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Abstract: As lightweight design gains more and more attention, time and cost-efficient joining

methods such as clinching are becoming more popular. A clinch point’s quality is usually determined

by ex situ destructive analyses such as microsectioning. However, these methods do not yield the

detection of phenomena occurring during loading such as elastic deformations and cracks that close

after unloading. Alternatively, in situ computed tomography (in situ CT) can be used to investigate

the loading process of clinch points. In this paper, a method for in situ CT analysis of a single-lap

shear test with clinched metal sheets is presented at the example of a clinched joint with two 2 mm

thick aluminum sheets. Furthermore, the potential of this method to validate numerical simulations

is shown. Since the sheets’ surfaces are locally in contact with each other, the interface between both

aluminum sheets and therefore the exact contour of the joining partners is difficult to identify in CT

analyses. To compensate for this, the application of copper varnish between the sheets is investigated.

The best in situ CT results are achieved with both sheets treated. It showed that with this treatment,

in situ CT is suitable to properly observe the three-dimensional deformation behavior and to identify

the failure modes.

Keywords: clinching; computed tomography; in situ CT; lap shear testing

1. Introduction

Usually, clinch points are experimentally characterized by ex situ lap shear tests where
the force–displacement behavior is monitored and damage phenomena such as pull-out
(possibly with neck fracture), neck fracture, and neck fracture with plastic deformation
(mixed mode failure) are investigated [1]. Additionally, in microsection analyses, the
geometrical characteristics such as bottom thickness, neck thickness, and undercut are
measured. While the undercut predominantly determines the pull-out and peeling strength,
the neck thickness mainly influences the shear strength of a clinching point. Beyond that,
the bottom thickness generally indicates the clinch point quality. The main disadvantage
of ex situ analyses is that the observed damage state is inaccurate due to the resetting of
elastic deformations and crack closure effects. On the contrary, non-destructive in situ
measurement methods allow the online investigation of the material flow and damage
chronology during testing. In ref. [2], the electrical resistance of aluminum–steel clinch
points are investigated in situ, showing a characteristic relation of the electrical resistance
to the punch force and the bottom thickness.

Another common non-destructive testing method is radiographic imaging, where
X-rays are directed toward an object. The attenuated radiation is measured by the detector,
creating a two-dimensional projection of the object (X-ray image) [3]. While radiography
takes an X-ray image from a single angle, in computed tomography (CT), the object is
scanned from several angles. Then, the set of projections is used to reconstruct a three-
dimensional image of the object in high resolution [3].
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CT is established for geometry and structural analyses, both of classical homogeneous
materials (e.g., casted aluminum alloy [4]) and of heterogeneous material systems, such as
concrete [5], composites [6], or biomaterials [6]. Primarily, it is used to identify the inner
microscopic structure [7] or pores [4,5], but especially for textile composites, the analysis
of delamination, fiber fracture, and ondulation [8] is important. In the field of joining
technology, fiber-reinforced plastics (FRP) and aluminum (Al) joined by semi-tubular
self-piercing rivets [9] and drilled holes [10] are investigated.

Recently, the CT method was extended for the investigation of joining and testing
processes in situ. Füßel et al. used in situ CT for the damage analysis of single overlapping
adhesively bonded riveted lap joints of FRP and Al in lap shear tests [11]. Kunz et al. pre-
sented a technique for measuring the internal displacement field in adhesives by tracking
characteristic markers within adhesives during loading using in situ CT [12]. Furthermore,
Pottmeyer et al. used in situ CT to investigate the damage evolution of carbon FRP due to
the deformation of inserts under tensile loading. Here, the detachment of the boundary
layer and the insert, fiber fracture, and delamination allocated to the respective forces were
shown [13].

The aim of this paper is to describe the potential of detecting deformation charac-
teristics and damage phenomena of clinch points during single-lap tensile shear testing
(lap shear test) using in situ CT. For that purpose, a tensile test set-up in combination
with a CT system as shown in Figure 1 is used. Initial tests showed that the sheet–sheet
interface in the clinch points neck cannot be identified properly in the CT analysis because
the sheets are in close contact with each other. As this limits the potential of this method,
a radiopaque layer is applied to the specimens to enhance the visibility of the interface.
Earlier investigations showed that barium iodide solution and a tin foil are suitable as
radiopaque interlayers [14]. However, the specimens applied with the solution exhibited
an inconsistent coating, and the tin foil leads to artefacts and blurring as well as wrinkling
of the foil. Therefore, in this paper, the application of a conductive copper varnish spray
(copper spray) is investigated. The deformation characteristics and damage phenomena
in the specimen measured with the new method are shown and clinch points with and
without radiopaque layer are compared. A finite element (FE) model is set up to simulate
the structural behavior of the specimen during lap shear testing. Comparing FE and in situ
CT results, the potential for validation of numerical models is shown.

 

Figure 1. Schematic test set-up in the in situ computed tomography (CT) (a), the cross-section of the lap shear specimen in

the initial position with the characteristic dimensions (b) and the overall specimen dimensions (in mm) (c).
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2. Materials and Methods

2.1. In Situ Lap Shear Test

The in situ lap shear test of the clinched specimen is based on ISO 12996 [1], where only
the force–displacement curve is measured and the failure mode of the joint is determined
after failure. In the current in situ lap shear test set-up, the specimen consists of two
lubricated 2 mm thick sheets made of aluminum EN AW 6014-T4 (Advanz™ 6F-e170,
Novelis Inc., Atlanta, GA, USA) that are clinched with the punch A50100 and the die
BE8012 (both from TOX PRESSOTECHNIK GmbH & Co.KG, Weingarten, Germany) in the
overlapping area. The characteristic dimensions in the cross-section of the joint are shown
in Figure 1b. The specimen is solution heat-treated and artificially aged (T6) by 458.15 K
over 20 min after clinching. In order to ensure a concentric load introduction, two shim
plates are bonded onto the ends of the sheets. In contrast to the norm, the specimen width is
37 mm instead of 45 mm (cf. Figure 1c) to fit the clamps. The specimen is clamped on both
sides in the in situ tensile testing machine based on a ZwickRoell Z250 (ZwickRoell GmbH
& Co. KG, Ulm, Germany) and pulled along the main axis (lower traverse is moving).

The clinch point is CT-scanned at nine displacement steps whereby the crossbeam
remains at constant displacement. The displacement is measured as the travel of the
crosshead because direct measurements using e.g., extensometers with sensor arms are not
compatible with an in situ CT measurement. The CT system FCTS 160-IS (FineTec Fine-
Focus Technologies GmbH, Garbsen, Germany) from Finetec consists of the X-ray source
FORE 160.01C TT (160E3 V, 1E-3 A, 80 W) and a flat panel detector (3200 × 2300 pixel,
405 mm × 290 mm active area). In this CT system, the X-ray-source-detector system rotates
around the specimen in order to take the X-ray images from different angles.

The parameters for the CT, the lap shear test, and the specimen manufacturing are
summarized in Table 1.

Table 1. Test and specimen manufacturing parameters.

Test Division Parameter Unit Value

Specimen

Punch penetration mm 4.7
Joining speed mm/s 2

Heat treatment temperature (T6) K 458.15
Heat treatment duration (T6) min 20

CT system

Acceleration voltage V 1.50 × 105

Tube current A 7.0 × 10−5

X-ray projections - 1440 (4 per 1◦)
Exposure time s 6.25

Resolution mm 7.58 × 10−3

Magnification - 16.8

In situ testing
machine

In situ CT elongation steps mm
0.08; 0.15; 0.22; 0.30; 0.37;

0.44; 0.52; 0.59; 0.66
Test speed mm/min 2

2.2. Enhancing the Detectability of the Sheet–Sheet Interface Using Radiopaque Materials

Preliminary CT scans of clinch points showed that the interface between the two
sheets is hard to identify especially at the clinch point’s neck. Since the sheet’s surfaces are
pressed excessively together, the X-rays attenuation does not deviate significantly enough
from the attenuation by a homogenous aluminum material. Consequently, the undercut
and the neck thickness are hardly measurable (cf. Figure 2a,b). Since solved barium iodide
and the thin tin sheet did not lead to sufficiently good results, copper spray is investigated.
Initial tests on two 20 mm × 20 mm × 2 mm clinched aluminum sheets revealed a very
consistent and well visible layer in the sheet–sheet interface (cf. Figure 2c).
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Figure 2. Detail of a computed tomography (CT) image of a clinch point with poorly visible sheet–sheet interface (a) and

the same CT image with the assumed interface marked with a white dotted line (b). The same detail with copper varnish

(applied on both sheets) in the sheet–sheet interface (c).

For the lap shear test, the sheets are sprayed with Tifoo conductive copper varnish
(MARAWE GmbH & Co. KG, Regensburg, Germany) spray with a distance of approx-
imately 200 mm at the overlapping area and then left for drying at room temperature.
In order to investigate the effect of the layer on the visibility of the sheet–sheet interface
and on the clinching and testing process, lap shear tests are conducted with specimens
with copper spray applied to neither of the sheets, to one sheet, and to both sheets (cf.
Table 2). The influence of the copper spray on the clinch point is investigated in in and ex
situ CT investigations. In order to investigate the in situ lap shear test, three specimens
with varying copper spray treatment are used.

Table 2. Specimen overview.

Specimen Copper Spray Treatment Investigation Method

A01_A_CV_018 One sheet treated In situ CT lap shear test
A01_A_CV_019 One sheet treated Ex situ CT and lap shear test
A01_A_CV_020 One sheet treated Ex situ CT and lap shear test
A01_A_CV_021 Both sheets treated In situ CT lap shear test
A01_A_CV_022 Both sheets treated Ex situ CT and lap shear test
A01_A_CV_023 No treatment Ex situ CT and lap shear test
A01_A_CV_024 No treatment In situ CT lap shear test

In ref. [15], clinch points are manufactured with the same clinching parameters as
described in Table 1 and the same sheet material but without any radiopaque interlayer.
The characteristic dimensions measured in a micro-section are given. In this paper, the
results are used for validation of the clinching simulation and for the investigation of the
influence of the radiopaque material on the clinch point characteristic dimensions.

2.3. Numerical Model

In order to compare the in situ CT tests with numerical simulations, both the clinching
process and the lap shear testing are simulated (Abaqus 2017, explicit). While for clinching
simulation (round point), a 2D axisymmetric model is often suitable [16], the lap shear
process has only a single symmetry plane requiring a 3D model. However, to avoid
inaccuracies due to the transfer of the material states between these models, both processes
are set up as a 3D model with the symmetry y-z plane applied (cf. Figure 3b,d). In order
to decrease the computational effort, the punch (P), the die (D), and the blank holder
tip (BH) are modeled as rigid solids, and the punch-faced sheet (SP) and die-faced sheet
(SD) are modeled as deformable solids. In order to assess this assumption, a reference
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axisymmetric 2D (reference model) model was set up where the tools are designed with the
same dimensions but as deformable solids. The evaluation found that using rigid solids in
the 3D model, which is a common adaption [17,18], leads to negligible deviations from the
reference model.

 

Figure 3. Set-up of the 3D numerical model for the clinching process (a,b) and for the lap shear test (c,d). The sheets (gray),

the areas of Arbitrary Lagrangian–Eulerian (ALE) mesh adaption (light gray) and the tools (blue) are shown.

The numerical model of the clinching process with the boundary conditions and loads
is shown in Figure 3a,b. The die is fixed and the punch is displaced in a smooth curve
(cf. Figure 4a). It penetrates the sheet stack by 4.71 mm and subsequently retracts by
0.2 mm. In the experiment, the BH is mounted to a spring. Designing the spring in the
3D model can lead to inaccuracies due to the application of artificial mass scaling; i.e.,
the BH can be affected by the increased inertia forces. In order to avoid this, an auxiliary
axisymmetric 2D model (auxiliary model) is used to specify the displacement behavior
of the BH. The parts in this model have the same dimensions as in the reference model,
but the tools are designed as rigid solids. Additionally, a spring element and negligible
artificial mass scaling is used. The spring, having a stiffness of 485 N/mm2, is initially
precompressed to 1060 N. Then, it compresses according to the displacement curve of the
punch (cf. Figure 4a). The resulting displacement curve of the BH (cf. Figure 4b) is used as
displacement constraint of the BH in the 3D model.

 

Figure 4. Blank holder spring compression and punch movement (a) and the resulting blank holder tip movement (b).
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The numerical model of the lap shear test with its boundary conditions and loads is
shown in Figure 3c,d. The specimen has a free length of lExperiment = 144 mm. In order to
decrease computational effort, the specimen is modeled up to the length where the von
Mises stresses caused by the clinch process remain above 10% of the maximum stresses
(tested with the auxiliary model). Thus, a length of lSimulation = 56 mm of the specimen is
modeled (cf. Figure 3c). Consequently, the relation between experimental

Displacements uExperiment and numerical displacements uSimulation is

uExperiment = uSimulation +
FSimulation

t · b · E
·
(

lExperiment − lSimulation

)

. (1)

Here, FSimulation is the measured tensile force in the simulation, t and b are the sheet
thickness and width, and E is the Young’s modulus. After retraction of the punch, inter-
actions between the tools and the sheets are disabled. Simulating the lap shear test, the
die-faced sheet is fixed, and the punch-faced sheet is displaced by 0.7 mm over 22 s in a
smooth curve.

The sheets aluminum material is EN AW-6014 [15], and the tool steel is the X 155 CrVMo
12 1 [19] (used in the reference model), which is a common tool steel for punches and
dies [19]. Both materials are modeled as elasto-plastic materials. In order to avoid excessive
element distortion during the virtual clinching process, Arbitrary Lagrangian–Eulerian
(ALE) adaptive mesh is assigned to the highly deformed domain of the sheet meshes (cf.
Figure 3a, light gray area). A remeshing frequency of 25, and three remeshing sweeps are
chosen. The 3D model consists of 195,000 elements including 170,000 linear hexahedral
elements with reduced integration (C3D8R) in the two sheets.

The interactions between the solids are defined as surface-to-surface contacts with
a kinematic contact method. Only the contact between the blank holder tip and up-
per sheet is constrained with the penalty contact method. Coulomb’s friction model is
used, but the kinetic friction coefficient is considered negligibly low because the tool
surfaces are polished. The maximum shear stress from which slipping occurs is esti-
mated with τmax = σyield/

√
3 [20]. Using the lower yield strength of the aluminum sheet

σyield = 100 MPa, a maximum shear stress of τmax= 58 MPa is calculated.
As described in ref. [21], the literature data for aluminum pairings deviate strongly.

Hence, the static friction coefficients are determined iteratively to fit the model to the
characteristic dimensions given in ref. [15]. Thus, a friction coefficient of 0.1 between the
tools and the sheet and a friction coefficient of 0.15 between the sheets is applied.

3. Results

3.1. Numerical Model Validation

For validation of the clinching model, the results of the simulation and of [15] are
compared in Table 3. It shows that the simulation and the experiment agree well concerning
the maximum clinching force and the characteristic dimensions. During simulation, the
kinetic to internal energy ratio remains below 0.1%, justifying the artificial mass scaling.

Table 3. Results of the numerical analyses compared to the force and microsection measurement in ref. [12] (five specimens,

no measurement uncertainty given).

Measurement Method
Max. Clinching Force

(N)
Bottom Thickness

(mm)
Undercut (mm)

Neck Thickness
(mm)

Microsection measurement [12] 3.25 × 104–3.35 × 104 0.67–0.72 0.25–0.31 0.45–0.52

Reference model 3.20 × 104 0.68 0.31 0.43

Auxiliary model 3.09 × 104 0.68 0.30 0.44

3D model 3.12 × 104 0.68 0.28 0.45
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3.2. Influence of the Radiopaque Materials

The influence of the copper spray on the detectability of the interface can be seen
in Figure 5. Only the specimen with both sheets treated show an almost consistent layer
of copper spray (cf. Figure 5c). The characteristic dimensions of the non-treated and
treated specimens measured in CT are summarized in Table 4. In the CT measurement,
two specimens were investigated each at five locations. Here, no noticeable influence of
the interlayer on the characteristic dimensions can be detected. However, the measurement
of the undercut and the neck thickness is still accompanied with higher uncertainties for
the specimen treated only on one sheet due to the poorly visible interface (cf. Figure 5b).

 

Figure 5. Half CT image of the specimens with copper spray applied to neither of the sheets (a), to one sheet (b) and to both

sheets (c).

Table 4. The results of the CT measurement of differently treated specimens.

Copper Spray
Treatment

Bottom Thickness
(mm)

Undercut (mm)
Neck Thickness

(mm)

Not treated 0.65 unidentifiable unidentifiable
One sheet treated 0.64 0.23–0.33 0.45–0.50
Both sheet treated 0.64 0.23–0.27 0.45–0.49

The results of the in situ CT lap shear tests show that there is displacement accompa-
nied with low forces at the beginning of the test (cf. Figure 6). This is due to alignment and
setting effects in the clamps and the adapters of the tensile testing machine. As these effects
have largely faded at 200 N (cf. Figure 6), the lap shear results of the numerical and the in
situ investigation are shifted toward this baseline value. Additionally, the displacement
due to the machine rigidity of the tensile testing machine is removed via preliminary
calibration tests. In the diagram, a drop of the force at the nine displacement steps is clearly
visible, which is caused by relaxation effects in the test set-up.

Comparing the results of the lap shear tests of the non-treated and treated specimens,
no clear influence of the radiopaque material can be seen (cf. Figure 7).

As only the specimen with both sheets treated provides a sufficient sheet–sheet inter-
face detectability (cf. Figure 5), specimen A01_A_CV_018 is used for the comparison with
the numerical model. In Figure 8, the reconstructed cross-sections (top) of the in situ CT
lap shear test (both sheets treated) are compared with the simulation results (bottom) at the
investigated displacements. At the beginning of the investigation, the punch sided sheet
lifts from the other sheet, resulting in an increasing gap between both sheets. During this
movement, both sheets interact in the neck area, and the punch-sided sheet slides in the
z-direction, leading to unbuttoning. It also can be observed that the straight contour of the
indention of the punch-faced sheet increasingly deforms to an S-shaped curve. As a result
of the radiopaque layer, the sheet–sheet interface remains visible throughout the whole
investigated process. Thus, the deformation in the clinch point, especially the thinning
of the neck, can clearly be identified. Furthermore, it can be stated that the in situ CT
reconstructions show good agreement with the numerical results.
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Figure 6. The results of the lap shear tests. The baseline value 200 N is marked with a dotted line.

 

Figure 7. The results of the lap shear tests using specimens with one sheet treated (dash-dot line), with both sheets treated

(continuous line) and without treatment (dotted line).

 

Figure 8. Comparison of (a) the cross-section of the in situ CT lap shear test (both sheets treated) with (b) the simulation at

the investigated displacements (in mm).
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The corresponding force–displacement curves are displayed in Figure 9a. They show a
good qualitative agreement with the experiment. Comparing the cross-section of the in situ
CT result and the simulation in detail in Figure 9b shows that the geometrical characteristics
during unbottening also align well in the simulation and experiment. However, the stiffness
of the specimen in the simulation seems to be slightly higher than in the simulation, and
the predictability below 0.2 mm needs to be improved.

 

Figure 9. Comparison of the force–displacement curve of the in situ CT lap shear test (using a specimen with both sheets

treated) with the simulation at the investigated displacements (in mm) (a). The comparison of the cross-section of the in situ

CT lap shear test (both sheets treated) with the simulation at 0.66 mm displacement in detail (b).

4. Discussions

In the center of the investigations stands the in situ CT lap shear test of the clinched
EN AW-6014 specimen. In addition to principle feasibility, a new method was tested to
make the interface between both sheets in the joining zone more visible. While other work
concentrates on the dark field imaging method [22] to enhance the contrast between differ-
ent volumes, in the current work, a thin interlayer is introduced prior to joining. Although
this concept was already tested in ref. [14] by using barium iodide or tin interlayers, it
could be improved significantly. It shows that the major drawbacks of tin foils (folding
and strong artefacts) as well as barium iodide solution treatment (low visibility) can be
compensated by a double application of copper spray.

However, the introduction of an additional interlayer changes the tribological system
in the joining zone. This harbors the danger that the joining process is significantly
influenced by the radiopaque interlayer and the resulting characteristic geometry differs
from untreated joints. Hence, the characteristic values of treated specimen are compared
with the results of other research groups. In Table 3 (line 1), the microsection measurements
from ref. [15] are given. They used the same clinching setup and material configuration
such as the present study. The measured undercut, bottom, and neck thickness values
of treated specimens in Table 4 (lines 2 and 3) show a very good agreement with the
non-treated microsection results. This can be seen as a first quantitative confirmation of the
approach. Further studies could be performed to clear the slight differences for the bottom
thickness between CT and microsectioning.

The numerical model was set up following technics used in previous publications.
The tools were designed as rigid solids agreeing with ref. [17] and ref. [18]. Additionally,
an elasto-plastic material, mesh adaption, and Coulomb friction were modeled, which is
a common method according to ref. [16]. Finally, the results of the numerical clinching
investigation agree well with [15]. Concerning the lap shear simulation, the holding of the
constant displacement of the specimen and consequently the drop of force is not considered
due to the complex and unknown setting effects in the test set-up. Neglecting the kinetic
friction and estimating the maximum shear stress is a first approach to model the clinching
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process and the lap shear test. However, describing the model with empirical data can
enhance the quality of the numerical results.

To the best of the authors’ knowledge, there has been no publication about investiga-
tions of lap shear tests of clinch points in in situ CT. The results show the potential of an in
situ investigation of joining processes using CT. However, in order to increase the relevance
of the method, a better CT image quality is necessary. This could be achieved by increasing
the magnification and reducing the noise level. The former can be realized by decreasing
the distance between the X-ray source and specimen, which would require a specimen
extension to a length of 210 mm. The latter can be achieved by reducing the specimen
width so that less acceleration voltage is needed to penetrate the specimen. Furthermore,
noise can be reduced by frame averaging.

The observed relaxation phenomenon, resulting in the drop of force before each CT-
scan, is an inherent limitation of this method. Nevertheless, given that the force drop is
limited, it can be expected that most of the elastic effects can be detected with this method.
A quantitative comparison with classic ex situ measurements should be investigated further
in the future.

5. Conclusions

In this paper, a lap shear test of clinched metal sheets is conducted using in situ CT. In
order to support the detectability of the sheet–sheet interface, the specimens are treated with
a copper spray in varying intensities. Furthermore, an FE model is set up to demonstrate
the potential for the validation of numerical simulations by in situ measurements in the
field of joining. Moreover, the deformation characteristics in the specimen measured with
the new method are analyzed.

The results show that a lap shear test of a clinched specimen can successfully be
conducted in in situ CT. By application of copper spray as a radiopaque layer, the visibility
of the sheet–sheet interface is enhanced significantly, making the deformation process well
traceable. The results of the lap shear test and of the numerical investigation agree well
qualitatively. Improving the quantitative agreement should be the focus of future work.
Here, the experimentally observed setting effects could be reduced by applying higher
initial force. Furthermore, the displacement could be measured directly on the specimen
using markers that are visible in the CT image.

Above that, the influence of the copper spray on the material flow in the clinching
process and the testing needs to be investigated more accurately. The shearing between
the sheets led to an insufficient copper varnish layer in the clinch point bottom. Therefore,
a more intense treatment in this area should be investigated. Furthermore, systematic
studies on the influence of the interface layer should be conducted with a higher amount
of specimens.
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18. Kaščák, L.; Mucha, J.; Spišák, E.; Kubík, R. Wear Study of Mechanical Clinching Dies During Joining of Advanced High-Strength

Steel Sheets. Strength Mater. 2017, 49, 726–737. [CrossRef]

19. Knörr, M. Auslegung von Massivumformwerkzeugen Gegen Versagen Durch Ermüdung; Springer: Berlin/Heidelberg, Germany, 1996;

ISBN 9783540615354.

20. Dassault Systémes Simulia Corp. Abaqus Users Manual 2017: Version 2017, Providence, RI. Available online: https://abaqus-

docs.mit.edu/2017/English/SIMACAEITNRefMap/simaitn-c-friction.htm (accessed on 29 May 2020).

21. Köhler, D.; Kupfer, R.; Gude, M. Clinching in in-situ CT—A numerical study on suitable tool materials. J. Adv. Join. Process. 2020,

2, 100034. [CrossRef]

22. Cong, W.; Pfeiffer, F.; Bech, M.; Bunk, O.; David, C.; Wang, G. Dark-field Tomography: Modeling and Reconstruction. 2010.

Available online: https://arxiv.org/pdf/1003.2155 (accessed on 24 March 2021).

http://doi.org/10.1007/s00170-014-6362-x
http://doi.org/10.1016/j.ijfatigue.2012.01.006
http://doi.org/10.1617/s11527-014-0519-9
http://doi.org/10.1016/j.compscitech.2015.01.020
http://doi.org/10.1016/j.biomaterials.2007.01.046
http://www.ncbi.nlm.nih.gov/pubmed/17335896
http://doi.org/10.4028/www.scientific.net/KEM.554-557.1045
http://doi.org/10.1016/j.procir.2014.04.008
http://doi.org/10.1080/00218464.2015.1113526
http://doi.org/10.1007/s11340-017-0312-0
http://doi.org/10.1016/j.jajp.2020.100038
http://doi.org/10.1007/s00170-015-7781-z
http://doi.org/10.1007/s11223-017-9892-2
http://doi.org/10.1007/s11223-017-9918-9
https://abaqus-docs.mit.edu/2017/English/SIMACAEITNRefMap/simaitn-c-friction.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEITNRefMap/simaitn-c-friction.htm
http://doi.org/10.1016/j.jajp.2020.100034
https://arxiv.org/pdf/1003.2155

	Introduction 
	Materials and Methods 
	In Situ Lap Shear Test 
	Enhancing the Detectability of the Sheet–Sheet Interface Using Radiopaque Materials 
	Numerical Model 

	Results 
	Numerical Model Validation 
	Influence of the Radiopaque Materials 

	Discussions 
	Conclusions 
	References

