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Determining the toxicity of chemicals is necessary to identify their harmful
effects on humans, animals, plants, or the environment. It is also one of the main
steps in drug design. Animal models have been used for a long time for toxicity
testing. However, in vivo animal tests are constrained by time, ethical considera-
tions, and financial burden. Therefore, computational methods for estimating the
toxicity of chemicals are considered useful. In silico toxicology is one type of tox-
icity assessment that uses computational methods to analyze, simulate, visualize,
or predict the toxicity of chemicals. In silico toxicology aims to complement exist-
ing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and
minimize late-stage failures in drugs design. There are various methods for gen-
erating models to predict toxicity endpoints. We provide a comprehensive over-
view, explain, and compare the strengths and weaknesses of the existing
modeling methods and algorithms for toxicity prediction with a particular (but
not exclusive) emphasis on computational tools that can implement these meth-
ods and refer to expert systems that deploy the prediction models. Finally, we
briefly review a number of new research directions in in silico toxicology and
provide recommendations for designing in silico models. © 2016 The Authors. WIREs

Computational Molecular Science published by John Wiley & Sons, Ltd.
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INTRODUCTION

Toxicity is a measure of any undesirable or
adverse effect of chemicals. Specific types of these

adverse effects are called toxicity endpoints, such as
carcinogenicity or genotoxicity, and can be quantita-
tive (e.g., LD50: lethal dose to 50% of tested indivi-
duals)1 or qualitative, such as binary (e.g., toxic or
non-toxic) or ordinary (e.g., low, moderate, or high

toxicity).2 Toxicity tests aim to identify harmful
effects caused by substances on humans, animals,
plants, or the environment through acute-exposure
(single dose) or multiple-exposure (multiple doses).3

Several factors determine the toxicity of chemicals,
such as route of exposure (e.g., oral, dermal, inhala-
tion), dose (amount of the chemical), frequency of
exposure (e.g., single versus multiple exposure), dura-
tion of exposure (e.g., 96 h), ADME properties
(absorption, distribution, metabolism, and excretion/
elimination), biological properties (e.g., age, gender),
and chemical properties.4

Animal models have been used for a long time
for toxicity testing.3 However, in vitro toxicity tests
became plausible due to the advances in high
throughput screening.3 In silico toxicology (computa-
tional toxicology) is one type of toxicity assessment
that uses computational resources (i.e., methods,
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algorithms, software, data, etc.) to organize, analyze,
model, simulate, visualize, or predict toxicity of che-
micals.5,6 It is intertwined with in silico pharmacol-
ogy, which uses information from computational
tools to analyze beneficial or adverse effects of drugs
for therapeutic purposes.5,6

Computational methods aim to complement
in vitro and in vivo toxicity tests to potentially mini-
mize the need for animal testing, reduce the cost and
time of toxicity tests, and improve toxicity prediction
and safety assessment. In addition, computational
methods have a unique advantage of being able to
estimate chemicals for toxicity even before they are
synthesized.7 In silico toxicology encompasses a wide
variety of computational tools (Figure 1):
(A) databases for storing data about chemicals, their
toxicity, and chemical properties; (B) software for
generating molecular descriptors; (C) simulation
tools for systems biology and molecular dynamics;
(D) modeling methods for toxicity prediction;
(E) modeling tools such as statistical packages and
software for generating prediction models; (F) expert
systems that include pre-built models in web servers
or standalone applications for predicting toxicity;
and (G) visualization tools.

The purpose of this study is to provide a com-
prehensive overview of existing modeling methods

and algorithms for toxicity prediction (element D
above), with a particular (but not exclusive) emphasis
on computational tools that can implement these
methods (element E), and expert systems that deploy
the prediction models (element F). Due to the nature
of this expanding field, this study cannot provide an
exhaustive overview of all the seven in silico compo-
nents mentioned above. Therefore, the reader is
encouraged to refer to existing literature to get more
information about toxicity databases,6,8–11 molecular
descriptors generation software,12 toxicology simula-
tion tools,13,14 statistical modeling packages,12 expert
systems6,9,11,12,15–17, and visualization tools.18

Generally, modeling methods include five major
steps while developing prediction models19

(Figure 1): (1) gathering biological data that contain
associations between chemicals and toxicity end-
points, (2) calculating molecular descriptors of the
chemicals, (3) generating a prediction model, (4) eval-
uating the accuracy of the model, and (5) interpreting
the model.

The scope of this review covers the third step,
generating prediction models. We focus on using
computational methods to predict toxicity of differ-
ent types of substances such as drugs, other chemi-
cals, mixtures, and nanomaterials both quantitatively
and qualitatively. There are various methods to solve
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such problems, and each method has its strengths,
limitations, scope of application, and specificity of
interpretation. The goal is to find the most effective
method for the problem at hand. However, all the
five steps mentioned above are inter-related. There-
fore, we discuss the remaining steps whenever neces-
sary. We divided this review into four main sections.
First, we provide an explanation and discussion of
the existing in silico methods. Then, we briefly dis-
cuss two special types of chemicals: mixtures and
nanomaterials. Subsequently, we offer recommenda-
tions on how to develop and apply toxicity predic-
tion models. Finally, we provide an overview of 21st
century toxicology.

IN SILICO MODELING METHODS

Many in silico methods have been developed to pre-
dict the toxicity of chemicals. The methods we dis-
cuss here are chosen either because they illustrate the
historical development of in silico toxicology or they
represent the state-of-the-art method for predicting
toxicity. For each method, we provide (if applicable)
a mathematical description, discussion of strengths
and limitations, recommendations about when and
why to use the method, and existing tools that imple-
ment the method. Additionally, for the sake of clar-
ity, we keep equations and visual representations of
models as general as possible.

Structural Alerts and Rule-based Models
Structural alerts (SAs)12,20 (also called toxicophores/
toxic fragments17) are chemical structures that indi-
cate or associate to toxicity.6,12 SAs can consist of
only one atom or several connected atoms.21 A com-
bination of SAs may contribute to toxicity more than
a single SA.21 SAs are often used in rules defined in
the form ‘if A is B then T,’ where A is an SA, B is the
value of the SA, and T is the toxicity prediction with
assigned certainty level,6 as illustrated in the follow-
ing example:

IF (chemical_substructure) IS (present) THEN
(skin_sensitizer IS certain)

There are two main types of rule-based models
that we will consider: human-based rules (HBRs) and
induction-based rules (IBRs).12 HBRs are derived
from human knowledge of field experts or from liter-
ature, but IBRs are derived computationally.6,12

HBRs are more accurate but are limited to human
knowledge that could be incomplete or biased.6,12

Moreover, updating HBRs is often impractical as it

requires detailed literature analysis.21 On the con-
trary, IBRs can be generated efficiently from large
datasets. IBRs may propose hypotheses about asso-
ciations between chemical structural properties
(or their combinations) and toxicity endpoints, which
may not be identified through human insights.6,21

IBRs are implemented using probabilities to deter-
mine if SAs correspond to the toxic or non-toxic
class. It is possible to have hybrid-based rules systems
that contain IBRs and HBRs, with new rules being
generated computationally.12

It is easy to interpret and implement SAs.15

They are useful in drug design to determine how
drugs should be altered to reduce their toxicity. Using
structure to predict toxicity allows identifying the
structure of potential metabolites.10 However, SAs
have a number of limitations. SAs use only binary
features (e.g., chemical structures are either present
or absent) and only qualitative endpoints (e.g., car-
cinogenic or non-carcinogenic).12 SAs do not provide
insights into the biological pathways of toxicity and
may not be sufficient for predicting toxicity. Depend-
ing on the concurrent absence or presence of other
chemical properties, toxicity may decrease or
increase.15 The list of SAs and rules may be incom-
plete, which may cause a large number of false nega-
tives (i.e., toxic chemicals predicted as non-toxic) in
predictions.12,15,20

The last point is particularly important. It is
necessary to understand how to interpret the output
of SA models. If a chemical does not include SAs or
does not match any toxicity rules, this does not indi-
cate non-toxicity.6 This is especially true for HBRs
that usually include SAs or rules that indicate toxicity
but do not include SAs or rules that indicate non-tox-
icity.6 Therefore, in developing such models, it is nec-
essary to ensure that the list of SAs and rules are
comprehensive and that they are refined when more
experimental data becomes available. However, there
should be a balance between the list of SAs and rules,
their comprehensiveness, and predictive power. If
SAs and rules are diverse, they can be applied to a
large number of chemicals, but this may increase
false positives (i.e., non-toxic chemicals predicted as
toxic). However, if they are too narrow, they can be
applied only to a small group of chemicals, and this
may increase false negatives (i.e., toxic chemicals pre-
dicted as non-toxic).

An example of SA list for skin sensitization was
published in 1982 by Dupuis and Benezra.22 Another
SA list was proposed by Ashby and Tennant19,21,23

in 1988 to predict carcinogenicity and mutagenicity.
One of the most developed lists of carcinogenic
SAs was proposed by Benigni and Bossa19,21,24 in
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the Organisation for Economic Co-operation and
Development (OECD) Quantitative Structure-
Activity Relationship (OSAR) Toolbox25 and in Tox-
tree.19,21,26 Recently, Benigni and Bossa published a
new list of non-genotoxic carcinogenic SAs.27 Other
lists of SAs and rule-based models were developed
for hepatotoxicity,28 cytotoxicity,29 irritation/corro-
sion of skin,30 and eye31 and skin sensitization.19,32

Several systems (also called ‘expert systems’20)
provide pre-built rule-based and SAs lists, for exam-
ple, Oncologic Cancer Expert System (OCES),33

Toxtree,15,26 Derek Nexus,15,34 HazardExpert15,35

and Meteor.36 Other tools that can extract SAs from
datasets that contains toxic or non-toxic chemicals
are reviewed in21, such as computer assisted structure
elucidation (CASE),37 prediction of activity spectra
for substances (PASS)38, and categorical-structure
activity relationship (cat-SAR).39

Additionally, there are several approaches for
extracting the longest frequent molecular substruc-
tures such as Apriori (based on breadth-first search)
and pattern growth (based on depth-first search).21

Examples of algorithms that implement the pattern
growth approach are reviewed in21, such as molecu-
lar fragment miner (mofa),40 graph-based substruc-
ture pattern mining (gSpan),41 fast frequent subgraph
mining (FFSM),42 and Graph/Sequence/Tree Extrac-
tion (gaston).43 Significant substructures capable of
discriminating between toxic and non-toxic chemi-
cals can be extracted using an emerging chemical pat-
tern approach as explained in ref. 21.

Chemical Category, Read-Across, and
Trend Analysis
A chemical category44 is a group of chemicals whose
properties and toxicity effects are similar or follow a
similar pattern.11,45 Chemicals in the category are
also called source chemicals. The OECD Guidance
On Grouping Of Chemicals lists several methods for
grouping, such as chemical identity and composition,
physicochemical and ADME properties, mechanism
of action (MoA), and chemical/biological interac-
tions.46 Structural similarity is described in the
OECD guidelines as the starting point for grouping,
but it is also criticized for lacking a ‘scientifically sup-
portable basis’ for grouping, and it can be used if
impurities or other constituents in the chemical com-
position would not change toxicity.46

Read-across is a method of predicting unknown
toxicity of a chemical using similar chemicals (called
chemical analogs) with known toxicity from the same
chemical category.9,11,12,45,47 Trend analysis is a
method of predicting toxicity of a chemical by ana-
lyzing toxicity trends (increase, decrease, or constant)
of tested chemicals.9 A hypothetical example of trend
analysis shows that when carbon chain length (CCL)
increases, acute aquatic toxicity increases
(Figure 2).45

Here, we focus on the read-across method. A
summary of different parameters that must be con-
sidered when designing a read-across model is
depicted in Figure 3 and explained later. Note,
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however, that the points discussed are similarly appli-
cable to trend analysis.

There are two ways to develop a read-across
method12,45,48: analog approach (AN) (called one-to-
one), which uses one or few analogs, and a category
approach (CA) (called many-to-one), which uses
many analogs. AN may be sensitive to outliers
because two analogs may have different toxicity pro-
files.12 Using many analogs for CA is useful to detect
trends within a category and may increase confidence
in the toxicity predictions.11,45,48 CA requires defin-
ing a category boundary to determine if a chemical
belongs to the category45 and implementing a
‘combination of predictions’ method for analogs that
have conflicting toxicity profiles. A combination of
predictions can be done using (if applicable) mini-
mum, maximum, mode, median, average, linear,
quadratic, or other nonlinear combinations of the
predictions.47

Read-across can be qualitative if the toxicity
endpoint is qualitative; otherwise, read-across is
quantitative.6,9,12 Also, interpolation using source
chemicals surrounding the target chemical (see
Figure 2) is better than extrapolation from one
side.17 In Figure 2, interpolation is used with the
chemical that has CCL of length 6, but extrapolation
is used with a chemical that has CCL of length 12.

Identifying similar chemicals can be done in
two steps: representing chemicals as feature vectors

of chemical properties, and then calculating similarity
of chemicals. The first step is implemented using
either binary or holographic fingerprints. A binary
fingerprint is a feature vector of binary bits represent-
ing presence (1) or absence (0) of a property
(e.g. presence of a methyl group).44,47 However, a
holographic fingerprint uses frequency of properties
(e.g. number of methyl groups). Continuous chemical
properties (e.g., melting point) can be used as well. A
hierarchy of categories and subcategories can be bet-
ter than a single feature vector. At each level of the
hierarchy, a property is applied for category forma-
tion. Subsequently, categories are divided using
another property to generate subcategories and so
on. The hierarchy can allow for investigating the sig-
nificance of properties and can simplify model inter-
pretation.47 An example of hierarchal categories is
provided in ref. 47. Statistical similarity of two che-
micals can be calculated using different types of dis-
tances, such as Hamming, Euclidean, Cosine,
Mahalanobis, Tanimoto distance, or linear or nonlin-
ear relationships of the features.45,47

There are several advantages of read-across.
Read-across is transparent,16 easy to interpret and
implement.44 Read-across can model quantitative
and qualitative toxicity endpoints, and it allows for a
wide range of types of descriptors and similarity mea-
sures to be used to express similarity between
chemicals.47
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However, there are also limitations. Statistical
similarity measures do not provide biological insight
of toxicity.47 Moreover, complex similarity measures
may complicate model interpretation.47 In reality,
read-across uses small datasets compared to other
approaches such as QSAR because there are usually
only a few analogs for a given chemical.47 Addition-
ally, accuracy depends on the number and choice of
analogs, similarity metrics, strength in chemicals’
similarity, chemical properties, and category bound-
aries.47 These parameters are very subjective, mutu-
ally dependent, endpoint-specific, and may require
expert opinions.17,44–47 Moreover, this approach
could be inapplicable or inaccurate if analogs have
conflicting toxicity profiles11 or the number of analog
chemicals is insufficient. In these cases, the QSAR
approach can be used.11,12,44,45

Read-across was applied to predict
carcinogenicity,49 hepatoxicity,28 aquatic toxicity,50

reproductive toxicity,51 skin sensitization,52 and envi-
ronmental toxicity.53 Examples of tools implementing
read-across are The OECD QSAR Toolbox,25

Toxmatch,54 ToxTree,26 AMBIT,55 AmbitDiscovery,56

AIM,57 DSSTox,58 or ChemIDplus.59 A detailed expla-
nation of some of these tools is available in refs.
6,9,11,16,17,44,45,48.

Dose–Response and Time–Response
Models
Dose–response (or time–response) models are rela-
tionships between doses (or time) and the incidence
of a defined biological effect (e.g., toxicity or mortal-
ity).60 A dose is ‘the total quantity of a substance
administered to, taken up, or absorbed by an organ-
ism, organ, or tissue and can be measured with
in vitro or in vivo experiments.’60 Time can be the
time to produce a response or the time for recov-
ery.61 Exposure time can be continuous, intermittent,
or random, and exposure can be acute, short-term,
sub-chronic , and chronic exposure.60 Time–dose
models describe the relationship between time and
dose for a constant response.62 Figure 4 shows differ-
ent types of dose/time–response models. These mod-
els that describe relationships between response
versus dose or time can be generated by regression to
fit the data.

The first dose–response model relates concen-
tration (C) and time (t) with response (K), which is
Haber’s law (law of toxicity)60,63:

C × t =K

However, Haber’s law does not hold in many
situations,63 and it does not take detoxification into
consideration. The law assumes that any combina-
tion of concentration and time that has the same
C × t product should produce the same level of
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toxicity. However, in reality, this is not the case.
Toxicity of some chemicals can be more dependent
on concentration than time. Subsequently, Haber’s
law was generalized. Let C0 denote a threshold con-
centration, and n and m are constants. Several well-
known generalizations of Haber’s law are shown
below:

• Ostwald: (C – C0)
n t = K that emphasizes

concentration64;

• Druckery: C × tn = K that emphasizes
time63; and

• Miller et al.: (C – C0)
n tm = K that emphasizes

both concentration and time.63

One of the frequently measured responses is mortal-
ity (the number of deceased individuals). The Bliss
method (or Probit model) (Figure 5)61,63,65 trans-
forms time–mortality and dose–mortality relation-
ships into linear relationships. This transformation
follows the next steps: (a) link mortality frequency
(the number of deceased subjects) to dose or time;
(b) convert frequency to percentages (percentage of
deceased subjects); (c) transform percentages to pro-
bits (probability unites) and express dose or time in

on logarithmic scale. Probits are inferred doses
(or time) that correspond to a given mortality per-
centage. Bliss devised a special table called ‘probits
table’ to calculate the probits as explained in ref. 65.
This method takes into consideration the variation
of an individual’s susceptibility to toxic agents.
For example, a certain dose (or time exposure) can
cause the mortality of some individuals but not
others.61,65

There are many inherited differences between
dose–mortality and time–mortality models. Time–
mortality curves are based on the same individuals
whose susceptibility is measured at specific
intervals. The percentage of mortality at a given
interval cannot be less than that of the preceding
interval, and the susceptibility of individuals in
successive time intervals are correlated. However,
dose–mortality curves are based on different indivi-
duals for each dose. Therefore, susceptibility of indi-
viduals at successive doses is unrelated especially
if there are individuals who have a high toxicity
resistance.61

The effectiveness of time–mortality curves
depends on the ‘whole’ distribution of susceptibilities
and their relationship to the response. Time–
mortality curves that measure the response time can
be incomplete for small doses due to individuals who
have a high resistance and fail to show the measured
response. Similarly, time–response curves that meas-
ure the recovery time may be incomplete for large
doses if some individuals fail to recover. Bliss
explained how to estimate the truncated distribution
of time–mortality models.61

Miller et al.63 proposed a three-dimensional
model for concentration–time–response that can reli-
ably interpolate within the scope of experimental
data, and they provided an estimation of error when
extrapolating outside the scope. Recently, Brown and
Foureman62 used a time–concentration–response
model to generalize the concentration–response mod-
els using time as a parameter.

There are many advantages of time–response,
dose–response, and dose–time–response models: ease
of interpretation and implementation, consideration
of dose and time of exposure, interpolation of effects
between different doses of the same chemical within
the range of experimental data61,63 using dose–
response models, and interpolation between different
exposure times for the same toxicant and dose within
the range of experimental data61,63 using time–
response models.

However, there are many limitations. The three
models cannot extrapolate to other chemicals.60 Addi-
tionally, time–response models cannot extrapolate to
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other doses of the same chemical.61,63 Time–response
models require that tested individuals have uniform
susceptibility levels,61 or these models may be unreli-
able if some individuals have an extremely low or
high resistance. If time intervals are long, time–
response models may overestimate or underestimate
the response at a given moment.61 The three models
do not take into consideration target tissue, biologi-
cal process, ADME, toxicokinetics, toxicodynamics,
detoxification, damage or repair, or chemical
properties.60,63

These time–response and dose–response
models are complementary to one another and must
be used together to achieve reliable conclusions. Sev-
eral databases include dose–response data such as
CEBS,6,66 PubChem,18,67 and ToxRefDB.8,68 These
models were used, for example, for modeling
rectal cancer,69 mutagenicity,70 and developmental
toxicity.71

Pharmacokinetic Models
and Pharmacodynamic Models
Pharmacokinetic (PK) models relate chemical concen-
tration in tissues to time, estimate the amount of che-
micals in different parts of the body, and quantify
ADME processes.13,72 Toxicokinetic models are PK
models used to relate chemical concentration in tis-
sues to the time of toxic responses. PK models can be
compartmental and non-compartmental.60,72 A com-
partment is the whole or part of an organism in
which the concentration is uniform.73 Compartmen-
tal models consist of one or more compartments, and
each compartment is usually represented by differen-
tial equations.60,72,74

One-compartment models represent the whole
body as a single compartment, assume rapid equilib-
rium of chemical concentration within the body after
administration, and do not consider the time to dis-
tribute the chemical. The concentration C at a given
time t is computed by72

C tð Þ =C0 × e
−kt

where C0 is the initial concentration and k is the
elimination constant. The plotting log of concentra-
tion versus time results in a straight line of slope
(−k).72 However, these models do not consider the
distribution time of chemicals. Additionally, concen-
trations in some organs reach equilibrium faster than
in others. Two-compartment models consist of two
compartments: central (for rapidly-perfused tissues
e.g., liver or kidney) and peripheral (for slowly

perfused tissues e.g., muscle or skin). Each compart-
ment is represented by a differential equation similar
to the one-compartment models. After solving the
coupled equations, the concentration is the sum of
two exponential terms of time (interpreted as distri-
bution phase with initial concentration Ca and slope
-a and elimination phase with initial concentration
Cb and slope -b). The concentration C based on this
model is represented by72

C tð Þ =Ca × e
−at +Cb × e

−bt

These models, however, cannot extrapolate between
species or provide a mechanistic insight.72 On the
other hand, physiologically based pharmacokinetic
(PBPK) models include, in addition to concentration
and time, physiological descriptors of tissues and
ADME processes such as volumes, blood flows,
chemical binding/partitioning, metabolisms, or excre-
tions.13,60 PBPK models represent each organ as a
compartment, represented by a differential equation
that includes PK parameters.13,60,72,74 An organ can
be split into several compartments if there is a high
variability in organ tissue. Also, one compartment
can represent several similar organs.72 A general
PBPK model to calculate plasma concentration (CP)
uses a feature vector of PK parameters (θPK), time (t),
and dose (X)74 as follows:

CP = f θPK, X , tð Þ

where f is a function that models the relationship.
Because equation structure and the physiological
parameters are tissue specific, PBPK models allow for
interspecies extrapolation and provide a mechanistic
basis of ADME.11,60,72 PBPK models can convert
administered doses to tissue dosimetry,60 which is
‘the amount of chemical that is distributed to a tissue
or part of a tissue,’13 and generate concentration ver-
sus time models.11

Pharmacodynamic (PD) models relate a biologi-
cal response to the concentration of chemical in tis-
sue.72 Toxicodynamic models are PD models that
relate toxicity to the concentration of the chemical.
PD models that are based on anatomy, physiology,
biochemistry, and biology are called physiologically
based pharmacodynamic (PBPD) models.75 Similar
to dose–response models, PD models can be linear or
nonlinear. Linear models should be used with cau-
tion because they do not consider the upper limit of
responses and assume that responses always increase
when concentrations increase.72 Similar to PBPK
models, PBPD can be described by differential equa-
tions. A general PBPD model calculates the response
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(R) using a feature vector of PD parameters (θPD),
plasma concentration (CP), which is calculated using
the PBPK model given above, or biophase concentra-
tion (Ce), and chemical-independent system para-
meters (Z)74 can be represented as:

R = f θPD,CPorCe,Zð Þ

where f is a function that models the relationship. PD
models can be combined with PK models.72 The
resulting model is called biologically based dose–
response models (BBDR) and can be used to relate
doses with responses.13,60,72,75 In addition to PK and
PD parameters, BBDR may include biological para-
meters such as cell division rates, mortality rates, or
production rates of hormones.13,60,76 BBDR models
are more powerful than dose–response models
because the former consider time-dependent changes
of concentration and can extrapolate at low doses
and between species.60,75

There are many advantages for the models dis-
cussed in this section. Determining internal doses
rather than administered doses and key metabolites
allows for a more direct relationship with the
response.60 Additionally, using ADME, PK, and PD
properties permits route-to-route and species-to-
species (e.g., animal-to-human) extrapolations and
in vitro-to-in vivo extrapolation.60 BBDR is useful
for extrapolating at low doses. Such low doses pro-
vide realistic estimates for human toxicity as human
exposure to toxicants is at much lower doses than
those tested on animals.75

However, there are a number of disadvantages.
PK and PD parameters may be unavailable or inaccu-
rate. In such cases, the parameters are estimated
using in vitro-to-in vivo or species-to-species extrapo-
lation.72 Otherwise, QSAR modeling could be more
appropriate because it depends only on molecular
descriptors.11,60 Additionally, if biological data is not
available, empirical dose–response models are used
instead of BBPD. Using BBDR for extrapolation
between species assumes that the relationship
between dose and response in animals is the same in
humans.76,77 The same problem applies when using
animal studies to estimate PK or PD parameters for
modeling toxicity in humans.78 Although BBDR
models have been proposed more than 20 years ago
as a tool to minimize uncertainty for low-dose and
interspecies extrapolation, it was recently shown that
BBDR has not progressed to reach such expectations
due to uncertainty in modeled parameters and data,
limited applicability of BBDR models to a small
group of chemicals, or inherited complexity of BBDR
models or toxicity mechanisms as discussed in

ref. 76. Expert knowledge is required for defining
MoA, toxicity pathways and chemical interactions
that cause the response.

Different types of PK and PD models are
reviewed in74 and summarized in Supplementary
Table S1. An example of developing a PBPK model is
available in ref. 79. Also, methods for estimating PK
parameters are reviewed in ref. 80. Examples of PK
and PD modeling tools are WinNonlin,81 Kinetica,82

and ADAPT 5.83 For example, PBPK was used for
route-to-route extrapolation,84 toxicity and risk
assessment,85 and carcinogenicity assessment.86

Uncertainty Factor Models
Uncertainty factors (UFs) (also called assessment/
extrapolation/risk factors) are used for assessing risk
from chemical exposure or the recommended daily
intake of chemicals.87 A UF model is the simplest
form of model for inter-species extrapolation (e.g.,
from animals to humans), intra-species extrapolation
(e.g., from healthy people to special groups of the
population such as elderly people, pregnant women,
children, and fetuses), or exposure duration extrapo-
lation (e.g., from short exposure to long exposure). It
requires two main factors88: no observed adverse
effect levels (NOAEL), which is the highest dose
not exhibiting observable toxicity and a UF, which
is a numerical value to account for variability in
inter-species, intra-species, exposure duration, or
exposed dose. Extrapolation is done by dividing
NOAEL by UF.

However, there are two limitations for using
NOAEL88: (1) the definition of NOAEL indicates the
absence of the ‘appreciable risk’ of toxicity, but it
does not indicate a zero-effect threshold; and
(2) NOAEL values are not constants and can vary
depending on experimental designs such as the num-
ber of tested animals, number of doses, and toxicity
endpoints. It was shown that low statistical power
(e.g., a small number of tested animals or a small
number of tested doses) would result in higher
NOAEL. However, it is possible to use a least
observable adverse effect level (LOAEL, which is the
least dose or concentration that causes the observed
effect) or to use a benchmark dose level (BMDL,
which is ‘the lower statistical confidence limit of the
dose resulting in a predetermined response’) if
NOAEL is not available.87,88

In addition to UFs, ‘modifying factors’ (MFs)
are used to account for uncertainties in the data and
the database. Additionally, ‘safety factors’ (SFs) are
used for irreversible effects, such as teratogenicity
and non-genotoxic carcinogenicity. Although,
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existing UFs account for intra-species variability, the
use of additional factors for child safety is recom-
mended. The values of MFs and SFs cannot
exceed 10.87

UFs are necessary to estimate reference dose
(RfD) and reference concentration (RfC). RfD or
RfC ‘provide quantitative information for use in risk
assessments for health effects known or assumed to
be produced through a nonlinear (presumed thresh-
old) mode of action.60’ The reference values are cal-
culated as

RfD or RfC =
POD

UF ×MF

where POD is the point of departure (e.g., NOAEL,
LOAEL, or BMDL).60 A default UF of 100 was first
proposed in 1954.87 However, this default value does
not account for the quality of the database, the
nature of the effect, the duration of the exposure,
route-to-route extrapolation, and consideration of
special groups of the population. Therefore, several
factors have been calculated by different agencies as
explained in87,89 and summarized in Supplementary
Table S2.

There are several advantages of UF models. It is
easy to implement and understand them. They pro-
vide adequate safety levels for a single chemical and
mixtures of chemicals.88 Additionally, they account
for inter-species and inter-individual as well as PK
and PD differences. However, there are some limita-
tions of UF models. Default UFs or sub-factors are
not conservative nor do they assume the worst-case
scenario. Therefore, extrapolated safety levels of che-
micals are not always below the realistic safety
threshold for humans.88 These models cannot be
used to extrapolate toxicity levels of genotoxic carci-
nogens as these chemicals always cause toxicity
effects that are proportional to the dose, even at
small doses.87

Quantitative Structure–Activity
Relationship
Quantitative structure–activity relationship (QSAR)
is a family of models that uses molecular descriptors
to predict chemicals’ toxicity. It is assumed that che-
micals that fit the same QSAR model may work
through the same mechanism.10 A general QSAR
model to predict toxicity (T) using a feature vector of
chemical properties (θP) and a function f that calcu-
lates T given θP is

T = f θPð Þ

A local QSAR is generated from congeneric chemi-
cals (i.e., similar chemicals); otherwise, the model is a
global QSAR6 if it was made from diverse chemicals.
Local QSARs are more accurate as they are custo-
mized for specific chemicals. However, there is an
overhead to develop a local QSAR for each type of
chemical. Therefore, global QSARs are more practi-
cal but may be less accurate. Local QSARs can also
provide insight on the MoA of specific chemicals,
which global QSARs may overlook.

Quantitative Structure Toxicity/Property Rela-
tionship (QSTR/QSPR) models are QSAR models
that predict toxicity and chemical properties, respec-
tively.10,19 Structure activity relationships (SAR) are
used for categorical endpoints.19 There are different
types of models in the QSAR family as summarized
in Supplementary Table S3.

There are two main steps to develop a QSAR
model: generating molecular descriptors and then
generating models to fit the data. Several types of
molecular descriptors can be used to describe chemi-
cals as summarized in Supplementary Table S3.
Therefore, feature selection algorithms based on, for
example, simulated annealing, genetic algorithm, or
principal component analysis can be used.5,19 If there
are a small number of descriptors, using two-
dimensional scatter plots of each descriptor versus
the biological activity can help identify significant
descriptors19 (Figure 6).

There are several types of algorithms to gener-
ate QSAR models: linear models such as those based
on linear regression analysis, multiple linear regres-
sion and partial least squares for continuous end-
points, and linear discriminant analysis for
categorical endpoints5,19; nonlinear models such as
artificial neural networks or support vector
machines5,19; and data-driven models such as those
based on decision trees, clustering, Naïve Bayes, and
K-nearest neighbor.7

A comparison of different machine learning
and regression models is provided in ref. 7. Linear
models are simpler and, in general, require tuning
fewer parameters than nonlinear models. However,
many relationships between chemicals and toxicity
are nonlinear. Therefore, nonlinear models are com-
monly used for developing QSARs. The two-
dimensional scatter plots can help identify the type of
regression models19 as illustrated in Figure 6.

Additionally, SAR landscapes are three-
dimensional plots through which one can visualize
structure–activity relationships. The X–Y plane
represents the molecular descriptors, and the Z-axis
represents response. Figure 7 shows a hypothetical
example of a SAR landscape. The smooth region
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corresponds to chemicals that have a similar struc-
ture and similar activity. However, the ragged region
corresponds to chemicals that have a similar struc-
ture but different activity levels (also called activity
cliffs). The activity cliffs are the most interesting part
of the SAR landscape.18 They show that small struc-
tural changes correspond to huge changes in activity.
Additionally, they affect the performance of machine
learning models, either because these regions are dis-
carded as outliers, cause over-fitting, complicate the
prediction models, or increase the prediction error
while generating the model.

SAR landscapes can be visualized using SAR
maps. SAR maps are two-dimensional plots of activ-
ity similarity versus structure similarity that charac-
terize SAR landscapes through four regions18 as
shown in Figure 8. Moreover, a structure activity
landscape index (SALI) and a structure activity index
(SARI) can be used to analyze SAR landscapes as
explained in ref. 90.

Historically, one of the early QSAR models
was developed in 1962 by Hansch et al.19 in which
the log of chemical concentration (C) was estimated

using the octanol/water partition coefficient (π) and
the Hammett constant (σ)91:

Log
1

C

� �

= 4:08π – 2:14π2 + 2:78 σ + 3:36

If the coefficient of a descriptor is positive, there is a
positive relationship between the toxicity endpoint
and the descriptor; otherwise, there is a negative
relationship.92

Examples of QSARs for predicting toxicity of
aromatic nitro compounds, nitrobenzene compounds,
cytotoxicity of TIBO derivatives, and carcinogenicity
of sulfa drugs are explained in ref. 5. A discussion of
the performance of QSAR models to predict
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carcinogenicity, mutagenicity, reproductive, and
developmental toxicity endpoints are available in ref.
6. Case studies on applications of QSAR to skin sen-
sitization and developmental toxicity are available in
refs. 93 and 12, respectively.

There are many tools that provide pre-built
QSAR models such as OECD QSAR Toolbox,25

TopKat,94 Derek Nexus,34 HazardExpert,35

VEGA,95 and METEOR.36 Their characteristics are
summarized together with those of other QSAR-
based tools in.10,12,17,96 Case studies on combining
the results of different prediction tools are available
in refs. 15,17. However, specialized software tools
for generating QSAR models such as ADAPT and
TOPKAT include databases for toxicity data and can
calculate molecular descriptors.12 Additionally, sev-
eral stand-alone databases have been compiled to
provide toxicity data and/or molecular descriptors as
summarized in refs. 6,7,10.

There are several advantages of QSAR models.
They are easy to interpret if the descriptors are mean-
ingful. They can model categorical and continuous
toxicity endpoints and molecular descriptors and
toxic and non-toxic chemicals. Using different types
of descriptors allows for modeling complex
endpoints.6,11

However, QSARs may not be always applica-
ble. QSARs require a large number of chemicals in
model development to achieve statistical signifi-
cance.5 Additionally, QSARs require using feature
selection to identify the most significant and inde-
pendent molecular descriptors, and a large number
of descriptors makes the multidimensional space
complex and fragmented.97 QSARs cannot be used
for extrapolation between species, routes of expo-
sure, or doses unless biological data is used. Moreo-
ver, QSARs may not be biologically interpretable,
and QSARs do not take dose, duration, or metabo-
lites into consideration.

A brief description of all the tools mentioned in
the IN SILICO MODELING METHODS section is
available in Table 1.

SPECIAL CASES

This section focuses on special types of chemicals or
toxicity endpoints that require new prediction or
analysis methods.

Nanotoxicity
Nanotoxicity is the study of adverse effects caused by
nanomaterials. Nanomaterials are small particles on
the nanoscale (10−9 m) size range. When a particle

size is decreased within the nanoscale size range, its
physical and chemical properties are changed, affect-
ing its toxicity. It was found that nanoparticles cause
different or worse toxicity effects than the larger par-
ticles of the same substance.98,99 A nanoparticle can
be toxic even if the particle is not toxic at a larger
size. The small size of nanomaterials facilitates cell
membrane penetration and biodistribution.98,99

Other properties that affect toxicity of nanomaterials
are as follows100:

• The shape of nanomaterials affects toxicological
responses. For example, isolated long fiber car-
bon nanotubes are more inflammogenic in the
outer regions of the lung than non-fibrous
nanotubes.

• Large surface areas of nanomaterials increase
the contact area with the biological environ-
ment and their chemical reactivity.

• Surface coating material of the nanomaterials
can affect biological functions. It was found
that toxicity of nanomaterials that have the
same metallic core could be predicted by using
the properties of the coating material.

• Other physicochemical properties such as elec-
trostatic interactions between nanomaterials
and biological targets can influence toxicity.

There are several mechanisms by which nanoparticles
induce toxicity:

• interaction and binding of the nanoparticle’s
surface with a biological environment (e.g., pro-
tein or cells),100

• cellular entry: nanoparticles potential to enter
cells,101

• release of ions from the surface: ionic forms of
metals can be more active,102,103 and

• generation of reactive oxygen species (ROS):
overproduction of ROS can cause oxidative
stress and inflammation, which disrupt normal
biological functions and damage DNA and
proteins.104

Quantitative structure nanotoxicity relationships
(QSNR)100 (also called nano-QSAR105) are QSAR
models that use nanomaterial-specific descriptors
such as size, shape, surface area, relaxivities, solubil-
ity, zeta potential, corona composition, biodistribu-
tion, bioavailability, and surface charge in addition
to structural and physicochemical properties.100,106

However, toxicity of nanomaterials is affected by
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properties of their core and surface coating material,
and different combinations of core and surface com-
positions may cause different effects. Moreover, the
coating material can be modified by the biological
environment.100

An example of a linear QSNR model for pre-
dicting EC50 (effective concentration for 50%
enzyme activity inhibition) for organo-coated silver
nanoparticles using size and surface charge is availa-
ble in ref. 107. Additionally, QSNR models that
use quantum-chemical descriptors have been devel-
oped to predict binding affinity for a set of fullerene-
C60 derivatives108 and predict cytotoxicity of metal
oxide nanoparticles.109 Another model to predict
metal oxide nanoparticles based on random
forests classification is explained in ref. 103. Case
studies on developing QSNR models are available in
ref. 110.

There are some challenges in modeling nano-
materials. Nanomaterials can be composed of
organic, metal, metal oxides, silica or carbon-based
nanoparticles. Therefore, it is difficult to compile
datasets of congeneric nanomaterials.105 Addition-
ally, nanomaterials are structurally diverse and act
upon different MoA. However, QSNRs (similarly to
QSARs) assume a common MoA for the modeled che-
micals.105 The scarcity of nanomaterial experimental
data and descriptors100 affects progress in this field.

However, a nano-read-across model (read-
across for nanomaterials) can be used because
read-across methods do not require large datasets to
generate groups of sufficiently similar nanomater-
ials.105 An application of a nano-read-across model
to predict cytotoxicity of metal oxide nanoparticles is
provided in ref. 105.

Additionally, PBPK models may predict biodis-
tribution, which is essential for assessing toxicity of
nanomaterials.106 Customized PBPK models should
be developed for nanomaterials because ADME
properties, some physiological processes of nanoma-
terials, and transportation mechanisms are different
from those of small molecules. Moreover, there are
some processes that are not involved with small
molecules such physical property changes, enzymatic
degradation, cellular recognition, and internalization
and opsonization in the blood.106 PBPK may include
nanomaterial-related descriptors such as traffic
within tissues and cells, interaction with blood and
tissue cells, tissue/blood partition coefficients, tissue
concentration, and permeability through mem-
branes.106 An example of a kinetic model to describe
mechanisms of releasing silver ions of citrate-coated
silver nanoparticles in aqueous environments is avail-
able in ref. 102.

Mixtures
Toxicity of chemicals is affected by interactions with
other chemicals. For example, mixtures may exhibit
adverse effects at NOAEL doses of each chemical
separately.111 Assessing toxicity of chemicals sepa-
rately may underestimate or overlook the adverse
effects of mixtures.111 For instance, it was found that
toxicity of lead metal increases with the co-
administration of higher levels of other metals.
Therefore, ‘cumulative risk assessment’ was devel-
oped to study toxicity of mixtures.112

However, there is lack of experimental datasets
for toxicity of mixtures due to a large number of dif-
ferent combinations of chemicals,111 exposure pat-
terns, and complex interactions. It is impossible to
test all combinations of these factors. Furthermore,
predictive models must address concurrent and
sequential exposure to mixtures. However, a recently
developed database by NoMiracle (Novel Methods
for Integrated Risk Assessment of Cumulative Stres-
sors in Europe) contains mixtures’ toxicity datasets
for eco-toxicological test species and human cell
lines.112

Methods for single chemicals may not be appli-
cable for mixtures due to difficulty in determining the
combined effect.113 For example, dose–response
models for mixtures vary depending on the dose
ratios of chemicals in the mixture.112 Additionally,
co-administration of chemicals may alter their
ADME properties,111 which should be taken into
consideration when developing PBPK models for
mixtures.113

Bliss generated dose–mortality curves for mix-
tures by changing the doses of mixtures while preser-
ving the constituents’ ratios. He identified three
categories of the joint action of mixtures.114 The first
category is independent joint action. Chemicals act
independently and have different modes of action.
The combined effect is calculated using the effects of
constituents and their interactions.114

The second category is similar joint action.
Chemicals act independently and have similar MoA.
The combined effect is calculated using the dose–
mortality curves of constituents. This category
assumes that an ingredient in the mixture can be sub-
stituted for any proportion of another ingredient
without changing the combined effect.114

The third category includes synergistic and
antagonistic actions. Toxicity of synergistic action is
greater than that of constituents, while antagonistic
action has lower toxicity than that of constituents.
Synergistic effects depend upon the proportion of
constituents in mixtures unlike the first two cate-
gories in which chemicals act independently, and
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therefore, their proportions do not alter their com-
bined effect. Bliss developed two models (also called
independent action (IA)115) to analyze synergism as
explained in ref. 114.

Another additive model is the concentration
addition (CA) (also called dose addition) that was
developed for chemicals with a similar MoA.115 The
concentration of mixtures that produces a certain
effect is calculated using the proportion of a constitu-
ent and its concentration that produces the same
effect.115

IA and CA models have been criticized for
being ineffective for chemicals that have high potency
(dose to produce a given effect) but low efficacy
(maximum effect).115 Therefore, a generalized con-
centration addition (GCA) model was developed to
address these shortcomings.116 GCA calculates the
combined effect of a mixture using the potency and
efficacy of the mixture’s constituents.115 A compari-
son of CA, IA, and GCA models is available in
ref. 115.

Process-based models, however, are mechanistic
models that usually use dynamic energy budgets the-
ory such that the combined effect is calculated using
the effects of constituents in addition to exposure
time, toxicokinetic, and biological parameters, which
allow for extrapolation between different species,
chemicals, or exposure duration.117 A discussion and
an example of process-based models are available
in117 and,118 respectively.

Another mechanistic model is the receptor-
oriented model, which is based on the premise that
the toxicity of mixtures is caused by many chains of
reactions that converge at the exposed receptor (i.e.,
an individual or population).112 A discussion of
receptor-oriented models is available in ref. 112.
Other methods to assess toxicity of mixtures include
numerical additive models such as hazard index, point
of departure index, margin of exposure and cumula-
tive risk index113; chemical interaction models such as
the interaction-based hazard index and isobole
method113; and statistical models such as tree-based
clustering and weighted quartile score regression.111

RECOMMENDATIONS

The previous sections discuss advantages and limita-
tions of different models. The flow chart in Figure 9
provides a practical guideline for choosing a method
for certain types of features and toxicity endpoints,
and a summary of the methods is depicted in
Figure 10. In this section, we provide some

recommendations for developing in silico toxicity
prediction models.

Datasets Quality
Large datasets from one resource must be used to
achieve statistical significance and structural diver-
sity.92,119 While large datasets may not be readily
available, it is possible to gather data from various
public resources120: prepared datasets suitable for
QSAR modeling such as DSSTox (www.epa.gov/
comptox/dsstox/), databases that contain toxicity
data such as ECOTOX (http://cfpub.epa.gov/ecotox/),
global search engines that retrieve data from several
databases such as ToxNet (http://toxnet.nlm.nih.gov/),
and scientific literature. A discussion of advantages
and limitations of these resources in addition to case
studies on obtaining toxicity data are available in
Ref 120. Examples and descriptions of many toxicity
databases are provided in Refs 6,8–11.

However, several factors must be considered
when using data from multiple resources. The experi-
mental design must be identical or compatible.19

Additionally, the datasets should preferably be bal-
anced (equal number of active and inactive chemi-
cals) as some statistical methods are sensitive to
unbalanced datasets.19 This limitation, however, is
not absolute as there are methods that can handle
imbalanced data. Moreover, experimental and com-
puted values of the same molecular descriptor should
not be mixed, and calculated molecular descriptors
must be generated using the same tools.19 In addi-
tion, redundant records and outliers should be
removed if necessary.119

The readers are referred to a recent review121

that discusses formal scoring methods to assess
quality of datasets; chemical, biological, and
endpoint-specific factors in data variability; a practi-
cal checklist to guide the process of data assessment;
data integration; and many other considerations of
dataset quality.

Data Transformation
In some cases, biological data must be transformed.
Continuous toxicity endpoints can be expressed in
logarithmic scales to avoid statistical problems when
using models such as regression.19 Additionally, con-
tinuous endpoints, which come from different
resources or are generated using different experimen-
tal procedures, can be transformed to categorical
values (the number of categories are problem depend-
ent).19 Features must be normalized when using statis-
tical similarity measures because these measures are
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biased toward features that have large values.47 More-
over, frequency descriptors (e.g., frequency of atoms)
must be transformed to binary descriptors if the fre-
quencies are not high enough to achieve reliable coeffi-
cients when deriving regression models.19 In addition,
values must be expressed in the same units.119

Feature Selection
The number of descriptors should be as small
as possible.92 Feature selection is necessary to
ensure that descriptors are independent, orthogonal,
uncorrelated, and non-redundant. This will increase
chances that the models generated are closer to the
optimal as this should remove correlation between
descriptors. The descriptors should be meaningful to
simplify model interpretation. Some methods for

feature selection were previously explained in the
QSAR sub-section. Additionally, it is preferable to
use features that are suitable for toxicity endpoints
(e.g., using environmental-related descriptors such as
acidity of the water for ecotoxicity), chemicals type
(e.g., using nanomaterials-specific features for nano-
materials), and model types (e.g., using PK descrip-
tors for PBPK models).

Statistical Models
Simple accurate models are preferred to the complex
ones. However, more sophisticated algorithms can be
used to achieve better performance as long as inter-
pretability of the model is preserved and overfitting is
avoided. Interpretability of the models depends on
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the meaning of the descriptors and the relationship
between them.90

There are two types of models12: correlative
models, which use statistical algorithms that relate
molecular descriptors to toxicity endpoints without
providing a mechanistic insight, and mechanistic
models, which explain the underlying mechanism of
toxicity. Mechanistic models can be generated by sta-
tistical algorithms or designed by human experts.

However, models that are not mechanistically
interpretable are still useful if they produce meaning-
ful predictions, which is usually the case if they were
correctly developed from large datasets.19 Generally,
models must meet users’ expectations. If users expect
models that provide mechanistic insight of toxicity,
developers must try to meet these expectations.

Overfitting
Overfitting occurs when a model fits the training data
extremely but cannot describe the external data well.
It can be detected when models achieve high perfor-
mance on training data but low performance on new
data. Overfitting can be caused when modelers
develop models that cover all cases in the training set
or use complex models or the model includes more
descriptors than necessary or wrong descriptors.12 It
is customary to have at least five chemicals per
descriptor. Otherwise, an overfit model may become
meaningless, be overly complicated, find random cor-
relations, or have a limited applicability domain
ref. 97.

There are two main statistical parameters to
assess goodness of fit of models (e.g., QSARs gener-
ated using regression): coefficient of multiple

determination (R2) and standard error of estimate
(s).92,122 R2 estimates how successful the regression
line is in explaining variation in the biological data
(e.g., measured response), while s estimates deviation
of the measured response from the regression line.92

A well-fit model should have large values of R2 (close
to 1) but low values of s (close to 0).92,122 However,
an overfitted model can be generated if its statistical
fit is greater than the experimental variation (caused
by errors in measured response or calculated descrip-
tors).122 It is possible to increase R2 by adding more
(possibly irrelevant) molecular descriptors. This can
be avoided by using adjusted R2 (R2

(adj)). Unlike R,2

R2
(adj) does not increase when adding irrelevant

descriptors. Mathematical definitions of these and
other statistical parameters for fitting are explained
in,92 and a discussion of sources of experimental var-
iability is available in ref. 122.

Applicability Domain
The applicability domain (AD) is ‘a theoretical region
in physicochemical space (the response and chemical
structure space) for which a QSAR model should
make predictions with a given reliability.’92 The AD
determines types of molecules and toxicity endpoints
to which the model can be applied. For example,
global and local QSARs have large and small ADs,
respectively.6 Interpolation within the domain is
more reliable than extrapolation outside the
domain.19 AD determines uncertainty in predicted
toxicity by measuring the difference between the new
molecules and the training set.97 The model may not
be reliable or perform well if the new molecule is suf-
ficiently different than the training set.6,90
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A stepwise approach to defining ADs
was developed by Dimitrov et al.123 and further
expanded by Hewitt and Ellison.124 Five categories
of AD definition approaches were explained and
compared in124 descriptor, structural fragments,
structural similarity, mechanistic, and metabolism-
based approaches.

The descriptor-based category includes four
types of methods: range, geometric, distance, and
probability density-based methods, which were com-
pared in ref. 124. Range-based methods require
determining the range (i.e., minimum and maximum)
of each descriptor. However, geometric methods such
as convex hull define the smallest convex area con-
taining the whole training set. Probability density
distribution-based methods identify probability den-
sity of the dataset and then determine the highest
density region. Distance-based methods use distance
measures (e.g., Euclidean, Hamming, or Tanimoto).
Then, the average distance to k-nearest neighbors or
the distance to the centroid is taken to determine
how similar/dissimilar the new chemical is from the
training set. A threshold can be used to determine if
the new chemical is within the AD. A comparison of
different distance measures to define AD is available
in ref. 97. Another application using cluster analysis
is illustrated in ref. 125.

Structural fragment-based ADs require that all
structural fragments in the new chemical be present
in the training set.124 However, the structural
similarity-based ADs determine structural similarity
of the whole chemical rather than fragments.124

Mechanistic ADs have been discussed in refs.
123–126. Another AD method using simplified
molecular-input line entry system (SMILES) attri-
butes is illustrated in ref. 127. Moreover, examples
of tools for defining ADs (e.g., The OECD QSAR
Toolbox and ToxTree, etc.) are explained in ref 124.

Model Evaluation
Cross-validation on training sets is insufficient for a
realistic evaluation because models are usually
applied to new chemicals. Models must be evaluated
using testing sets that are large enough to achieve sta-
tistical significance, diverse, within the AD, and dif-
ferent than the training sets. Evaluating models’
accuracy is discussed in ref. 92.

Model Application
Model development processes and AD must be trans-
parent to users to ensure appropriate application of
the models. For example, molecular descriptors of

new chemicals must be calculated and expressed in
the same units as in the training set, and the new
data must be transformed as the training set. Addi-
tionally, the output of the models must be clearly
explained. Moreover, models preferably should pro-
vide a rationale (e.g., a list of the rules that were used
to form the prediction). Also, models should provide
a confidence score of the prediction. This will help
users decide whether to accept the predictions of the
models. Consensus can be used to determine reliabil-
ity of the prediction as explained in ref. 15. For
example, if a chemical was predicted to be carcino-
genic by several tools, there might be higher confi-
dence in the prediction than if it was predicted by a
single tool. However, if the tools provide conflicting
predictions, then it is necessary to resolve such con-
flicting situations, which is usually done by an addi-
tional machine learning model.

TWENTY-FIRST CENTURY
TOXICOLOGY

The phrase ‘21st century toxicology’ (Tox-21c128)
refers to ‘the transformation underway in the tools
and approaches used to evaluate chemical substances
for possible effects on human health.129’ Tox-21c
focuses on toxicity pathways,130 mechanisms/modes
of action, and adverse outcome pathways (AOP)131

in humans. Another related concept is the 3Rs
(replace, reduce, and refine), which was proposed in
1958.128 Tox-21c and 3Rs overlap, but a discussion
of their differences is presented in ref. 128.

Several strategies have been proposed to imple-
ment Tox-21c. In 2004, the National Toxicology
Program (NTP) published its report A National Toxi-
cology Program for the 21st century, which aims ‘to
support the evolution of toxicology from a predomi-
nantly observational science at the level of disease-
specific models to a predominantly predictive science
focused upon a broad inclusion of target-specific,
mechanism-based, biological observations.132’ In
2007, the National Research Council (NRC) pub-
lished another report Toxicity Testing in the 21st
Century: a Vision and a Strategy, which proposed
using computational methods to decrease the number
of tested animals, make toxicity testing more relevant
to humans by using human cells, and make toxicity
testing cheaper and faster.133

Several approaches have been developed to
implement these visions. Integrated Testing Strategy
(ITS) aims to combine information from testing
and non-testing methods.134 Another approach is
Pathways of Toxicity (PoT), which aims to produce a
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comprehensive list of all human PoT.135 However,
Integrated Approaches to Testing and Assessment
(IATA) focuses on using hypotheses to prioritize che-
micals for testing.131

Several projects implement the above
approaches. For example, ReProTect is an integrated
testing project specializing in reproductive toxic-
ity.136 The ToxCast (Toxicity Forecaster) project uses
quantitative high throughput screening to test chemi-
cal toxicity on many biological pathways,137 and it is
part of the Tox21 project that follows NTP and
NRC guidelines.138 Additionally, the Human Toxi-
cology Project Consortium implements the NRC
guidelines and focuses on implementing AOP .139

Conclusion
The field of in silico toxicology has been in a contin-
uous development through the introduction of new
methods, improvement of the existing ones, or dis-
carding of some of them. Unfortunately, a method
that is suited for certain types of toxicity endpoints
or chemicals may not work properly (or not work at
all) for others. If used correctly, in silico tools can be
very effective in assessing chemicals’ toxicity. There-
fore, to ensure accurate and effective application of

in silico models, it is necessary to (1) understand the
methods’ strengths, limitations, scope of application,
and interpretation; (2) choose the most effective
method for the problem at hand; and (3) customize
these methods for each problem if necessary. Users of
toxicity prediction models can follow these three
steps only if the data and processes to develop the
model are transparent, applicability domains are well
defined, the outputs of the models are clearly
explained, and models are simplified.

The Tox-21c stresses replacing animal
testing with human-relevant testing methods, either
in vitro or in silico. With the increasing number
and variety of alternative testing methods, it is neces-
sary to apply strategies (e.g., ITS) to intelligently com-
bine and use this information for toxicity assessment
and decision making. Clearly, in silico toxicology is a
useful component of the toxicity assessment process.
Looking to the future, computational methods are
likely to expand to include models for special and new
types of toxicity endpoints and chemicals, provide
insight into toxicological pathways, combine and
compare results from different models, customize
models to meet users’ expectations, and refine models
as new data become available.
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