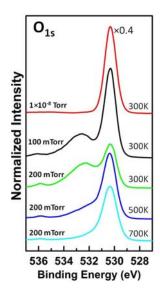
In-situ and Theoretical Studies for the Dissociation of Water on an Active Ni/CeO₂ Catalyst: Importance of Strong Metal-Support Interactions for the Cleavage of O-H Bonds**

Javier Carrasco, David López-Durán, Zongyuan Liu, Tomáš Duchoň, Jaime Evans, Sanjaya D. Senanayake, Ethan J. Crumlin, Vladimir Matolín, José A. Rodríguez,* M. Verónica Ganduglia-Pirovano*

Abstract: Water dissociation is crucial in many catalytic reactions on oxide-supported transition-metal catalysts. Here, supported by experimental and density-functional theory results, we elucidate the effect of the support on O-H bond cleavage activity for nickel/ceria systems. Ambient-pressure O1s photoemission spectra at low Ni loadings on $CeO_2(111)$ reveal a substantially larger amount of OH groups as compared to the bare support. Our computed activation energy barriers for water dissociation show an enhanced reactivity of Ni adatoms on $CeO_2(111)$ compared with pyramidal Ni₄ particles with one Ni atom not in contact with the support, and extended Ni(111) surfaces. At the origin of this support effect is the ability of ceria to stabilize oxidized Ni²⁺ species by accommodating electrons in localized f-states. The fast dissociation of water on Ni/CeO₂ has a dramatic effect on the activity and stability of this system as a catalyst for the water-gas shift and ethanol steam reforming

Dr. J. Carrasco,^[+] Dr. D. López-Durán,^[+,++] Dr. M. V. Ganduglia-[*] Pirovano Instituto de Catálisis y Petroleoquímica, CSIC C/ Marie Curie 2, 28049 Madrid, Spain E-mail: vgp@icp.csic.es Dr. Z. Liu, ^[+]Dr. Sanjaya D. Senanayake, Dr. J. A. Rodríguez, ^[+] Chemistry Deptartment, Brookhaven National Laboratory Upton, N.Y. 11973 U.S. E-mail: rodrigez@bnl.go Dr. T. Duchoň, Prof. Dr. V. Matolín Faculty of Mathematics and Physics, Charles University V Holešovičách 2, Praha 8, Czech Republic Dr. J. Evans Facultad de Ciencias, Universidad Central de Venezuela Caracas 1020-A, Venezuela Dr. E. J. Crumlin Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley, CA 94720, U.S.

- [*] Additional affiliations: Dr. J. Carrasco, Dr. D. López-Durán CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava, Spain Dr. Z. Liu, Dr. J. A. Rodríguez Dept. of Chem., SUNY, Stony Brook, NY 11749, U.S.
- [⁺⁺] Present address: Departamento de Química Analítica, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
- [**] This work has been supported by the MINECO-Spain (CTQ2012-32928), the Ministry of Education of the Czech Republic (LH11017), and the U. S. Department of Energy (DE-AC02-98CH10886, DE-AC02-05CH11231). J.C. acknowledges support by the Ramón y Cajal Fellowship, the Marie Curie Career Integration Grant FP7-PEOPLE-2011-CIG: Project NanoWGS and The Royal Society through the Newton Alumnus scheme. The COST action CM1104 is gratefully acknowledged. Computer time provided by the SGAI-CSIC, CESGA, BIFI-ZCAM, IFCA, and the BSC is acknowledged.


Supporting information for this article is available on the WWW under available on the WWW under http://dx.doi.org/

reactions.

Water dissociation at surfaces is important in corrosion, solar energy conversion processes which split water, and in numerous heterogeneous catalytic reactions on oxide supported transitionmetal catalysts.^[1-3] Dissociative chemisorption of H₂O on a catalyst surface -an apparently simple process- can be an important reaction step, affecting the performance of many catalytic processes.^[3] Therefore, being able to control the ability of a catalyst to dissociate water is highly desirable. However, this is a challenging task. For example, Hundt et al.^[4] have recently shown how complex water dissociation can be at the atomic level even on a relatively simple system, namely a welldefined Ni(111) metal surface. For oxide-supported metal nanoparticles, our knowledge of the water dissociation process remains in its infancy. This is because of the difficulties associated with the study of metal/oxide catalysts.^[3] On these systems, the dissociation of water can be affected by the metal particle size, the nature of the oxide support, and the strength of the metal-support interactions. Shedding light into such structure-reactivity relations has the potential for boosting the catalytic performance of this class of metal-oxide materials. In this work, using a combination of ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and density-functional theory (DFT) calculations, we investigate the dissociation of water on a model Ni/CeO2(111) catalyst. Strong electronic perturbations induced by Ni↔CeO₂ interactions lead to an unexpectedly low activation barrier for water dissociation, a phenomenon that can be used to enhance the activity and selectivity of catalytic processes.

Previous studies have shown that the Ni/CeO2 system has outstanding catalytic activity and selectivity for both the watergas shift (WGS, CO + $H_2O \rightarrow H_2$ + CO₂) and the ethanol steam reforming reactions (ESR, C_2H_5OH + $3H_2O \rightarrow 6H_2$ + $2CO_2$).^[5-8] The behavior of ceria-supported nickel is quite different from that of bulk nickel, a system that is very good for CO methanation and undergoes rapid deactivation by coke deposition during the steam reforming of ethanol.[5,7,8] The results of core and valence photoemission (Figures S1 and S2) plus DFT calculations (Figure S3) indicate that Ni atoms in contact with CeO₂(111) are electronically perturbed.^[7-9] They exhibit a very low density-ofstates near the Fermi level (Figures S2 and S3) and a +2 oxidation state (triplet 3d⁸ state).^[7,8] In Ni 2p_{3/2} XPS spectra, they display the line-shape and binding energy expected for Ni²⁺ (Figure S1), with a shift in the main peak of ~ 2 eV with respect to that of Ni^{0 [10]} At Θ_{Ni} < 0.2 ML, these Ni²⁺ species are not able to catalyze CO methanation but exhibit a high activity for the WGS reaction (Figure S4).^[6,7] A fundamental guestion remains: How fast is the dissociation of water on a Ni/CeO2 surface? Ni(111) is not very active for the $H_2O \rightarrow OH + H$ process.^[1,4]

Using AP-XPS, we investigated the adsorption of water on CeO₂(111) and on a Ni/CeO₂(111) surface with a small coverage of electronically perturbed Ni ($\Theta_{Ni} \sim 0.15$ ML). The background pressure of water and the temperature of the surface had a strong influence on the type and amount of species adsorbed on CeO₂(111) [Figure S5] and Ni/CeO₂(111) [Figure 1]. Under ultrahigh vacuum conditions ($pH_2O < 10^{-7}$ Torr), we did not observe adsorption of water at room temperature. However, water adsorption was seen when the samples were under water pressures above 1 × 10⁻⁴ Torr. Part of the chemisorbed water molecules dissociated to produce OH groups on the surface. At temperatures of 500 and 700 K, even under a background water on the surfaces and the concentration of adsorbed OH was also smaller than at 300 K.

Figure 1. O 1s XPS spectra for a Ni/CeO₂(111) surface ($\Theta_{Ni} \sim 0.15$ ML) under different background pressures of water (1×10^{-8} Torr, 100 and 200 mTorr) at 300 K, and during annealing from 300 to 500 K under 200 mTorr of water.

Figure 2 shows the curve-fitting of the O 1s XPS spectra collected for CeO₂(111) and Ni/CeO₂(111) under a water pressure of 200 mTorr at 300 and 500 K. At 300 K, one can see clear peaks for gaseous H₂O, chemisorbed H₂O, adsorbed OH groups, and O from the lattice of ceria. After curve-fitting the O 1s spectra, one finds that the amount of water and OH groups present on the surface at 300 K is larger for Ni/CeO₂(111) than for CeO₂(111). For example, the OH coverage increases from 0.78 ML on CeO₂(111) to 0.90 ML on Ni/CeO₂(111). The enhancement in the signals for H_2O and OH is small (10-25%), but it is consistent with the fact that we only had a small amount of Ni supported on ceria ($\Theta_{Ni} \sim 0.15$ ML). Annealing from 300 to 500 K led to the almost disappearance of the signal for chemisorbed H₂O and a substantial fraction of the adsorbed OH groups were also removed from both surfaces. However, as shown in Figure 2, the amount of OH present on Ni/CeO₂(111) at 500 K, 0.37 ML, was about a factor of two larger than on CeO₂(111), 0.20 ML. This larger coverage of OH should facilitate the WGS and ESR reactions. The OH groups can easily react with CO and CH_x fragments to yield CO₂ and H₂.^[5-7]

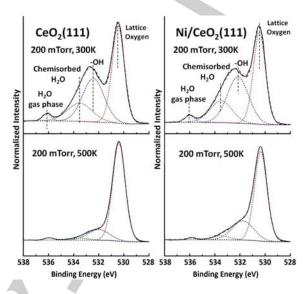


Figure 2. O 1s XPS spectra for $CeO_2(111)$ and Ni/CeO₂(111) under 200 mTorr of water at 300 and 500 K. The coverage of Ni in Ni/CeO₂(111) was ~ 0.15 ML.

We performed DFT calculations to gain insight into the energetics and mechanism for the dissociation of water on Ni/CeO₂(111). Results of scanning tunneling miscroscopy (STM) indicate that the ceria substrates used in this study exhibited (111) terraces and a large number of defects and imperfections. These defects and imperfections affect the growth mode of Ni on the ceria.^[9] At small coverages (< 0.2 ML), Ni is present on the CeO₂(111) substrate as adatoms and small clusters or particles that can have two-dimensional (i.e., single layer) or threedimensional (i.e., more than a layer) shapes.^[9] All these nickel species exhibit an oxidation state close to +2 in XPS and UPS measurements (Figures S1 and S2 and refs 5). Ni interacts strongly with the ceria substrate and upon heating penetrates into the oxide support.^[7,11] Solid solutions of the Ce_{1-x}Ni_xO_{2-y} (x <0.2) type can be formed.^[5,6] In a previous study, the geometry and electronic structure of isolated Ni atoms (Ni1) and Ni4 clusters supported on the CeO₂(111) surface have been studied (Figure S3).^[8] In the case of the Ni₁/CeO₂(111) system, nickel exhibited an oxidation state of +2 and can be taken as a model for individual adatoms on the ceria surface and for Ni atoms in supported particles that exhibit a high oxidation state in photoemission and XPS studies.^[7,9] For the Ni₄/CeO₂(111) system, the most stable nickel cluster has a pyramidal configuration with three nickel atoms touching the oxide support and one away from the surface (a rombohedral guasi-planar configuration is only ~0.2 eV less stable, Figure S3 and Table S1).^[8] The average oxidation state of nickel (~ +0.5) in Ni₄/CeO₂(111) was smaller than on Ni₁/CeO₂(111).^[8] For pyramidal Ni₄ (Ni₄-pyr), Bader charges reflect that the three base atoms in direct contact with the ceria surface are positively charged whereas the one at the top is essentially neutral (Table S1). Thus, there is a rapid weakening in the strength of the metal-oxide interactions when the Ni moves away from the oxide support. Since a Ni/CeO₂(111) (Θ_{Ni} ~ 0.15 ML) surface contains individual Ni atoms and small clusters or particles, [7,9] the modeling of the adsorption of water can be a complex task. Here, we apply the spin-polarized DFT+U approach as implemented in the Vienna ab-initio simulation package (VASP)^[12] to investigate the adsorption and dissociation of H₂O on the Ni_n/CeO₂(111) (n=1 and 4) systems as well as on nonreduced and reduced CeO_{2-x}(111) supports, plus the extended Ni(111) surface. Thus, we will compare the reaction of water on a system that has strong electronic perturbations, Ni₁/CeO₂(111), on a system with moderate electronic perturbations where Ni is moving away from the oxide support, Ni₄-pyr/CeO₂(111), and on a system in a pure metallic state, Ni(111). The comparison will enable us to identify how the electronic perturbations on Ni affect the reactivity of this metal towards water.

First we review and discuss water adsorption on the bare $CeO_2(111)$ substrate. Molecular water adsorption (Figure 3a) is by ~0.4 eV energetically more favorable than complete dissociative adsorption (Figure 3c).^[13-16] Nevertheless, the

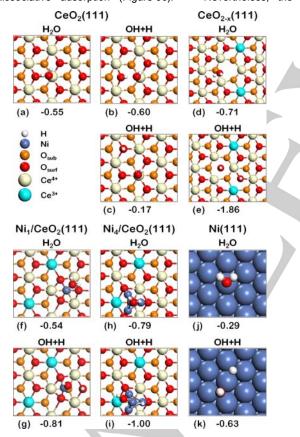
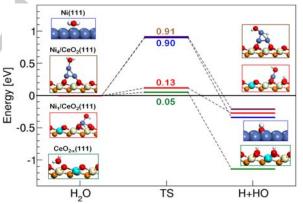



Figure 3. Atomic structure of H_2O adsorbed on: (a–c) CeO₂ (111), (d–e) CeO_{2-x}(111), (f–g) Ni₁/CeO₂(111), (h–i) Ni₄/CeO₂(111), and (j–k) Ni(111). Adsorption energies are given with respect to gas-phase molecules in eV.

molecular state can easily coexist with a hydroxyl-pair-like configuration (Figure 3b), since these two configurations are separated by a small energy barrier barrier (s at eV).[14,16-18] In contrast, the presence of O vacancies on the surface significantly enhances water dissociation (Figure 3e) over molecular adsorption (Figure 3d).^[15,16] This process is indeed quite exothermic by 1.15 eV and it is effectively barrierless^[16] (cf. 0.05 eV in Figure 4), resulting in the water hydroxyl OH group readily healing the O vacancy and the remaining H atom being adsorbed on top of a nearest neighbor surface O atom. However, from a catalytic viewpoint, the OH groups formed in this way are expected to be less reactive than those on top of a regular CeO₂(111) surface. When the calculated reaction energies for water dissociation in Figure 3 (-0.6 to -1.9 eV) are compared with the stability seen for the OH groups on CeO₂(111) in the AP-XPS spectra of Figure 2, one concludes that the surface defects present in the ceria films used for the experiements probably played an important role in the binding and dissociation of water on the ceria support.

On the Ni₁/CeO₂(111) system, water adsorbs exothermically ($\Delta E = -0.67 \text{ eV}$) on top of a Ce⁴⁺ site far away from the Ni adatom (Figure S6a). Adsorption on top of a Ni²⁺ site is less stable (Figure 3f), but only by 0.13 eV. The H₂O dissociation (Figure 3g) is favored by 0.27 eV and the process is hindered by a very small energy barrier of 0.13 eV (Figure 4). Note that if the proton is moved to a next-nearest surface O to the Ni–OH species (close to the upper Ce³⁺ in Figure 3g) the system is further stabilized by 0.18 eV (Figure S6c); yet, the energy barrier for H diffusion on the ceria support is likely to be large (~1.8 eV).^[19] Therefore, as O vacancies at the CeO₂(111) surface, Ni adatoms are effective active sites for H₂O

dissociation. However, the OH groups formed on the $Ni_1/CeO_2(111)$ system upon dissociation, remain moderately

Figure 4. Reaction energy profile for H₂O dissociation on the CeO_{2-X}(111), Ni₁/CeO₂(111), Ni₄/CeO₂(111), and Ni(111) surfaces. The side views of the optimized initial and final state structures in Figure 3 are included.

bound to the Ni adatom and can therefore participate in the subsequent reaction steps (Figure 4). On the Ni₄-pyr/CeO₂(111) system, the atom in the tip of the Ni₄ pyramid is not in direct

contact with the oxide substrate and has a reactivity that is not very different from that of the atoms in Ni(111). On the Ni₄/CeO₂(111) and Ni(111) surfaces, H₂O dissociation is exothermic by 0.21 (cf. Figures 3h, 3i) and 0.34 eV (cf. Figures 3j, 3k), respectively. Similar to the Ni₁ species, for the Ni₄/CeO₂(111) system, the further separation of OH and H chemisorbed species leads to an stabilization of the system (Figures S7b and S7c).

A comparison of the energy barriers for H₂O dissociation in Figure 4 (cf. Figure S8 for the transition-state structures) for Ni₄pyr/CeO₂(111) and Ni(111) points to the unique catalytic activity for H₂O dissociation of ceria supported Ni when this is present in the form of Ni²⁺cations in contact with the ceria support. In particular, the energy barrier for the dissociation of a water molecule adsorbed on top of a supported Ni₄-pyr cluster is 0.91 eV (Figure 4), which is very close to the value of 0.90 eV found for Ni(111), in agreement with the literature.^[20] This result reveals that an atom present in a small Ni₄ cluster already resembles the reactivity of extended surfaces when it is not in contact with the oxide substrate. Thus, Ni²⁺ sites (generated by strong metal-support interactions) are essential for the fast dissociation of water. XPS and UPS indicate that they exists after depositing very small coverages of Ni on CeO₂(111) (Figures S1 and S2). In images of STM,^[9] they may correspond to individual Ni adatoms or to atoms in the corner of Ni particles which are in direct contact with defects of the ceria substrate. Ni^{2+} sites also can be generated by the formation of Ce_{1-x}Ni_xO_{2-y} solid solutions.^[5,6,11]

The ability of Ni²⁺ species supported on CeO₂ to cleavage O–H bonds is not limited to the water molecule and it may be applicable to other compounds which also possess an acidic H. To this end we have investigated the dissociation of CH₃OH as a prototype of alcohols. The dissociative adsorption of methanol to form methoxy and a hydrogen adatom on Ni₁/CeO₂(111) is exothermic by 0.43 eV (cf. Figure S9) with an activation barrier of only 0.23 eV (Figure S10).Thus, Ni²⁺ sites probably play an important role in the steam reforming of alcohols over Ni/CeO₂ and Ce_{1-x}Ni_xO_{2-y} catalysts.^[5]

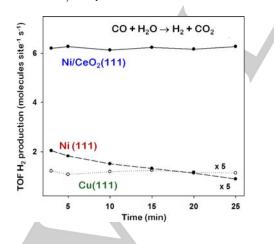


Figure 5. TOFs for the production of hydrogen through the WGS reaction on Ni/CeO₂(111) ($\Theta_{Ni} \sim 0.15$ ML), Ni(111) and Cu(111). T= 625 K, P_{CO}= 20 Torr, P_{CO}= 10 Torr of H₂O.

The fast dissociation of water of Ni/CeO₂(111) versus Ni(111) has a drastic effect in the catalytic activity and stability of Ni/CeO₂ during the WGS reaction.^[6,7] Figure 5 compares turnover frequencies (TOFs) for the WGS on Ni(111) and on a Ni/CeO₂(111) surface with ~ 0.15 ML Ni (T= 625 K, 20 Torr of CO and 10 Torr of H₂O). For comparison, we also include the corresponding results for a Cu(111) surface, a commonly used benchmark in studies of the WGS reaction.^[21,22] The TOFs show that Ni(111) is initially more active than Cu(111), but the catalytic activity of bulk Ni decreases with time as a consequence of the deposition of carbon on the surface through the Boudouard reaction: $2CO \rightarrow C + CO_2$. Since the dissociation of water on Ni(111) is not fast, the WGS cannot compete with the Boudouard reaction and eventually the surface is deactivated by the formation of a carbon layer. A similar problem has been reported for the WGS on Pt(111).^[23] In the case of Ni/CeO₂(111), the presence of Ni2+ sites not only favors the dissociation of O-H bonds but also makes more difficult the cleavage of C-O bonds.^[8] The fast dissociation of water on Ni/CeO₂ also helps to prevent coke deposition during the reforming of hydrocarbons on this material.^[5-7] The generated OH groups react with CH_x fragments to yield CO_2 and H_2 .^[5-7] Thus, the Ni/CeO₂(111) system illustrates how one can manipulate metal-support interactions to improve catalytic activity and stability, a major goal in heterogeneous catalysis.^[24]

Our results for Ni/CeO₂(111) and recent studies for Au and Pt on different oxide substrates^[25a-f] show that an oxide support can modify the electronic properties of an admetal in substantial ways. Charge polarization or a definitive change in the oxidation state can take place. This is very different from the traditional "strong metal-support interaction (SMSI)" which usually involved the blocking of metal active centers by oxide particles.^[24,26,27] Of particular interest are single atoms of Ni (this study) and Pt ^[25e] dispersed on ceria, which are stable, adopt a +2 oxidation state, and exhibit chemical properties very different from those of the corresponding bulk metals.

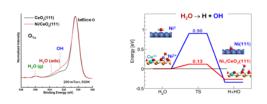
Experimental Section

Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) studies were performed at the Advanced Light Source in Berkeley, CA, at beamline 9.3.2. A VG-Scienta R4000 HiPP analyzer was used. High purity of the gases was checked with an RGA and introduced via backfilling. Traps were utilized along gas lines to prevent contamination. The O 1s region was probed with a photon energy of 700 eV and an energy resolution of 0.2–0.3 eV. The Ni/CeO₂(111) surfaces were prepared following procedures reported in the literature.^[7]

The catalytic activity of the Ni(111) and Ni/CeO₂(111) samples was studied in a system which combines an ultrahigh-vacuum (UHV) chamber (base pressure ~ 5 × 10⁻¹⁰ Torr) and a batch reactor.^[7] The sample could be transferred between the reactor and UHV chamber without exposure to air. The UHV chamber (base pressure ~ 5 × 10⁻¹⁰ Torr) was equipped with instrumentation for X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS), low-energy electron diffraction (LEED), ion scattering spectroscopy (ISS), and temperature-programmed desorption (TPD). The amount of molecules produced in the catalytic tests was normalized by the active area exposed by the

sample. Turnover frequencies (TOFs) for the Ni/CeO₂(111) ($\Theta_{Ni} \sim 0.15$ ML) sample were estimated assuming that all the Ni atoms deposited on ceria participated in the catalytic reaction.

The spin-polarized calculations were performed using the DFT(PBE)+U approach.^[12] A value of 4.5 eV was used for the Hubbard U-like term. The projector augmented wave method (PAW) was used at a planewave cutoff of 400 eV to decouple the core from valence electrons. The C (2s, 2p), O (2s, 2p), Ni (3p, 3d, 4s), and Ce (4f, 5s, 5p, 5d, 6s) electrons were treated as valence states.


The CeO₂(111), CeO_{2-x}(111), Ni₁/CeO₂(111), Ni₄/CeO₂(111) and Ni(111) surfaces were modeled by (3×3) unit cells. The first four contained nine (i.e., three O-Ce-O trilayers) and the last six atomics layers, respectively, separated by at least 13 Å of vacuum. The atomic geometry and electronic structure of the reduced CeO_{2-x}(111) surface with one surface defect, and those of ceria-supported Ni clusters, corresponded to those previously obtained. $^{[9,28]}$ Monkhorst-Pack grids with (2×2×1) and (4×4×1) k-point sampling were used for the ceria-based systems and Ni(111) surface, respectively. All of the atoms in the three bottom layers were fixed at their optimized bulk-truncated positions during geometry optimization, whereas the rest of the atoms were allowed to fully relax.

To locate the transition state structures (TS) we employed the climbing image nudged elastic band method (CI-NEB)^[29] [(3×3) unit cells and two O-Ce-O trilayers]. We characterized the transition structures by vibrational analysis. Harmonic vibrational frequencies and normal modes were obtained by diagonalizing the mass weighted force-constant matrix in Cartesian coordinates. A step of ±0.01 Å was set to calculate the force constants.

Keywords: water dissociation • nickel/ceria • metal-support interaction • density functional calculations•ambient-pressure Xray photoelectron spectroscopy

- [1] P. A. Thiel, T. E. Madey, Surf. Sci. Rep. 1987, 7, 211-385.
- M. A. Henderson, Surf. Sci. Rep. 2002, 46, 1-308. [2]
- [3] Catalysis: From Principles to Applications (Editors: M. Beller, A. Renken, R. A. van Santen), Wiley-VCH, New York, 2012.
- [4] P. M. Hundt, B. Jiang, M. E. van Reijzen, H. Guo, R. D. Beck, Science 2014. 344. 504-507.
- [5] G. Zhou et al. Angew. Chem., Int. Ed. 2010, 49, 9680-9684.
- L. Barrio, A. Kubacka, G. Zhou, M. Estrella, A. Martinez-Arias, J. C. [6] Hanson, M. Fernández-García, J. A. Rodriguez, J. Phys. Chem. C 2010, 114, 12689-12697.
- S. Senanayake, J. Evans, S. Agnoli, L. Barrio, T. Chen, J. Hrbek, J. A. [7] Rodriguez, Top. Catal. 2011, 54, 34-41.

- J. Carrasco, L. Barrio, P. Liu, J. A. Rodriguez, M. V. Ganduglia-[8] Pirovano, J. Phys. Chem. C 2013, 117, 8241-8250.
- [9] Y. Zhou, J. Zhou, J. Phys, Chem. C 2012, 116, 9544-9549.
- A.P. Grosvenor, M.C. Biesinger, R. St.C. SMart, N.S. McIntyre, Surf. [10] Sci. 2006. 600. 1771-1779.
- A. Caballero, J. P. Holgado, V. M. González de la Cruz, S. E. Habas, T. [11] Herranz, M. Salmeron, Chem. Commun. 2010, 46, 1097-1099.
- [12] The VASP site. http://www.vasp.at; version vasp.5.2.12, 11 Nov. 2011.
- Z. Yang, Q. Wang, S. Wei, D. Ma, Q. Sun, J. Phys. Chem. C 2010, 114, [13] 14891-14899.
- D. Fernández-Torre, K. Kósmider, J. Carrasco, M. V. Ganduglia-[14] Pirovano, R. Pérez, J. Phys. Chem. C 2012, 116, 13584-13593.
- M. Molinari, S. C. Parker, D. C. Sayle, M. S. Islam, J. Phys. Chem. C [15] 2012, 116, 7073-7082.
- [16] D. Marrocchelli, B. Yildiz, J. Phys. Chem. C 2011, 116, 2411-2424.
- [17] M. Watkins, T. Trevethan, A. L. Shluger, L. N. Kantorovich, Phys. Rev. B 2007, 76, 245421-1-245421-7.
- S. Fuente, M. M. Branda, F. Illas, Theor. Chem. Acc. 2012, 131, 1190-[18] 1-1190-7.
- D. Fernández-Torre, J. Carrasco, M. V. Ganduglia-Pirovano, R. Pérez, [19] J. Chem. Phys. 2014, 141, 014703-1-014703-9.
- [20] A. A. Phatak, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, J. Phys. Chem. C 2009, 113, 7269-7276.
- [21] A. A. Gokhale, J. A. Dumesic, M. Mavrikakis, J. Am. Chem. Soc. 2008, 130. 1402-1414.
- [22] J. Nakamura, J. M. Campbell, C. T. Campbell, J. Chem. Soc. Faraday Trans 1990 86 2725-2734
- D. W. Flaherty, W.-Y. Yu, Z. D. Pozun, G. Henkelman, C. B. Mullins, J. [23] Catal. 2011, 282, 278-288.
- C. T. Campbell, Nature Chemistry 2012, 4, 597-598. [24]
- [25] a) D. Ricci, A. Bongiorno, G. Pacchioni, U. Landman, Phys. Rev. Lett. 2006, 97, 036106; b) M. Sterrer, T. Risse, U. Martinez Pozzoni, L. Giordano, M. Heyde, H.-P. Rust, G. Pacchioni, H.-J. Freund, Phys. Rev. Lett. 2007. 98. 096107: c) S. Laursen, S. Linic, J. Phys. Chem. C. 2009. 113, 6689-6693; d) A. Bruix, J. A. Rodriguez, P. J. Ramírez, S. D. Senanayake, J. Evans, J. B. Park, D. Stacchiola, P. Liu, J. Hrbek, F. Illas, J. Am. Chem. Soc. 2012,134, 8968-8974; e) A. Bruix et al., Angew. Chem. Int. Ed., 2014, 53, 10525-10530; f) V. Simic-Milosevic, M. Heyde, N. Nilius, T. Konig, H.-P. Rust, M. Sterrer, T. Risse, H.-J. Freund, L. Giordano, G. Pacchioni, J. Am. Chem. Soc. 2008, 130, 7814-7815. [26] S. J. Tauster, Accounts of Chem. Research 1987, 20, 389-394.
- A. K. Datye, D. S. Kalakkad, M. H. Yao, D. J. Smith, J. Catal. 1995, 155,
- [27] 148-153
- G. E. Murgida, M. V. Ganduglia-Pirovano, Phys. Rev. Lett. 2013, 110, [28] 246101-1-246101-5.
- G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, [29] 113.9901-9904.

Strong metal-support interaction: By accommodating electrons in localized fstates, ceria stabilizes Ni²⁺ species which possess unique activity for the cleavage of O–H bonds. These species play an important role in the water-gas shift reaction and the steam reforming of alcohols over Ni/CeO₂ catalysts. J.Carrasco, D.López-Durán, Z. Liu, T. Duchoň, J. Evans, S.D. Senanayake, E.J. Crumlin, V. Matolín, J.A. Rodríguez, * M. V. Ganduglia-Pirovano*

Page No. – Page No.

In-situ and Theoretical Studies for the Dissociation of Water on an Active Ni/CeO₂ Catalyst: Importance of Strong Metal-Support Interactions for the Cleavage of O-H Bonds