonoid glycosides are converted to aglycones by gut 
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Figure 2.  (a) Structural activity relationship: Correlation of canonical SMILES structure similarity (data points 
are joined by colored lines) and binding energy (represented in di�erent color shades of data point) of selected 
plant secondary metabolites (PSM) evaluated against SARS-CoV-2 TMPRSS2 using Data Warrior so�ware. 
Structurally similar molecules are grouped in dotted lines and a representative molecule with low binding 
energy (kcal/mol) (values in parenthesis) is represented in box. Among top ranked PSM studied, > 32% found 
belonging to Flavonoid glucoside and other major groups are ellagitannins and triterpenoids. (b) Data analysis 
of selected PSM against SARS-CoV-2 TMPRSS2. (A) Bioavailability radar chart representing lipophilicity 
(LIPO), Molecular weight (SIZE), Topological polar surface area (POLAR), Solubility (INSOLU), Flexibility 
(FLEX) and Saturation (INSATU) along with Bioavailability score (BAS) of selected molecules, (B) 3D 
visualization of protein–ligand interaction using PyMOL (selected amino acid residue of target site of protein 
are colored in cyan, and (C) 2D visualization of di�erent types of interactions between ligand and target site of 
protein using Discovery Studio so�ware (di�erent types of interactions are represented in color codes).
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Figure 2.  (continued)
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Figure 2.  (continued)
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microbes and decomposed to yield two di�erent phenolic products. Whereas, catechin and procyanidins are bio-
transformed into 5-(hydroxyphenyl)-γ-valerolactone found in blood plasma and urine as sulfate and glucuronide 
 metabolites39. However, several earlier studies supported the hypothesis that glycosidic forms are more bioavail-
able and resistant to microbial degradation. Also, they can deliver aglycone moiety better when administrated 
as glycosidic form. Participation of active uptake of �avonoid glycosides by enterocytes was researched in detail. 
During this process, �avonoid glycosides are converted into aglycones by membrane-bound beta-glucosidase 
(reviewed by Kumar and Pandey)40. Here, Agatis�avone, a bio�avonoid recorded a BE of − 8.9 and found inter-
acting with catalytic site AARs SER441 of TMPRSS2 forming hydrogen bonds. Nirurin, a prenylated �avonone 
glycoside found in Phyllanthus niruri L. recorded a BE of − 8.9 and showed H bond formation with HIS296 
and SER441 of TMPRSS2 catalytic site and with VAL290, SER436, GLY439 and CYS465 in close vicinity of the 
catalytic site, presenting itself as a strong irreversible inhibitor of TMPRSS2 (Fig. 2b, Supplementary File 2). Fol-
lowing to this, Naringin, a �avanone-7-O-glycoside recorded BE of − 8.3 and showed similar interaction with 
AARs of TMPRSS2 (Supplementary File 2). All these molecules are low in their BAS and their physicochemical 
characters are not favourable as per Lipinski’s rule (Supplementary File 3).

�ough the �avonoids are dominating the group in numbers, the least BE was recorded by two triterpenoid 
saponins, i.e., Liquorice (− 9.7) and Glycyrrhizic acid (− 9.5) followed by a stilbenoid Cis-Miyabenol (− 9.4). 
Here, Liquorice was found forming H bond with SER441 of TMPRSS2 catalytic site AAR through glucose moiety. 
Similarly, Glycyrrhizic acid also showed H bond formation with HIS296 of TMPRSS2 through oxygen involved 
in a glycosidic bond. Liquorice and Glycyrrhizic acid are isomers, triterpenoid glycosides obtained from roots 
of Glycyrrhiza glabra L. (Liquorice). Roots of this plant are traditionally used to alleviate jaundice, gastritis and 
bronchitis. Gancao, a Chinese herbal decoction of dried plant roots and stem, contains 3.63–13.06% Glycyrrhi-
zin and well known for their therapeutic properties, including  antiviral41. Glycyrrhizic acid was reported as an 
active component from the roots of G. glabra which inhibited the growth and cytopathology of both DNA and 
RNA virus viz., Herpes simplex type I, Newcastle disease virus, Vesicular stomatitis virus and Polio type I virus 
without a�ecting host cell activity and replication. Research regarding the bioavailability of Glycyrrhizic acid 
revealed that a�er oral administration, only bio-transformed Glycyrrhetic acid was detected in plasma at higher 
 concentration42,43. It is because of the complete biotransformation of Glycyrrhizic acid to Glycyrrhetic acid by 
the activity of gut microbes. Hence, to know the capability of aglycon form, i.e., Glycyrrhetic acid (Enoxolone, 
not present in main PSM library) was docked and found it also form H bond with SER441 of TMPRSS2, but the 
BE was reduced to − 7.7 (Fig. 2b).

Cis-Miyabenol C, a stilbenoid (resveratrol timer) found in Foeniculum vulgare Mill. (fennel). Stilbenoids are 
characterized by two phenyl group linked by a transethane bond and reported to exhibit a wide range of biological 
activities and pharmacological  properties44. In the present study, Cis-Miyabenol C recorded a lower BE of − 9.4 
and found interacting with catalytic site AAR of TMPRSS2, i.e., ASP345 through H bond (Fig. 2b, Supplementary 
File 2). �is compound was low in GI absorption, highly lipophilic, insoluble in water and found violating Lipin-
ski’s rule of drug-likeness. �e low bioavailability of stilbenoids is mainly due to their rapid, extensive metabolism 
in the intestine and liver during and a�er absorption giving rise to a lower level of the free parent  compound45.

Chrysophenols (Anthraquinones) are anthracene derivatives, and structurally they are tricyclic aromatic 
quinones with two ketone group attached to the central benzene ring. Here, two anthraquinone glycosides, 
Chrysophanein and Rhein-8-glycoside recorded lower BE of − 8.9 and − 8.9, respectively, which was lower than 
their structurally related �avonoid glycosides, Baicalein 6-glucoside (BE − 8.7) and Luteolin 3′-xyloside (BE 
− 8.5). Chrysophaenein showed H bond with SER441, an AAR of the catalytic site of TMPRSS2 and VAL280 
and GLY439 in the catalytic pocket. Chrysophaenein passes all the parameters of Lipinski’s rule with 0.55 BAS 
(Fig. 2b, Supplementary Files 2 and 3) proving itself as a better drug candidate to inhibit the activity of TMPRSS2.

Plumbagin is a naphthoquinone derivative from the roots of Plumbago zeylanica L. and well studied for its 
anti-cancerous  property46,47. In our study, 3,3′-Biplumbagin recorded BE of − 8.9 and found interacting with 
HIS296 and SER441 of the catalytic site of TMPRSS2 and with VAL280 and GLY439 AARs in the close vicinity, 
showing its strong a�nity towards the catalytic domain of TMPRSS2. Also, it recorded higher BAS of 0.55 and 
found ful�lling all necessary physicochemical characters for a drug-like molecule as per Lipinski’s rule (Fig. 2b, 
Supplementary File 2 and 3).

Quinic acid is a carboxylated cyclohexanepolyol that is found in several plants like co�ee, tomato, carrot, etc. 
and exists either in free form or as  esters48. Quinic acid is a starting compound used to synthesise "Tami�u", an 
anti-viral drug used to treat In�uenza A and B  virus49. Derivatives of Quinic acid were reported to be anti-viral 
in nature against Human immunode�ciency virus (HIV), Hepatitis B virus (HBV), Herpes simplex virus 1 and 
Dengue  virus50–53. 3-Ca�eoyl-5-feruloylquinic acid, in our study, recorded − 9.0 BE and found interacting with 
SER441 of TMPRSS2 through H bonding. Following this, structurally similar 3-O-Ca�eoyloleanolic acid also 
recorded BE of − 8.7. Both the molecules recorded low BAS of 0.11 and violated Lipinski’s rule of drug-likeness 
(Fig. 2b, Supplementary File 2). Studies of Gonthier et al.54 showed that chlorogenic acids, the esters of ca�c and 
quinic acid are poorly bioavailable. However, their microbial bio-transformed metabolites such as m-Coumaric 
acid and derivatives of phenylproponic, benzoic and hippuric acid were found in higher concentration a�er oral 
administration of chlorogenic acids. �e anti-viral activity of bio-transformed molecules is yet to be studied.

In the present study, group of bulky Ellagitannins such as Ter�avin A, Ter�avin B, Punicalin, Strictinin, 
Pedunculagin, Punicafolin, Tellimagradin I, Tercatain, Emblicanin A, Phyllanemblinin B, etc. recorded lower 
binding e�ciency indicating their capability to inhibit the activity of TMPRSS2 enzyme. Similarly, Granatin B, 
an ellagitannin commonly found in the pericarp of Punica granatum L. recorded lower BE of − 9.1 followed by 
Granatin A (− 8.9). Granatin B recorded H bond formation with HIS296 of TMPRSS2. Bioavailability score of 
Granatin B was 0.11 and found violating Lipinski’s rule (Fig. 2b, Supplementary Files 2 and 3). However, they 
are all high molecular weight, and according to previous studies, they are poorly/ not bioavailable. Further, they 
hydrolyze into Ellagic acid and their complex derivatives in the intestine and can cross the gastrointestinal barrier 
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Figure 3.  (a) Structural activity relationship: Correlation of canonical SMILES structure similarity (data 
points are joined by colored lines) and binding energy (represented in di�erent color shades of data point) of 
selected plant secondary metabolites (PSM) evaluated against SARS-CoV-2  Mpro using Data Warrior so�ware. 
Structurally similar molecules are grouped in dotted lines and a representative molecule with low binding 
energy (kcal/mol) (values in parenthesis) is represented in box. In this case, �avonol glycosides (> 16%) and 
Anthocyanidine (> 16%) are the largest group of PSM among the top ranked 250 PSM. (b) Data analysis of 
selected PSM against SARS-CoV-2  Mpro. (A) Bioavailability radar chart representing lipophilicity (LIPO), 
Molecular weight (SIZE), Topological polar surface area (POLAR), Solubility (INSOLU), Flexibility (FLEX) 
and Saturation (INSATU) along with Bioavailability score (BAS) of selected molecules, (B) 3D visualization of 
protein–ligand interaction using PyMOL (selected amino acid residue of target site of protein are colored in 
cyan, and (C) 2D visualization of di�erent types of interactions between ligand and target site of protein using 
Discovery Studio so�ware (di�erent types of interactions are represented in color codes).
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Figure 3.  (continued)
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into the  bloodstream55. At the same time, gut micro�ora are reported to convert Ellagitannins to Urolithins, an 
anti-cancerous  compounds56,57. Bioavailability of Ellagitannins metabolites was successfully proved in humans 
in the form of Ellagic acid in blood  plasma58. Ellagic acid consists of a hydrophilic domain made up of four 
phenolic groups and two lactones, and a lipophilic domain made up of four rings. �ese domains, particularly 
the hydrophilic, which can H bond and accept an electron, thus determining a structural activity relationship. 
In our experiments, Ellagitannins derivatives 3′-O-Methyl ellagic acid 4-xyloside recorded BE of − 8.1 against 
TMPRSS2 (Supplementary File 2), indicating the possibilities of Ellagitannin metabolized products function as 
TMPRSS2 inhibitors.

Molecules such as Geniposide (BE − 14.6), Cytidine-5′-diphosphocholine (BE − 13.9), Durumolide K (BE 
− 13.2) and 5′-methoxyhydnocarpin D (BE − 13.5) were reported to be e�ective molecules of plant origin which 
can bind to active site of human TMPRSS2 and interfere with the viral spike protein priming activity (Supple-
mentary File 4). However, with respect to TMPRSS2 activity inhibition, competitive inhibitors are preferred over 
uncompetitive/noncompetitive inhibitors as TMPRSS2 activity is an essential component of cellular structure 
and function.

SARS‑CoV‑2 Main Protease  (Mpro). �e key enzyme in proteolytic processing of SARS-CoV-2 replica-
tion is  Mpro. It is initially released by the auto-cleavage of pp1a and pp1ab. �en  Mpro, in turn, cleaves pp1a and 
pp1ab to release functional proteins necessary for viral  replication59. Any PSM binding to the AARs of the cata-
lytic site or pocket with H bonds and other interactions with lower BE may interfere with the viral replication 
process in host cell, thereby reducing the severity of the COVID-19.

When BE and canonical SMILES structural similarity of top 250 PSM were analyzed, it was observed that 
molecules from two major groups, i.e., Flavonol glycosides and Anthocyanidine were dominating with > 16% 
and > 16% PSM, respectively. Other �avonoids and triterpenes also recorded promising results (Fig. 3a). But, the 
least BE was recorded by Hypericin, a naphthodianthrone and Amento�avone, a bi�avonoid.

Hypericin, a naturally occurring chromophore “Naphthodianthrone” compound, derivative of anthraquinone 
found in common St. Johnswort (Hypericum species) and in some fungi. Hypericum perforatum L., a source 
of Hypericin has been used as folk medicine. Also, Hypericin is reported as anti-depressive, anti-tumor, anti-
viral, antineoplastic, etc.60. Here, Hypericin recorded least BE of − 10.4. Further, it was found forming H bond 
with GLU166 residue in catalytic sites of  Mpro (Fig. 3b, Supplementary File 2). Physicochemical parameters of 
Hypericin showed that it is poorly soluble in water and violates Lipinski’s rule of drug-likeness (Fig. 3b, Supple-
mentary File 2) with 0.17 BAS. It is a naturally occurring photosensitizer reported to accumulate in tumour cells 
and upon illuminating release Reactive oxygen species (ROS) killing the cancerous  cells61. Recent in silico studies 
revealed its potential to bind SARS-CoV-2 spike  protein62. Additionally, its anti-viral properties against Bronchitis 
 virus63, Hepatitis C  virus64 and Human Coronavirus  Oc4365 represent it as a potential anti-viral drug material.

Sotetsu�avone, a bi�avonoid from Dacrydium balansae Brongn. & Gris (Gymnosperm) was found to be the 
most potent inhibitor of Dengue virus NS5 RdRp with  IC50 of 0.16 µM, among 23 bi�avonids screened. Further, 
their enzyme inhibitory activity was related to the number and position of methyl groups on the bi�avonoid 
moiety and the degree of oxygenation on �avonoid  monomers66. In our studies, Amento�avone recorded least 
of − 9.7 BE against  Mpro and found interacting with target AAR by forming H bonds with GLU166 and other 
residues in the vicinity of catalytic site (Fig. 3b, Supplementary File 2). Similarly, other bi�avonoids, both Gink-
getin and Isoginkgetin (derivatives of Amento�avone from Ginkgo biloba L.) were recorded BE − 9.5 followed 
by Agatis�avone (BE − 9.3).

Flavonol glycosides are the most in�uential group of PSM found interacting with the target site of  Mpro. 
Flavonols are the class of �avonoids that has 3-hydroxy�avone backbone and present in a large group of plants. 
Lower BE of − 9.6 was recorded by Quercetin 3,5-diglucoside followed by Myricetin 3-rutinoside (BE − 9.4), 
Rutin (BE − 9.3), Kempferol (BE − 9.2), Myricetin 3-rhamnoside (BE − 9.2), and Robinetin 3-rutinoside (BE 
− 9.1) (Fig. 3b, Supplementary File 2). It was observed that �avonol with two glucose moieties recorded lower 
BE when compared to �avonol with one or three glucose moieties. With regards to bioavailability, Graefe et al.67 
reported the heights of 2.3 and 2.1 µg/ml of quercetin glucuronides in plasma of human volunteers a�er oral 
administration of onion and quercetin-4′-O Glucoside, respectively. Similarly, the peaks of 4.3 and 4.0 µg/ml 
were recorded for buckwheat tea and rutin oral administration. �e authors hypothesized that quercetin-4′-O 
glucoside and quercetin-3-O glucoside absorption might happen at a di�erent site of GI tract and depend on 
the number of the sugar moiety. Further, plant matrix may have an additional e�ect on GI absorption of these 
�avonol glycosides.

Proanthocyanidins are a class of oligomeric �avonoids (condensed tannins) found in a variety of plants. �ey 
are formed by the condensation of catechin and epicatechin units. Studies on Proanthocyanidins reveal its poor 
bioavailability, its monomers viz., ( +)-catechin and (−)-epicatechin have been previously reported to cross GI 
track in its monomeric form or as conjugated  metabolites35. Further, its dimers are also reported to present in 
plasma and urine a�er consuming food and beverages rich in  Proanthocyanidins68,69. In our studies, Proantho-
canidin A2 and Proanthocanidin B2 recorded least of − 9.4 BE followed by Procyanidine B1 (BE − 9.3). Further, 
their monomers/ dimers/ conjugates viz., (-)-Gallocatechin gallate (BE − 9.1), Epicatechin-3-gallate (BE − 9.0), 
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Figure 4.  (a) Structural activity relationship: Correlation of canonical SMILES structure similarity (data 
points are joined by colored lines) and binding energy (represented in di�erent color shades of data point) of 
selected plant secondary metabolites (PSM) evaluated against SARS-CoV-2 RdRp using Data Warrior so�ware. 
Structurally similar molecules are grouped in dotted lines and a representative molecule with low binding 
energy (kcal/mol) (values in parenthesis) is represented in box. Here, large number of falvonol glycoside (> 13%) 
followed by hydrolysable tannins, anthocyanins and triterpenes are the major group of PSM found interacting 
with target site of SARS-CoV-2 RdRp. (b) Data analysis of selected PSM against SARS-CoV-2 RdRp. (A) 
Bioavailability radar chart representing lipophilicity (LIPO), Molecular weight (SIZE), Topological polar surface 
area (POLAR), Solubility (INSOLU), Flexibility (FLEX) and Saturation (INSATU) along with Bioavailability 
score (BAS) of selected molecules, (B) 3D visualization of protein–ligand interaction using PyMOL (selected 
amino acid residue of target site of protein are colored in cyan, and (C) 2D visualization of di�erent types 
of interactions between ligand and target site of protein using Discovery Studio so�ware (di�erent types of 
interactions are represented in color codes).
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Figure 4.  (continued)
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Gallocatechin-(4alpha- > 8)-epigallocatechin (BE − 8.6) were found e�ective in the binding target site of SARS-
CoV-2  Mpro (Supplementary File 2). Glycosidic anthocyanidin (anthocyanins), water-soluble pigments found in 
many fruits like grapes, bilberry, raspberry, blackberry, cherry, blueberry, etc. Here, Cyanidine-3,5, diglucoside 
recorded − 9.4 BE followed by Penodine 3,5 diglucoside (BE − 9.3). Further, H bond formation between Cya-
nidine-3,5, diglucoside and AARs GLY143 and SER144 of the catalytic site of  Mpro was observed. It recorded a 
BAS of 0.17 and didn’t ful�ll the criteria of a drug-like molecule as per Lipinski’s rule (Fig. 3b, Supplementary 
File 2). Bioavailability of Cyanidine-3-glucoside was studied in human trials by Czank et al.70 following the iso-
topically labeled compound. �ey found radioactivity in plasma, urine and breathe, indicating the absorption 
of the labeled compound. However, the study didn’t reveal the existence of bioactive metabolites; it may be in 
degraded forms of the parental compound.

Ter�avin B, an ellagitannin (found in Terminalia chebula Retz. and T. catappa L.) recorded BE of − 9.7. Also, 
it was found forming H bonds with AARs HIS41, GLY143, SER144, CYS145 and GLU166 present in the catalytic 
site of SARS-CoV-2  Mpro. It is water-soluble, low in GI absorption and violates Lipinski’s rule (Fig. 3b, Supple-
mentary File 2). Aqueous extracts of T. chebula were reported to be inhibitory to Hepatites B virus infection in 
Hep G 2.2.15  cells71. Not much research studies on their bioavailability and anti-viral properties have been done 
with puri�ed Ter�avin B. Vescalagin, and Castalagin are ellagitannins found in oak and chestnut  wood72,73. �ey 
are water-soluble, high oxidizable and  astringent74. Here, Vescalagin recorded − 9.6 BE and found interacted with 
GLU166 residue of  Mpro catalytic site through H bond, and Castalagin showed − 8.8 BE (Fig. 3b, Supplementary 
File 2). Vilhelmova et al.75 demonstrated the anti-viral activity of Vescalagin and Castalagin against Herpes 
simplex virus type I and II. Also, these PSM synergistically inhibited the multiplication of test virus along with 
anti-viral compound Acyclovir.

Mudanpioside J is a monoterpene glucoside identi�ed in Paeonia delavayi Franch. (Chinese medicinal plant), 
which was found inhibitory to In�uenza virus  neuraminidase76. In our studies, Mudanpioside J recorded BE of 
− 9.6 and showed strong interaction with GLY143, SER144 and CYS145 residues of  Mpro catalytic site through 
H bonds (Fig. 3b, Supplementary File 2). Studies on Pharmacokinetics properties of monoterpene glycosides 
are limited. Paeoni�orin and Albi�orin, Mudanpioside J related compounds were reported as low in oral bio-
availability due to their poor membrane permeability and gut microbes-induced  metabolism77,78. SwissADME 
analysis of Mudanpioside J also indicated its P-glycoprotein substrate nature and violation of Lipinski’s rule with 
0.17 BAS (Supplementary File 3).

Lignans were reported for their wide biological activities, including anti-viral against Hepatitis B, Hepatitis 
C, Herpes simplex virus type 1 and 2, Epstein-Barr virus and  Cytomegalovirus79,80. Justalakonin is an Aryl-
naphthalene lignan glycoside isolated from Justicia purpurea L. In the present study, it recorded BE of − 9.4 and 
showed interaction with AARs GLY143 and SER144 of the catalytic site of  Mpro through H bonding (Fig. 3b, 
Supplementary File 2). Physicochemical characterization revealed it was found violating Lipinski’s rule with 
0.17 BAS. Regarding its metabolism and bioavailability, not much research studies have been performed earlier. 
Similarly, structurally related PSM, Elenoside (BE − 8.9), Patenti�orin B (BE − 8.9) and Patenti�orin A (BE − 8.6) 
also recorded lower BE against  Mpro (Supplementary File 2).

As per recent computational studies, molecules like �ea�avin-3–3′- digallate (BE − 12.4), Delphinidin 
3,5-diglucoside (BE − 12.2) and Rutin (BE − 11.3) were reported as potential inhibitors of SARS-CoV-2  Mpro 
with lowest BE and predicted to interfere with the process of viral replication within host cell (Supplementary 
File 4). However, bioavailability and biotransformation of such PSM are need to be studied in detail.

SARS‑CoV‑2 RNA‑dependent RNA polymerase (RdRp). �e central component of coronaviral rep-
lication/ transcription machinery is RNA-dependent RNA polymerase (RdRp, also named nsp12) that con-
structs copies of its RNA genome playing the key role in replication and transcription of SARS-CoV-2 in the 
host  cell81,82. Because of its high sequence and structural conservation, it remains the target of choice for the 
prophylactic or curative treatment of several viral diseases. Studies on structural activity relationship and BE of 
PSM revealed that a large number of �avonol glycoside (> 13%) followed by hydrolysable tannins, anthocyanins 
and triterpenes were found interacting with target site of RdRp with lower BE (Fig. 4a). �ough the number of 
�avonol glycosides were high, the lowest BE was recorded by Erodictyol-7-O-glycoside and Narirutin belong 
to group �avanon glycosides. Interestingly, none of the PSM analyzed was found interacting with VAL557 of 
RdRp. However, they found forming H bond and another type of interactions with AARs in the catalytic pocket 
probably sterically hinders the substrate interaction with the catalytic site, thereby reducing the RdRp activity.

Eriodictyol-7-O-rutinosideis a �avanone glycoside commonly found in  lemon83, also called as lemon or citrus 
�avonoid. It recorded − 9.9 BE and found interacting with ARG553, ALA554, THR556, ASP618, TRY619 and 
ASP623 in the active site of RdRp. Both glycone and aglycone moiety of this molecule were found involved in H 
bond formation with the target site of RdRp. Similarly, Narirutin, another �avanone glycoside which naturally 
presents in sweet oranges recorded lower BE of − 9.7 and a similar pattern of H bond formation with a catalytic 
pocket of RdRp was observed. Both molecules recorded BAS of 0.17, indicating their low bioavailability and 
found violating Lipinski’s rule (Fig. 4b, Supplementary File 2). Structurally similar compounds, Nirurin from 
P. niruri and Naringin from grapefruits also showed promising results with BE − 9.0 and − 8.9, respectively.

Myricetin 3-rutinoside is a �avonol glycoside isolated from Chrysobalanus icaco L.84 and other related plant 
species recorded − 9.5 BE. �is molecule was found forming a large number of H bond with AARs ASP452, 
TYR456, ARG553, ALA554, ARG555, CYS622, ASP623 and SER682 showing its capability of strongly inter-
acting with the target protein. Similarly, Kempferol (�avonol glycoside) also recorded − 9.5 BE. For both the 
compounds BAS was found to 0.11 (Fig. 4b, Supplementary File 2 and 3). Rhoifolin and Isorhoifolin are �avone 
glycoside reported from Rhus succedanea L.85 and several citrus plants and onions. It is reported as anti-oxidant, 
anti-in�ammatory, anti-microbial, hepatoprotective and anti-cancerous (reviewed by Refaat et al.86). �ough they 
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recorded lower BE, Rhoifolin and Isorhoifolin were not interacting with AARs close to the active site of RdRp. 
Isoginkgetin, a bi�avonoid from G. biloba recorded lower BE of − 9.5 followed by Agatis�avone (BE − 9.4) and 
ginkgetin (BE − 9.2). Isoginkgetin was found interacting with ARG553, THR556, THR687 and ALA685 of RdRp 
catalytic pocket. Compared to �avonoids glycosides, aglycons were frequently reported to be bioavailable. Hence, 
Myricetin, a monomeric aglyconic �avonoid, was analyzed and recorded BE − 8.4. Further, Myrcitin showed 
H bond with ARG553, ARG555, ARG624 and THR680 of RdRp active site, proving itself as a better candidate 
for developing drug targeting SARS-CoV-2 RdRp. Similarly, Quercitin glycosides were found promising, but 
quercetin was not able to appear in the list of top-ranked PSM.

Rotundioside B is a triterpenoid glycoside (Saponin) found in Bupleurum rotundifolium L.87 and reported as 
an anti-in�ammatory and anti-proliferative88,89. Here, Rotundioside B recorded − 9.5 BE and formed H bond 
with ASP452, SER501, ALA554, ASP623, ARG624, ASN691, SER759 and ASP760 of RdRp catalytic pocket 
proving itself as a strong contender of an anti-viral drug. However, this molecule recorded poor BAS of 0.11 and 
violated Lipinski’s rule of drug-likeness (Fig. 4b, Supplementary File 2). Similar to this, Ginsenoside Ro, a triter-
pene saponin from roots of Panax ginseng C.A. Meyer. and related plants recorded − 9.4 BE. Trigofoenoside G, 
a steroidal saponin from plants and seeds of T. foenum-graecum was found interacting with RdRp with − 9.3 BE 
and forms H bonds with ASP452, LYS500, ALA554, ALA558, LYS621 and ALA685 of catalytic pocket (Fig. 4b, 
Supplementary File 2). Following to this, Trigofoenoside F and Trigofoenoside A recorded − 8.9 and − 8.4 BE, 
respectively (Supplementary File 2).

Hippomanin A, an ellagitannin found in Hippomane mancinella L. is known for its toxic properties. It 
causes oropharyngeal and gastrointestinal tract lesions, hypotension and  bradycardia90,91. Here, Hippomannin 
A recorded − 9.6 BE and forms H bond with ARG553, TYR619, ARG624, THR680, SER682 and ASP760 with 
target site of RdRp. A structurally similar molecule, Tellimagrandin I found widely in fruits, nuts and vegetables. 
Tellimargrandin was reported for its wide spectra of biological activities (reviewed by Zheng et al.92). Here, it 
recorded − 9.5 BE followed by Punigluconin (BE − 9.3). Other hydrolysable tannins viz., Emblicanin A and 
Phyllanemblinin C found in fruits of Indian Gooseberry (Emblica o�cinalis Gaertn.) were recorded lower BE of 
− 9.4 and − 9.3, respectively. As the above discussed hydrolysable tannins are highly water-soluble and larger in 
molecular weight, their bioavailability in their original form is a major concern. Some of the molecules, structure 
similar to their bio-transformed metabolites with higher bioavailability, like Ellagic acid (BE − 8.3), 3′-O-methyl 
ellagic acid-4-xyloside (BE − 8.4), and 3,3′-Di-O-methyl ellagic acid (BE − 8.2) also recorded promising results 
indicating the possible involvement of ellagitannins bio-transformed products in inhibiting RdRp activity thereby 
reducing the COVID-19 severity.

Recent studies also reported several PSM such as Cyanidin 3-(6″-manlonylglycoside) (BE − 11.5), Ca�aric 
acid (BE − 10.6) and Chrysophanol 8-(6-galloylglucoside) (BE − 9.9) with lowest binding energy as a potential 
molecules to reduce the pathogenicity of SARS-CoV-2 by suppressing the activity of RdRp thereby reducing the 
viral multiplication capability inside host cell (Supplementary File 4).

Conclusion
From the obtained results, it could be concluded that virtual screening of large number of PSM through molecular 
docking is a promising preliminary step towards developing an e�ective drug against a desired target protein/ 
enzyme by understanding their structure–activity relationship. Here, more than the BE of a PSM, its bioavail-
ability also plays a crucial role in determining its biological activity under in vivo environmental conditions. 
Triterpenoid based PSM structures (Coagulins, Withanolides, Pseudojervine, Kamalachalcone, etc.) are hypoth-
esized as potent drug molecules which can be used to block surface AARs of spike protein which interacts with 
hACE2, thereby preventing host cell recognition by SARS-CoV-2. In the case of TMPRSS2,  Mpro and RdRp, 
molecules belong to �avonoid glycosides, bi�avonoids, ellagitannins, anthocyanidins, triterpens, etc. (Table 1) 
can be explored. �ough the large numbers of PSM were found violating Lipinski’s rule and recorded lower 
BAS, they can’t be ignored. Because several bio-transformed structure of these PSM are highly bioavailable and 
they may retain structural moiety of the parental compound. �ese bio-transformed molecules may further 
interact with the target site of a protein and exert similar results as observed in molecular docking studies. In 
our study, most of the potential anti-SARS-CoV-2 PSM were well studied for human consumption to manage 
various diseases and disorders previously. Also their controlled administration was proved to be non-toxic to 
humans. By considering the above facts, the possibilities of using these molecules along with the existing best 
practices to be explored immediately. Further, to streamline the large pools of PSM, they can be subjected for 
several in vitro and in vivo studies.

Materials and methods
Preparation of plant secondary metabolites library. To prepare PSM library, an extensive literature 
survey was conducted on selected plants and the general and species-speci�c PSM including Alkaloids, Pheno-
lics and Terpenoids were listed. �e 3D and 2D structures (SDF Files), and canonical SMILES of the selected 
PSM were retrieved from online databases such as PubChem (https ://pubch em.ncbi.nlm.nih.gov) and Chem-
Spider (https ://www.chems pider .com). �e 2D structures were converted into 3D coordinates, and geometries 
were optimized by using Marvin Sketch (https ://www.chema xon.com/produ cts/marvi n/marvi nsket ch). As sev-
eral PSM are present in multiple plant species, an approximate 6% duplication was allowed in the main PSM 
library. Additionally, PSM isomers were considered as separate ligands. All the �les were coded and used for 
further studies.

Target proteins. In the present study, we selected four target proteins, one from human (human trans-
membrane serine protease 2, TMPRSS2) and three from SARS-CoV-2 (spike protein,  Mpro and RdRp). �ese 

https://pubchem.ncbi.nlm.nih.gov
https://www.chemspider.com
https://www.chemaxon.com/products/marvin/marvinsketch
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selected enzymes/ proteins are well studied for their involvement in host cell recognition, membrane fusion, and 
viral replication in host cell, which are critical stages in determining viral pathogenicity. �e crystal structure 
of SARS-CoV-2 spike receptor-binding domain bound with hACE2 (PDB ID: 6M0J) (2.45  Å) was retrieved 
from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) (RCSB, http://
www.rcsb.org)93 and hACE2 was removed, processed and used for docking studies. �e 14 amino acid resi-
dues (AARs) (THR415, ASN439, TYR449, TYR453, LEU455, PHE486, ASN487, TYR489, GLN493, GLN498, 
THR500, ASN501, GLY502 and TYR505) of spike protein that are key for binding  hACE294 were considered as 
active sites for molecular docking process. �e TMPRSS2 sequence (NP_001128571.1) was retrieved from the 
National Center for Biotechnology Information (NCBI) protein database. �e structure of TMPRSS2 was gener-
ated by using the SWISS-MODEL online  server95. �e structures were marked, superimposed and visualized by 
using  Chimera96. Model 1 of our work and O15393 present in UniProt were found 100% similar. �ree amino 
acid residues (HIS296, ASP345 and SER441) of catalytic  site97 were considered as key residues of TMPRSS2 
in the molecular docking process. �e crystal structure of SARS-CoV-2  Mpro (PDB ID: 6LU7) (2.16 Å)98 was 
retrieved from RCSB-PDB and used for docking studies a�er processing.  Mpro has three domains, and the active 
site is located between domain I and II. Here, CYS145-HIS41/SER144-HIS163 can act as a nucleophilic agent 
and GLY143 and GLU166 can form hydrogen bonds with “CO–NH-Cα-CO–NH-Cα” structure of the backbone 
of the substrate protein. �ese six residues were considered as the critical residues of  Mpro in the molecular dock-
ing  process99. �e SARS-CoV-2 RdRp protein sequence (YP_009725307.1) was retrieved from the NCBI protein 
database. �e structure of RdRp was generated by using the SWISS-MODEL online  server95. �e structure was 
marked, superimposed and visualized by using  Chimera96. �e amino acid residue VAL557 in motif  F82 was 
considered as a critical residue of RdRp in the molecular docking process.

Removal of water molecules, metal ions, cofactors, and addition of charges and hydrogen atoms were done 
by UCSF Chimera  tool96. Computing energy minimization and reconstruction of missing atoms and to perform 
stereo-chemical quality checks to come up at the best possible 3D structures were done through Discovery 
Studio so�ware (Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Version 3, San Diego: 
Dassault Systèmes, 2019).

Molecular docking. �e ligands were energy minimized by conjugate gradients optimization algorithm 
with total numbers of 200 steps performed as a default universal force �eld (UFF)  parameters100. �e capability 
of ligands to interact with the target site of selected proteins was studied following computational ligand-target 
docking approach. Molecular docking was carried out using PyRx, AutoDock Vina option based on scoring 
 functions101,102. �e least binding energy (BE, kcal/mol) conformation was considered as the most favourable 
docking pose. �e interactions between ligand and protein were analyzed using  PyMOL103 and Discovery Studio 
3.5 (Accelrys So�ware Inc., San Diego, CA, USA).

Structural activity relationship analysis. According to their BE, all the ligands were assigned ranking 
and aligned in ascending order. For the ease of the study, top 250 molecules (268 for  Mpro) were subjected to 
ligand structure similarity analysis (based on canonical SMILES) and BE using Data Warrior so�ware (Version 
5.2.1).

Physicochemical properties and bioavailability of PSM. �e drug-likeness and the physicochemical 
properties were studied using SwissADME (www.swiss adme.ch). �e canonical SMILES of the selected PSM 
were subjected to SwissADME analysis. �e PSM were analyzed for their drug-likeness properties following 
Lipinski’s rule of  �ve104. �e bioavailability radar charts obtained were analyzed for their drug like properties, 
i.e., lipophilicity (XLOGP3 between − 0.7 and + 5.0), Molecular weight (between 150 and 500 g/mol), Topologi-
cal polar surface area (between 20 and 130 Å2), Solubility (log S not higher than 6), Flexibility (no more than 9 
rotatable bonds) and Saturation (fraction of carbons in the  sp3 hybridization not less than 0.25)105. �e bioavail-
ability score (BAS) for selected PSM was also  recorded106.

 Data availability
�e supporting data related to the manuscript is provided as Supplementary Files.
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