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Abstract (200) 
Obtaining in situ measurements of biological microparticles is crucial for both scientific research 
and numerous industrial applications (e.g., early detection of harmful algal blooms, monitoring 
yeast during fermentation). However, existing methods are limited to offer timely diagnostics of 
these particles with sufficient accuracy and information. Here, we introduce a novel method for 
real-time, in situ analysis using machine learning assisted digital inline holography (DIH). Our 
machine learning model uses a customized YOLO v5 architecture specialized for the detection and 
classification of small biological particles. We demonstrate the effectiveness of our method in the 
analysis of 10 plankton species with equivalent high accuracy and significantly reduced processing 
time compared to previous methods. We also applied our method to differentiate yeast cells under 
four metabolic states and from two strains. Our results show that the proposed method can 
accurately detect and differentiate cellular and subcellular features related to metabolic states and 
strains. This study demonstrates the potential of machine learning driven DIH approach as a 
sensitive and versatile diagnostic tool for real-time, in situ analysis of both biotic and abiotic 
particles. This method can be readily deployed in a distributive manner for scientific research and 
manufacturing on an industrial scale. 
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I. INTRODUCTION  

Microparticles are ubiquitous in nature (dust, liquid droplets, sand, spores, fungi, bacteria etc.), 
and commonly appear in many industrial applications (e.g., manufacturing, food, cosmetics, 
pharmaceutical). Particularly, biological particles, which are derived from biological organisms 
including bacteria, fungi, algae, and cells, play important roles in the environment, human health, 
and industrial production. Technologies that can accurately characterize these particles 
(concentration, size, shape, composition, viability, etc.) in situ – that is, in their natural 
environment or during industrial processes – in a timely fashion are critical. These technologies 
have numerous applications. For example, in medical diagnosis, the ability to analyze blood cells 
and detect abnormalities such as circulating tumor cells (CTCs) can help determine the course of 
certain cancers and corresponding treatments (Yu et al., 2014). In the production of alcoholic 
beverages, such as beer and wine, the concentration, viability, and vitality of yeast cells need to be 
closely monitored for fermentation control to achieve the desired taste profile of the final product 
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(Mochaba et al.,1998; Heggart et al., 2000). It is also important to detect and identify any type of 
wild yeast contamination during the process to avoid spoilage. In the field of environmental 
science, long-term in situ monitoring of different algal species and their concentrations in aquatic 
environments can help researchers understand the causes and dynamics of harmful algal blooms 
(HABs) and facilitate early detection and proper mitigation strategies to reduce their detrimental 
environmental and economic impacts (Ho & Michalak, 2015).  

Currently, the commonly used tools for biological particle analysis are based on light or 
acoustic scattering or coulter principle (Maltsev & Semyanov, 2013; Baddour et al., 2006; Sun & 
Morgan, 2010). Light and acoustic scattering methods capture forward, side, or backward scattered 
signals from the particles in the sample volume and derive their concentration and size distribution 
based on the assumption of their shapes and scattering properties. The coulter method detects the 
momentary changes in impedance as a voltage pulse when suspended particles go through the 
orifice in the electrolyte solution. The pulses can be used to measure particle counts and volume 
(size) represented in terms of equivalent spherical diameter. Although these tools provide rapid 
measurements of particle counts and size distribution with high throughputs, they lack fidelity for 
the characterization of biological particles due to the complex scattering properties associated with 
their shapes (many non-spherical) and non-uniform internal structures. As a result, these methods 
often cannot distinguish different types of particles (e.g., fungi, mold, strains of bacteria), nor can 
they provide additional important information, such as morphology or other physiological 
characteristics (e.g., viability or vitality). Autofluorescence spectroscopy is a recently developed 
technique for particle analysis that utilizes laser-induced fluorescence (LIF) to detect molecules 
that absorb laser light and emit it at a higher wavelength (Croce & Bottiroli, 2014). While LIF can 
differentiate between biological and inert particles, it is not able to identify specific types of 
microorganisms or distinguish between live and dead cells, which is important for many industrial 
applications. Other methods, such as combining light scattering with flow cytometry, provide 
additional viability counting (Davey & Kell, 1996; Shapiro 2004). However, these methods also 
cannot classify different types of particles and require special reagents to stain cells, limiting their 
use in the in situ monitoring, especially in natural environments.  

In contrast, many laboratory-based particle analysis tools can detect and identify individual 
biological particles by obtaining additional information. For example, microscopic imaging is a 
commonly used method for obtaining morphological information. In conjunction with fluorescent 
staining, it can differentiate biological particles with similar morphological features with high 
specificity and determine viability (Coling & Kachar, 1998; Stephens & Allan, 2003). However, 
these methods are labor-intensive and low throughput, requiring complicated sample preparation, 
which limits their use for in situ measurements or inline monitoring. To address these limitations, 
several label-free methods have been developed for biological particle analysis in recent years. 
Raman spectroscopy, for example, has been used to rapidly identify pathogen bacteria using the 
unique molecular compositions that result in subtle differences in their corresponding Raman 
spectra (Strola et al., 2014; Ho et al., 2019). However, this method requires samples with a high 
concentration of pure cells and cannot distinguish different organisms in mixed samples. 
Hyperspectral microscopic imaging can classify single cells of foodborne pathogens (Yoon et al., 
2009; Eady et al., 2015; Kang et al., 2020), while quantitative phase imaging (QPI) has been used 
to extract detailed information about the biochemical composition of various biological particles 
(Popescu 2011), such as change of polyhydroxyalkanoates (Choi et al., 2021) and chromosomes 
(Sung et al., 2012) in individual live bacterial cells. These methods, however, require complicated 
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optical setups and computationally intensive postprocessing, making them difficult to use for in 
situ particle analysis.  

Since the beginning of the 21st century, digital inline holography (DIH) has emerged as a 
compact, label-free approach for the in situ characterization of particles (Katz & Sheng, 2010; 
Kaikkonen et al., 2014; Nayak et al., 2019; Sauvageat et al., 2020). This method utilizes a coherent 
light source, such as laser, to illuminate a three-dimensional (3D) sample volume. A digital sensor, 
such as a camera, records (without focusing) the interference pattern generated by the scattered 
light from individual particles and non-scattered portion of the illumination beam (referred to as 
holograms). The recorded hologram contains the phase and intensity information of the sample, 
which can be used to derive the 3D location, size, morphology, and optical density of particles 
through digital reconstruction using different diffraction formulas (e.g., Fresnel and Rayleigh-
Somerfield). In comparison to conventional microscopic imaging, DIH offers orders of magnitude 
larger depth of field and richer information about particle properties, as the optical properties of 
the particles can potentially be correlated with their biochemical compositions (Beuthan et al., 
1996; Choi et al., 2010; Bista et al., 2011). However, conventional DIH has several issues related 
to data processing, such as high computational cost and low signal-to-noise ratio due to noises 
from cross interference between particle signals, which limits its widespread adoption as an in situ 
tool.   

To address the challenges of DIH data processing, machine learning (ML) has been recently 
introduced. For example, Shao et al. (2020a, b) proposed a modified U-net architecture for the fast 
extraction of 3D particle positions and size distribution directly from the holograms without 
conventional reconstruction steps. Other studies have implemented ML models for classifying 
cancer cells with molecule specific microbeads attached (Kim et al., 2018) and different species 
of plankton (Guo et al., 2021) from raw holograms. While these machine learning approaches have 
improved processing speed, they still require preprocessing steps such as object detection and 
segmentation before classification, adding complexity and computational burden. As a result, the 
implementation of DIH for real-time in situ data processing remains a challenge.  

To address this challenge, we introduce a real-time hologram analysis approach based on the 
powerful one-stage detection and classification machine learning architecture, You Only Look 
Once (YOLO). YOLO has been widely used in computer vision with fast processing speed while 
maintaining high accuracy (> 80%) (Redmon et al., 2016). The YOLO architecture performs both 
object localization and object classification simultaneously, making it exceed the traditional 
deformable part model (DPM) and two-stage CNN based methods like R-CNN in object detection 
tasks with a 10x faster processing speed (Yan et al., 2014; Glenn et al., 2021). However, YOLO 
models are typically designed for conventional photographic objects (e.g., animals, license plate, 
plant) which are always in focus or close to focus and are composed of many well-defined features 
like contours and texture. In contrast, objects in holograms produce diffraction patterns that change 
significantly based on their 3D positions. It remains to be investigated whether and how the YOLO 
model can be adapted for hologram processing to develop accurate, robust, and real-time DIH for 
in situ biological particle analysis. 

This paper is organized as follows. In the Materials and Methods section, we introduced and 
described a customized YOLO model for detecting and classifying individual biological particles 
from enhanced holograms without any additional steps. In the Results section, we demonstrated 
the effectiveness of our approach by applying it to classify 10 different species of plankton and 
differentiate yeast cells under different metabolic states and different strains during fermentation. 
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Finally, in the Conclusions and Discussions section, we summarized our findings and discussed 
their implications. 

 
II.  MATERIALS and METHODS 

The DIH setup used in this study is illustrated in Fig. 1a. It uses a collimated laser as the 
illumination light source. The beam passes through the sample volume and the digital camera with 
a microscopic objective captures the fringe patterns (holograms) generated by the interference 
between the scattered light from the sample and non-scattered portion of the illumination beam. 
The recorded holograms are then passed to the processing board (e.g., CPU or GPU) for analysis. 
Raw holograms are enhanced through a moving window background subtraction to eliminate the 
noise associated with slow variation in background over time due to, for example, the change in 
light source intensity during the recording. The background for each hologram is calculated as the 
average intensity of the 50 consecutive holograms immediately prior to it. The enhanced 
holograms are obtained by subtracting the background from the raw hologram.  

A modified YOLOv5 machine learning architecture was used to detect and classify different 
biological particles in the enhanced holograms. The proposed YOLO architecture consists of three 
components (Fig. 1b): a backbone that extracts a collection of features (e.g., edges and corners of 
objects) from the input holograms, a neck that combines feature maps from different scales to 
generate a feature pyramid, and a prediction head that localizes and classifies individual objects 
based on the feature pyramid. The backbone is comprised of five convolution layers with a 3x3 
kernel size. A shallower layer is used to accommodate the smaller size of the biological particles 
in our application. Small objects occupy few pixels, and the key features are progressively lost 
when passing through many convolutional or pooling layers (Nguyen et al., 2020). Reducing the 
number of convolutional layers in the backbone can also increase the efficiency of the model while 
maintaining the same level of accuracy. A maximum pooling layer is used after each convolution 
layer to reduce the dimensions of the feature map by summarizing the features presented in a local 
region. The pooling layer in our model reduces computational cost by decreasing the input image 
size by half, while also improving robustness to input variance using a filtered feature 
representation that helps prevent overfitting. The extracted feature map is then passed through 
three additional convolution layers in the neck with kernel size of 3x3, 3x3, and 1x1 respectively. 
The output of the downscaled feature map is fed into the prediction head through two separate 
pathways. In one of these pathways, an up-sampling layer is employed to generate the upscaled 
feature map, which is then combined with the original down-sampled feature map from the 
backbone via a concatenate layer. At the end of each pathway, a fully connected layer serves as 
the prediction head, which predicts the location of the objects, the confidence score associated with 
each object, and the class probabilities. Leaky ReLU activation function (Maas et al., 2013) is 
utilized after each convolution layer in the YOLO architecture, and stochastic gradient descent 
(SGD) is used for optimization during the training of the model. The Binary Cross Entropy with 
Logits Loss function is used for the loss calculation of class probability and object score. A non-
maximum suppression step (Neubeck & Van Gool, 2006) is applied as a post-processing step to 
refine the initial prediction result and provide the final location and classification of each object in 
the input holograms. The proposed machine learning method is implemented using PyTorch and 
optimized using TensorRT. All test cases were run on a Nvidia V100 Tensor Core GPU.  
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FIG. 1. (a) Schematic showing DIH setup for imaging particles in a 3D volume. (b) Schematic 
illustration of the proposed machine learning method for particle detection from holograms. Note 
that the input of the method is the hologram without reconstruction. The architecture of the 
customized YOLOv5 is described by the flowchart in the boxes with dashed lines.  

In this study, we used three datasets to evaluate the performance of our method. These datasets 
consist of 10 different plankton species, ale yeast under four different metabolic states during 
fermentation, and two strains of yeasts (ale and lager) under the same fermentation condition. The 
plankton dataset was obtained from Guo et al. (2021) and included holograms of 10 plankton 
species captured by a submersible digital holographic imaging system (HOLOCAM) at two 
different locations. The plankton species included in the dataset are Chaetoceros debilis, Diatom 
sp., Ditylum brightwelli, Chaetoceros concavicornis, Thalassiosira sp., Copepod, Copepod 
nauplius, cf. Strombidium sp., Tripos cf. muelleri, and Tripos cf. furca (classified as type 0 to 9, 
respectively). The HOLOCAM used a 660 nm pulsed Nd-YAG laser as the illumination source 
and a 2048 × 2048 pixel CCD camera to record the holograms. Fig. 5a shows sample holograms 
and their corresponding in-focus images. The plankton species captured in the holograms are 
typically on the scale of several hundreds of microns, and the field of view (FOV) of the images 
is 9.4 x 9.4 mm with a resolution of 4.59 μm per pixel, which is sufficient to resolve unique features 
of the plankton species for classification (e.g., size, shape, diffraction pattern). To create the 
dataset, single cells were cropped from the enhanced holograms in the study by Guo et al. (2021) 
and divided into training database (70%), validation database (20%) and test database (10%). Table 
1 summarizes the number of single cells of each sampled plankton species in the training and test 
datasets. The validation cell numbers for each species are included in the training dataset summary. 
Differences in the number of plankton cells represented in each class reflect the natural distribution 
of different species in the sampled water body during the HOLOCAM deployments. Additional 
details about the plankton dataset can be found in Guo et al. (2021). Synthetic holograms were 
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generated by combining multiple randomly selected single-particle holograms from the database 
created by Guo et al. (2021) to create new training, validation, and test datasets. These datasets 
were used to train a YOLO model that can detect different types of plankton species.  

Table 1. Summary of the number of plankton cells used for training and testing.  
01 02 03 04 05 06 07 08 09 10 

Train 2754 7299 15120 5832 4770 3339 1854 5589 8208 21150 

Test 306 811 1680 648 530 371 206 621 912 2350 

 
FIG. 2. Growth curve of the ale yeast (red dot), and lager yeast (blue dot) strain fermented under 
30 ºC conditions. The cell concentration is estimated as the optical density (OD) measured at a 
wavelength of 600 nm.  

The yeast dataset was generated by culturing two different strains of yeast cells, Saccharomyces 
cerevisiae (ale yeast, Safale US-05) and Saccharomyces pastorianus (lager yeast, Lallemand 
Diamond), under certain fermentation conditions. For metabolic state analysis, dry ale yeast was 
dissolved in sterile YPD media (Sigma Aldrich) and cultured overnight at 30 ºC for 16 hours. The 
overnight culture was then centrifuged to remove the liquid and diluted into fresh YPD to an initial 
optical density of approximately 0.5 at 600 nm. The diluted culture was divided into 20 milliliters 
samples which were used to capture holograms at 0, 1 and 4 hours, corresponding to the start, lag 
(cells are adapting to their new environment and division has not yet begun), and log (cells start to 
divide and cell number rapidly increases) phases on the growth curve (Fig. 2). An extra 20 milliliter 
sample was imaged at 54 hours as the dead group, making a total of four groups. The holograms 
were captured using a FLIR camera (Blackfly S USB3) with a purple laser diode (405 nm 
wavelength) and a 10X objective lens. The size of the captured holograms is 1440 x 1080 pixel 
with a resolution of 0.34 μm/pixel. According to the Nyquist sampling theorem (Nyquist, 1928), 
this resolution can resolve features in the images that are larger than 0.68 μm, which is sufficient 
to distinguish the cellular features of yeast cells, typically 5-10 µm in diameter as well as well as 
subcellular features such as vacuoles that are 1-5 µm in size. During imaging, the yeast sample 
flowed through a customized microfluidic channel with sheath and main flows, with a flow rate of 
8 µL/min for the sheath (distilled water) and 0.4 µL/min for the main flow (yeast sample). The 
width of the imaging channel was 1 mm and the depth was 0.5 mm. The fringe patterns (i.e., the 
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spacing and width of fringes) change with the distance between yeast cells and the hologram 
recording plane. If the focal plane of the cells is in the center of the 0.5 mm deep channel, the cells 
could appear anywhere from 0 to about 250 μm from the focal plane (given varying focal 
distances). To train a machine learning model which can detect and characterize cells regardless 
of the size and fringe pattern differences associated with the recording depth, we included 
consistent numbers of cell images varying near and far from the recording plane for each class. 
Since most of the cells flowing in our microfluidic device are concentrated near the center of the 
channel by the sheath flow, we manually adjusted the z-position of the microfluidic channel to 
obtain holograms at varying distances from the focal plane. A distribution of particle distances 
from the hologram plane for each class in the yeast metabolic state dataset is presented in Fig. 3. 
For each metabolic state, 1000 holograms were captured at varying positions along the imaging 
channel at a frame rate of 12 frames per second (FPS). 

 
Fig. 3.  The distribution of imaging distance from focal plane for yeast cells included in the 
metabolic dataset. Different colors represent cells from the four metabolic states (0-h, 1-h, 4-h, 
and dead) respectively. Two imaging distances were used for each class and can be identified by 
distribution peaks. 

During the process of generating the labeled dataset for the metabolic states and strains, 
attached mother and daughter cells, as a result of the natural reproduction during fermentation, 
were often observed and labeled as a single object, while overlapping cells were given separate 
labels. We were able to differentiate attached mother and daughter yeast cells from overlapping 
cells based on the differences in the appearance of their diffraction patterns. The training set for 
model training consisted of both recorded and synthetic holograms. The recorded holograms from 
experiments only contained yeast cells from one metabolic group (or one strain), while synthetic 
holograms were generated by blending two or more recorded holograms randomly selected from 
the four metabolic groups (or two strains). This resulted in a mixture of yeast cells at various 
metabolic states (or from different strains) being present in the synthetic holograms. A total of 500 
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synthetic holograms were generated for the training set, which was then augmented by adjusting 
contrast, brightness, and adding random Gaussian noise, resulting in a 3-fold increase in the 
training size. The numbers of captured single cells contained in the training and test sets are listed 
in Table 2. For model performance evaluation, an additional 100 synthetic holograms were 
generated for the test set. For yeast strain classification, samples of lager yeast were prepared in a 
similar manner to the ale yeast. Lager strains are bottom fermenting and works at lower 
temperatures (8-15 ºC), in contrast to ale yeast which prefers higher temperatures (18-22 ºC). As 
shown in Fig. 2, lager yeast does not grow when cultured at 30 ºC, as indicated by the unchanged 
OD 600 over time.  

Table 2. Summary of the number of yeast cells used for training and testing. 
 Ale  Lager 
 

0h 1h 4h Dead Inactive Inactive 

Train 7290 5572 9094 14947 540 362 

Test 2163 1610 2641 1157 64 99 

To assess the performance of the models for classification in each test case, we consider three 
criteria including precision, recall, and overall extraction rate. Precision, 𝑃𝑃𝑛𝑛, is the proportion of 
true positives (𝑇𝑇𝑃𝑃𝑛𝑛) to the total predictions made for a class 𝑛𝑛 and is calculated as 

 𝑃𝑃𝑛𝑛 =  
𝑇𝑇𝑃𝑃𝑛𝑛

𝑇𝑇𝑃𝑃𝑛𝑛 + 𝐹𝐹𝑃𝑃𝑛𝑛
 (1) 

where 𝐹𝐹𝑃𝑃𝑛𝑛 is the number of cells which are mislabeled as class 𝑛𝑛, or false positives. Instances of 
background false positives occur when a model detects debris and abiotic particles or a small 
region of image background as yeast cells, but these occurrences are rare. For example, in the 
plankton and metabolic yeast test cases, background false positives account for only 3.9% and 
1.7% of the total predictions, respectively. Therefore, background false positives are excluded 
from the calculation of precision when evaluating the classification performance for the 
convenience of direct comparison to other classifier models which do not encounter background 
false positives. 

Recall is the percentage of the correctly classified objects in a class 𝑛𝑛 compared to the ground 
truth and is calculated as  

 𝑅𝑅𝑛𝑛 =  
𝑇𝑇𝑃𝑃𝑛𝑛

𝑇𝑇𝑃𝑃𝑛𝑛 + 𝐹𝐹𝐹𝐹𝑛𝑛
 (2) 

where 𝐹𝐹𝐹𝐹𝑛𝑛 is the number of false negatives, including cells that are either mislabeled as other 
classes or undetected (missed cells with no bounding boxes). Since the YOLO model performs 
detection and classification simultaneously (one-stage), cells that do not reach the selected 
confidence level to be classified into any of the object classes will appear as undetected (see Fig. 
6b). This is different from the conventional classification models which always assign each cell to 
one class.  

We also use extraction rate (EA) to monitor the portion of undetected yeast cells (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) as part 
of the comprehensive evaluation of our model. Extraction rate is calculated as  

 𝐸𝐸𝐸𝐸 = 1 −
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 (3) 
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where 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of cells in all classes. It is common for the extraction rate to 
decrease if the model's classification performance declines. The confidence threshold for model 
prediction is selected based on the F1 score, a harmonic mean of precision and recall. Fig. 4 shows 
an example how the F1 score varies with different confidence thresholds. The confidence threshold 
corresponding to the peak of F1 score is commonly selected to ensure highest possible precision 
and recall rates for the model, without emphasizing one over the other.  

 
FIG. 4. The change of F1 score with confidence threshold for each class for the YOLO model in 
the yeast metabolic state case. The peak of the curve represents the highest possible precision and 
recall rates for the model, without emphasizing one over the other. 
 
III. RESULTS  

Three cases were presented to demonstrate that the proposed image-based in situ particle 
analyzer is applicable to a variety of tasks in scientific research and industrial applications. The 
first case involved classifying plankton from 10 different species, and demonstrated an 
improvement in processing speed compared to the previous method (Guo et al., 2021) while 
maintaining a similar level of accuracy. The second case demonstrated the capability of the 
proposed method to differentiate yeast cells under four metabolic states from holograms without 
reconstruction. The third case showcased the ability of the proposed method to detect subtle 
differences in the subcellular structures such as the biochemical compositions of two different 
strains of yeast cells under the same fermentation conditions.  
A. Analysis of 10 different plankton species  

Plankton are incredibly important to aquatic ecosystems and play a significant role in various 
research areas such as aquatic ecology, ocean optics, and climate change. Sudden uncontrolled 
growth of specific types of plankton species can lead to HABs, which can be detrimental to both 
aquatic ecosystems and human health. The timing of the initiation of HABs and its dynamics are 
often unpredictable due to varying environmental conditions year from year and a lack of 
understanding of the specific triggers and growth factors involved. Accurate detection of different 
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plankton species is essential for long-term in situ monitoring of dynamic changes of their 
concentration which help improve our fundamental understanding of HABs. While DIH has been 
successfully applied for aquatic particle and HAB monitoring (Nayak et al., 2019) and automatic 
plankton classification (Guo et al., 2021), the computational intensity of image preprocessing has 
largely restricted its use in real-time analysis. Currently, it is unclear whether any neural network 
model is able to directly detect and distinguish different plankton species from unreconstructed 
holograms without any costly preprocessing. As shown in Fig. 5a, some species do not have 
distinctive holographic signatures (e.g., Copepod Nauplii vs. Copepod, and Tripos cf. furca vs. 
Tripos cf. muelleri), which may pose a challenge for accurate identification. 

 
FIG. 5. (a) Sample holograms from each of the 10 plankton species (left) and their corresponding 
reconstructed in-focus images (right). (b) The confusion matrix summarizing the accuracy and 
prediction errors made by the model. (c) Prediction of plankton species distributed in a sample 
hologram with different types of planktons presented. Bounding boxes with different colors 
indicate different plankton species.  

Our trained YOLO model was tested at a confidence threshold of 0.3 with an overall extraction 
rate of 99.8%. The confusion matrix in Fig. 5b summaries the accuracy and prediction errors of 
the model for each plankton species. Most species are classified correctly with a precision greater 
than 90% (dark blue boxes). The average precision is 95.3% with a 91.7% recall. The slightly 
lower prediction accuracy for Tripos cf. furca (88%) is likely due to its diffraction patterns being 
similar to some other plankton species such as Tripos cf. muelleri (9% of the predicted Tripos cf. 
furca cells are actually Tripos cf. muelleri). Our method achieved a similar average precision to 
that of the method proposed by Guo et al. (2021) (95.3% vs. 96.8%) with slightly lower recall 
(91.7% vs. 95.0%). The method proposed by Guo et al. (2021) involves intensive image 
preprocessing even without reconstruction which takes 1.6 – 2.5 seconds to process a single image. 
By contrast, our proposed method uses the pre-trained plankton detection model which is able to 
perform real-time, in situ analysis of captured holograms after minimal processing (enhancement), 
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processing over 40 frames per second (a single image in 0.025 seconds). Additionally, our method 
was applied to holograms selected from an in situ dataset recorded by the HOLOCAM on 21 
September 2015 at East Sound (Guo et al., 2021), which contain multiple different plankton 
species (Fig. 5c). Most plankton were detected successfully in these holograms, demonstrating the 
potential of our method as an in situ monitoring tool for plankton species in water.    
B. Analysis of yeast cells under different metabolic states 

We used our proposed method to detect yeast cells under four different metabolic states. Based 
on the growth curve (Fig. 2), the holograms of ale yeast were captured at the start of fermentation 
(0h), during the lag phase (1-h), during the log phase (4-h), and when the cells were dead (54-h). 
Fig. 6a shows examples of the enhanced holograms of yeast cells from these four groups. Yeast 
cells from the same metabolic group may appear in different sizes and with different fringe patterns 
(spacing and width of fringes) depending on their distance to the focal plane during recording 
(small zoomed in figures below each enhanced hologram in Fig. 6a). Our dataset includes cells 
that could appear anywhere from 0 to 250 μm from the focal plane (Fig. 3). Despite the lack of 
visible differences in the holograms of single cells between groups, our trained machine learning 
model was able to accurately classify individual yeast cells from the four groups (colored bounding 
boxes in Fig. 6a). To further demonstrate the model’s classification capability, synthetic holograms 
were generated by blending randomly selected two or more enhanced holograms from different 
groups (Fig. 6b). These synthetic holograms contain a mixture of yeast cells from different 
metabolic states. When tested on the synthetic holograms, the machine learning model was also 
able to accurately classify the yeast cells from the four groups. 

 
FIG. 6. (a) YOLO detection on the enhanced holograms of ale yeast at hour 0 (0-h), 1 (1-h), 4 (4-
h) and 54 (dead) during fermentation. Samples of holograms of individual ale yeast cells are shown 
below. (b) YOLO detection on the synthetic holograms. Yeast cells under four different metabolic 
states (0-h, 1-h, 4h and dead) are predicted by bounding boxes with orange, green, purple, and blue 
color respectively. The numbers on the bound boxes represent the prediction confidence score.  
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FIG. 7. The confusion matrix summarizing the accuracy and prediction errors made by proposed 
YOLO based method for classifying yeast cells under four metabolic states. The diagonal elements 
(dark blue boxes) indicate the precision.  

We used synthetic holograms (Fig. 6b) to evaluate the model’s performance in classification. 
A confidence threshold of 0.65 was selected according to the F1 score (Fig. 4). The accuracy and 
prediction errors for each group were summarized in a confusion matrix shown in Fig. 7. Each 
column represents the true metabolic group of each cell and each row lists the predicted metabolic 
groups. The diagonal elements of the matrix show the percentage of correctly classified cells from 
each metabolic group, or precision. For each group, the precision is greater than 96% (0-h: 98.6%, 
1-h: 98%, 4-h: 96.5%, and dead: 97%). The average precision across all conditions is 97.5% with 
an overall extraction rate of 90.8%. The average recall is 88.5% and remains relatively constant 
across each group (0-h: 88%, 1-h: 87%, 4-h: 90%, and dead: 89.4%). Since we utilized a one-stage 
YOLO model which performs detection and classification simultaneously, the recall rate is 
affected by both misclassification and missed detection. This is different from the reported recall 
of the conventional classifier models applied after the detection, which only considers 
misclassification as the false negative. Our average recall is 97.3% if the missed detections are 
excluded, to be compared directly to the conventional classifier models. Overall, our results 
demonstrate the potential of in situ monitoring of the metabolic states of yeast cells during 
industrial production.  
C. Analysis of yeast cells of two different strains  

Different strains of yeast cells can have different fermentation characteristics and contribute 
unique flavor to beer (Mochaba et al.,1998; Heggart et al., 2000). It is important in the brewing 
industry to maintain the purity of yeast strains in order to ensure product quality and it is therefore 
crucial to detect any contamination from wild yeast or undesired strains. Saccharomyces cerevisiae 
(ale yeast) and Saccharomyces pastorianus (lager yeast) are two common yeast strains used in 
beer fermentation (Bonatto 2021). Lager strains are bottom fermenting and thrive at lower 
temperature (8-15 ºC), while ale yeast is top fermenting and works best at room temperature (18-
22 ºC). When both yeast cells were cultured at the same condition (as described in the Materials 
and Methods) at 30 ºC, lager yeasts remained inactive, as indicated by the unchanged cell density 
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(Fig. 2), in contrast to the rapid growth of ale yeast. Holograms were captured of cells samples 1 
hour after the initiation of fermentation for both ale and lager groups (Fig. 8a). The image 
resolution and variation in diffraction pattern from varying imaging depths are the same as the 
metabolic state experiments. Synthetic holograms containing a mixture of cells from both groups 
were also generated using blending (Fig. 8b). The trained YOLO model was able to accurately 
distinguish ale yeast from lager yeast in both recorded (Fig. 8a) and synthesized (Fig. 8b) 
holograms, despite their similar appearances (zoomed in images in Fig. 8a). The precision is 99.5% 
for ale yeast and 97% for lager yeast, with an average of 98.2% (Fig. 9). The recall for the ale yeast 
is 97.8% and 83.1% for the lager, resulting in an average of 90.5%. The overall extraction rate is 
96.4%. The slightly lower recall for the lager yeast may be due to the presence of a higher number 
of abiotic particles in the recorded holograms, which could interfere with the yeast cells and hinder 
the model's ability to extract features.  

 

FIG. 8. (a) YOLO detection on the enhanced holograms of ale yeast and lager yeast at hour 1 
during fermentation. Sample holograms of individual ale and lager yeast cells are shown below. 
(b) Detection result showcases for the synthetic holograms. Ale yeast cells are predicted by the 
purple bounding boxes and the lager yeast cells are predicted by the beige bounding boxes. The 
numbers on the bound boxes represent the confidence score.  

As a control experiment, we also captured holograms of inactive ale yeast cells, which were 
prepared by directly dissolving the dry ale yeast in distilled water without culturing. The average 
precision and recall were only 62% and 55.6%, respectively, indicating that the YOLO model is 
not able to distinguish between ale and lager yeast when both are inactive. The overall extraction 
rate is 87.2%. The lower extraction rate is likely due to the model’s poor performance in 
classification. Because the YOLO model performs detection and classification simultaneously, 
more cells will be undetected if the model fails to classify them correctly. If the model is only 
trained on a detection task for any yeast cells, the extraction rate is 93%, comparable to the other 
yeast test cases. These results suggest that our method can distinguish different strains based on 
their unique metabolic characteristics during fermentation. 
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FIG. 9. The confusion matrix summarizing the accuracy and prediction errors made by proposed 
YOLO based method for yeast strain detection during fermentation. The diagonal elements (dark 
blue boxes) indicate precision of the model prediction. 

 
IV. CONCLUSIONS AND DISCUSSIONS 

In this study, we introduce a novel approach for real-time in situ analysis of biological particles 
using machine learning assisted digital inline holography (DIH). Our machine learning model, 
which uses a modified YOLO v5 architecture customized for the detection and classification of 
holograms of small biological particles, is optimized using TensorRT for real-time processing. 
Unlike previous methods used to classify particles captured in holograms (Kim et al., 2018; Guo 
et al., 2021), our approach integrates particle localization and classification into a single step, 
significantly reducing processing time while maintaining prediction accuracy. We have 
demonstrated the capability of our novel approach for in situ biological particle analysis using 
three test cases: classifying 10 different species of plankton, detecting yeast cells under four 
different metabolic states, and differentiating two yeast strains during fermentation. Our approach 
does not require any additional preprocessing (e.g., hologram reconstruction and particle 
segmentation) used in other studies (Kim et al., 2018; Guo et al., 2021), significantly reducing 
processing time and computational resources. Our DIH sensors, with onboard processing 
capability, are ideal for real-time, in situ monitoring of the onset and development of harmful algal 
blooms, or the viability and vitality of yeast cells during various industrial processes. Our method 
is sensitive enough to detect subtle biochemical composition changes in single cells (Raschke & 
Knorr, 2009; Chan et al., 2012) and can also be used to distinguish different strains of yeast cells 
based on their unique fermentation characteristics.  

Overall, this work showcases the potential of machine learning assisted DIH as a novel and 
versatile tool for real-time, in situ analysis of various biological particles, including their 
morphology, viability, vitality, and other important biophysical properties that are correlated with 
changes in optical density (e.g., membrane structure, protein). Compared to commonly used rapid 
particle analysis tools such as laser diffraction, acoustic scattering, and Coulter counter, our 
approach offers more information beyond size and concentration. It can be used for viability and 
vitality tests similar to conventional fluorescent microscopy and flow cytometry methods, but 
without the need for sample preparation (label-free) and with significantly higher throughput. Our 
optical setup is highly compact and cost-effective compared to other label-free technologies such 
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as QPI and hyperspectral imaging, and the data process is not as computationally intensive with 
much higher throughput. With these features, our proposed method can be easily extended to the 
analysis of other types of particles (both biotic and abiotic) and can be deployed in a distributive 
manner for scientific research and manufacturing on an industrial scale. To apply the method to a 
specific application, holograms can be captured using similar hardware setup using customized 
objectives and camera sensors based on particles size and field of view. The biotic and abiotic 
particles in the holograms can then be manually labeled by a domain expert to form a training set 
and a machine learning model using our proposed architecture can be trained. Once the model is 
trained and loaded onboard, the entire system should be able to perform effectively for the 
application.  

However, it is important to note that the precision of our machine learning model may decrease 
when analyzing holograms with high particle concentrations due to the overlap of diffraction 
patterns, but this will not significantly influence the model’s performance as long as the overlap is 
less than 50%. This conclusion is based on test results that showed high precision and recall in 
most cases. Our method is particularly valuable for analyzing particles in the applications that 
require high sensitivity, such as biocontaminants in sterile liquids (e.g., spring water, sterile liquid 
used in pharmaceutical industries and clinical applications). In these applications, particle 
concentrations are usually low and our model performance will not be significantly affected by 
overlapping fringes. In addition, despite the generalizability of our overall approach including the 
hardware setup and ML method, the trained ML model is specific to the application it is trained 
for, and its performance may be compromised when used on data outside the scope of its training. 
This is the limitation for common supervised learning approaches. To ensure the accuracy and 
robustness of the model, it may be necessary to retrain it and gather new labeled data when there 
are changes in particle properties (e.g., size, shape), medium properties (e.g., refractive index), or 
image acquisition settings (e.g., magnification, laser wavelength). In the future, it may be possible 
to mitigate this limitation by using unsupervised or semi-supervised machine learning model 
architectures in DIH data processing.  
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