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In situ construction of heterostructured bimetallic sulfide/phosphide with
rich interfaces for high-performance aqueous Zn-ion batteries

Fang Yang1, Yuenian Shen2, Ze Cen1, Jie Wan1, Shijie Li3*, Guanjie He4, Junqing Hu2,5 and Kaibing Xu2*

ABSTRACT It is still challenging to develop suitable cathode
structures for high-rate and stable aqueous Zn-ion batteries.
Herein, a phosphating-assisted interfacial engineering strat-
egy is designed for the controllable conversion of NiCo2S4

nanosheets into heterostructured NiCoP/NiCo2S4 as the
cathodes in aqueous Zn-ion batteries. The multicomponent
heterostructures with rich interfaces can not only improve the
electrical conductivity but also enhance the diffusion pathways
for Zn-ion storage. As expected, the NiCoP/NiCo2S4 electrode
has high performance with a large specific capacity of
251.1mAh g−1 at a high current density of 10A g−1 and ex-
cellent rate capability (retaining about 76% even at 50A g−1).
Accordingly, the Zn-ion battery using NiCoP/NiCo2S4 as the
cathode delivers a high specific capacity (265.1mAh g−1 at
5A g−1), a long-term cycling stability (96.9% retention after
5000 cycles), and a competitive energy density (444.7Whkg−1

at the power density of 8.4 kWkg−1). This work therefore
provides a simple phosphating-assisted interfacial engineering
strategy to construct heterostructured electrode materials with
rich interfaces for the development of high-performance en-
ergy storage devices in the future.

Keywords: phosphating, heterostructure, NiCoP/NiCo2S4, Zn-
ion batteries, high capacity

INTRODUCTION
To alleviate the excessive consumption of traditional fossil fuels
and increasing environmental pollution issues, it is particularly
urgent and important to develop high-efficiency and clean
energy storage devices. Typically, lithium (Li)-ion batteries have
been widely used in a variety of energy storage systems, such as
portable electronics, electric vehicles, and grid-scale energy-
storage systems [1]. However, the large-scale application of Li-
ion batteries is still a huge challenge because of limited lithium
resources and toxic organic electrolytes [2–5]. Recently,
researchers have focused on the exploration of high-perfor-
mance aqueous rechargeable batteries with low cost and reliable
safety [6–10]. Among various rechargeable batteries, aqueous
Zn-ion batteries are emerging as one of the most competitive
candidates to replace Li-ion batteries by virtue of the high the-

oretical capacity of the zinc anode (820mAh g−1), high working
voltage (~1.8 V), as well as its low cost and low toxicity [11–20].
However, the unsatisfactory energy/power density and poor
cycling stability severely limit their practical application.
Designing and constructing highly active cathode materials has
been demonstrated as a promising strategy to improve the
performance of Zn-ion batteries.
Transition metal sulfides have been extensively investigated as

electrode materials due to their higher electronic conductivity
and better reversible electrochemical properties than those of
their oxide counterparts [21–24]. Especially, NiCo2S4 electrode
materials have been proved to have better electronic con-
ductivities of about 100 times higher than that of NiCo2O4

[21,25]. In addition, compared with its corresponding single-
component sulphides (NiSx and CoSx), NiCo2S4 has significantly
richer redox reactions because of multiple available oxidation
states and faster electron transfer properties [26,27]. For
instance, Han et al. [28] developed sulfur-deficient NiCo2S4−x
nanotube arrays on carbon cloth as an effective cathode material
for flexible Zn batteries, which delivered a high capacity of
298.3mAh g−1 at 0.5 A g−1 and superior rate capability. On the
other hand, transition metal phosphides have attracted extensive
research interest due to their unique electronic structure and
high thermal/chemical stability, which show high electrocatalytic
activity/durability and good conductivity [29–33]. For example,
Zhang et al. [34] developed ultrafine and highly active bimetallic
CoxNi1−xP nanoparticles loaded on carbon nanofibers, exhibiting
an extraordinary specific capacitance of 3514 F g−1 at 5 A g−1.
Therefore, the in-situ construction of metal phosphides based on
metal sulfides can effectively realize the coupling of their
respective advantages. Furthermore, constructing novel multi-
component heterostructures with metal sulfides and phosphides
is emerging as an effective strategy to generate abundant inter-
faces for fast charge transfer and to improve the number of
highly exposed active sites for redox reactions, showing great
application potential.
In this study, we developed a controllable route to fabricate

heterostructured NiCoP/NiCo2S4 nanosheet arrays on carbon
cloth as electrode, which showed the strong synergistic effect
and rich interfaces between NiCoP and NiCo2S4, and delivered a
high specific capacity of 251.1mAh g−1 at a high current density
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of 10A g−1 and excellent rate capability. The aqueous Zn-ion
battery based on NiCoP/NiCo2S4 (NiCoP/NiCo2S4//Zn battery)
delivered a high specific capacity of 265.1mAh g−1 at 5 A g−1 and
good cycling stability (capacity retention of 96.9% after 5000
cycles). Moreover, this battery possessed a high energy density of
444.7Whkg−1 at the power density of 8.4 kWkg−1. This study
verifies that establishing transition metal sulfides and phos-
phides heterostructured materials for enhancing the energy
storage performance of aqueous Zn-ion batteries is efficient.

EXPERIMENTAL SECTION

Synthesis of NiCo2S4 nanosheet arrays

Ni(NO3)2·6H2O (1mmol), Co(NO3)2·6H2O (2mmol), and hexa-
methylenetetramine (5.7mmol) were dissolved in deionized
water (25mL) and ethanol (25mL) under vigorous stirring. The
resulting pink solution was then transferred into a 60-mL
stainless steel autoclave with a piece of pretreated carbon cloth
(1 cm × 4 cm) and sealed at 95°C for 8 h. Subsequently, the
obtained precursor on carbon cloth was annealed in air at 350°C
for 2 h, to obtain NiCo2O4. Finally, the above carbon cloth was
immersed in 50mL of deionized water with 1 g of Na2S·9H2O,
and maintained at 100°C for 24 h to obtain NiCo2S4 samples.

Synthesis of NiCoP/NiCo2S4 nanosheet arrays

To fabricate the NiCoP/NiCo2S4 nanosheet arrays, the NiCo2S4
nanosheet arrays on carbon cloth were annealed under N2

atmosphere with the presence of NaH2PO2 (0.25–1 g) at 350–
450°C for 1–4 h. The mass loadings of NiCo2S4 and NiCoP/
NiCo2S4 materials were 0.60 and 0.63mg cm−2, respectively. For
comparison, the NiCo2O4 nanosheet arrays were prepared at
400°C for 2 h with 0.5 g of NaH2PO2 to obtain NiCoP nanosheet
arrays.

Materials characterization

The as-obtained materials were investigated by scanning elec-
tron microscopy (SEM; Hitachi, S-4800), transmission electron
microscopy (TEM; JEOL, JEM-2100F), X-ray diffractometer
(XRD; Rigaku, D/max-2550 PC), X-ray photoelectron spectro-
scopy (XPS; Thermo Fisher, Escalab 250Xi), and Brunauer-
Emmett-Teller analyzer (BET; Quantachrome, Autosorb-iQ).

Electrochemical measurement

The electrochemical measurements were carried out on an
electrochemical workstation (Metrohm Autolab PGSTAT302N,

the Netherlands). A three-electrode system was assembled for
the evaluation of electrochemical properties of individual elec-
trodes in 1mol L−1 KOH aqueous solution. The NiCoP/NiCo2S4
nanosheet arrays on carbon cloth were used directly as the
working electrode, with the saturated calomel electrode as a
reference and a platinum plate as the counter electrode. The
aqueous Zn-ion battery was assembled using NiCoP/NiCo2S4
materials as the cathode and a piece of commercial Zn plate as
the anode with the mixed solution of 1mol L−1 KOH and
0.01mol L−1 Zn(CH3COO)2 as the electrolyte, and the two-
electrode configuration was constructed to assess the electro-
chemical performance of the as-fabricated batteries.

RESULTS AND DISCUSSION
Fig. 1 schematically illustrates the entire preparation procedure
of heterostructured NiCoP/NiCo2S4 nanosheet arrays on carbon
cloth. First, NiCo2O4 nanosheets are directly grown on the bare
carbon cloth through a facile hydrothermal reaction, and cal-
cined under air atmosphere to improve their crystallinity. After
that, hydrothermal reaction is again employed to realize the
phase transformation between NiCo2O4 and NiCo2S4 by using
Na2S·9H2O as the sulfur source, where all the O2− is exchanged
into S2− via the Kirkendall effect. Finally, to accomplish the
interfacial engineering of NiCo2S4, phosphate treatment is con-
ducted with NaH2PO2 as the phosphorus source. During this
process, newly formed NiCoP nanoparticles are embedded into
NiCo2S4 nanosheets, generating an updated heterostructured
nanostructure with rich interfaces due to the higher electro-
negativity of P than those of Ni and Co [35]. The NiCoP/
NiCo2S4 electrode prepared at 400°C for 2 h with 0.5 g of
NaH2PO2 is discussed in the following sections, unless otherwise
stated, as it shows the highest specific capacities.
The micromorphology of the NiCo2S4 nanosheets on carbon

cloth was preliminarily investigated by SEM and TEM (Fig. 2).
The SEM images (Fig. 2a, b) show that the NiCo2S4 nanosheets
derived from NiCo2O4 nanosheets (Fig. S1) remain uniformly
supported on the carbon cloth, and these nanosheets are inter-
connected to each other. In Fig. 2c, the TEM image of the
NiCo2S4 nanosheet shows numerous small pores uniformly
distributed throughout the surface. The high-resolution TEM
image (HRTEM) characterization clearly displays the lattice
fringe with an interplanar distance of 0.332 nm, well corre-
sponding to the (220) plane of NiCo2S4 (Fig. 2d). Furthermore,
the energy dispersive X-ray spectroscopy (EDS) element map-
ping images (Fig. 2e) show the even distribution of Ni, Co and S

Figure 1 Schematic illustration of the heterostructured NiCoP/NiCo2S4 nanosheet arrays supported on carbon cloth.
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elements in the NiCo2S4 nanosheet.
According to the SEM images of Fig. 3a, b, the densely packed

and highly ordered NiCoP/NiCo2S4 nanosheet arrays are uni-
formly grown on the carbon cloth surface, and these nanosheets
are interconnected to each other with plenty of spaces, which are
beneficial to the charge transportation and ion diffusion, thus
enhancing the specific capacity. Compared with NiCo2S4
nanosheets, the surface of the NiCoP/NiCo2S4 nanosheets
becomes much rougher after phosphating treatment due to the

formation of NiCoP nanoparticles. Moreover, the effects of
phosphating conditions on the morphology of the NiCoP/
NiCo2S4 materials were also systematically investigated by
adjusting the treatment temperature, the reaction time and the
mass of NaH2PO2. As shown in Fig. S2, with the increase of
temperature, time and amount of the P source, more NiCoP
nanoparticles are generated on the NiCo2S4 nanosheets. Addi-
tionally, the BET surface areas were also tested (Fig. S3). The
specific area of NiCoP/NiCo2S4 is 26.2m2 g−1, while that of
NiCo2S4 is 27.3m

2 g−1. The decrease in specific surface area may
be caused by the newly formed NiCoP nanoparticles plugging
the pores in the NiCo2S4 nanosheets. The formation of hetero-
structured NiCoP/NiCo2S4 nanosheets was further confirmed by
TEM. As shown in Fig. 3c, NiCoP nanoparticles are distributed
on the surface of the NiCo2S4 nanosheets, which is consistent
with the result from SEM analysis. Fig. 3d shows the HRTEM of
the NiCoP/NiCo2S4 nanosheet, and the obvious lattice fringes
spaced at 0.332 and 0.335 nm, correspond well to the (220) plane
of NiCo2S4 and (001) plane of NiCoP. The EDS mapping images
(Fig. 3e) further confirm that the Ni, Co, S and P elements are
uniformly distributed throughout the NiCoP/NiCo2S4 nano-
sheet.
The phase of the as-prepared materials was firstly acquired

through the analysis of XRD data. As shown in Fig. 4a, the XRD
pattern of NiCoP/NiCo2S4 displays well-defined diffraction
peaks, which well match with the standard XRD patterns of
NiCo2S4 (JCPDS No. 73-1704) and NiCoP (JCPDS No. 71-2336),
confirming the coexistence of NiCoP and NiCo2S4 after phos-
phating treatment without any residues or contaminants.
Moreover, XPS was further performed to investigate the ele-
mental compositions and valence states of NiCoP/NiCo2S4. As
shown in Fig. S4a, there is an extra P signal in the NiCoP/
NiCo2S4 sample compared with the original NiCo2S4 sample. In
the Ni 2p region (Fig. 4b), the spin orbitals located at 875.4 and
857.4 eV indicate the presence of Ni3+, while the other two peaks
centered at 871.1 and 853.8 eV prove the existence of Ni2+

[36,37]. In the case of the Co 2p spectrum (Fig. 4c), two strong
peaks located at the binding energy of 798.5 and 782.6 eV con-
firm the presence of Co2+, and the other two peaks at 794.0 and
779.1 eV prove the existence of Co3+ [38,39]. Therefore, the
chemical composition of the as-prepared materials contain the
cations of Ni2+, Ni3+, Co2+ and Co3+. As for the S 2p spectrum
(Fig. 4d), apart from the shake-up satellite peak at 169.3 eV, two
peaks are located at 163.0 eV for S 2p1/2 and 161.8 eV for S 2p3/2,
corresponding to the metal-sulfur (M–S) bonds in the samples
[40,41]. In the P 2p region (Fig. 4e), the dominant peak located
at 134.3 eV indicates that P exists mainly in the form of phos-
phate ions. And two peaks at 130.6 and 129.4 eV correspond to P
2p1/2 and P 2p3/2 spin orbitals [42,43], corresponding to metal
phosphides. On the other hand, there is no signal in the P 2p
region for pure NiCo2S4 sample. These results suggest that
the heterostructured NiCoP/NiCo2S4 electrodes have been suc-
cessfully prepared through the phosphate treatment with the
NaH2PO2 as the phosphorus source.
The electrochemical performances of the as-prepared samples

were evaluated on the three-electrode system with 1mol L−1

KOH as the electrolyte. Fig. 5a shows the comparison cyclic
voltammetry (CV) curves of the NiCo2O4, NiCo2S4, NiCoP and
NiCoP/NiCo2S4 electrodes at the same scan rate of 10mV s−1.
The current density and integral area of NiCoP/NiCo2S4 are
much higher than that of the NiCo2O4, NiCo2S4, and NiCoP

Figure 2 (a, b) SEM, (c) TEM, (d) HRTEM, and (e) elemental mapping
images of the NiCo2S4 nanosheets.

Figure 3 (a, b) SEM, (c) TEM, (d) HRTEM, and (e) the corresponding
elemental mapping images of the NiCoP/NiCo2S4 nanosheets.
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Figure 4 (a) XRD patterns of NiCo2O4, NiCo2S4 and NiCoP/NiCo2S4. (b) Ni 2p, (c) Co 2p, (d) S 2p and (e) P 2p core-level XPS spectra of NiCo2S4 and
NiCoP/NiCo2S4.

Figure 5 Comparison of (a) CV and (d) discharge curves of the NiCo2O4, NiCo2S4, NiCoP and NiCoP/NiCo2S4 electrodes. (b) CV and (e) discharge curves
of the NiCoP/NiCo2S4 electrode. (c) Variation in the redox peak currents with the square root of the scan rates of the NiCoP/NiCo2S4 electrode. (f) Specific
capacities versus current densities of the NiCo2O4, NiCo2S4, NiCoP and NiCoP/NiCo2S4 electrodes. Specific capacities of the NiCoP/NiCo2S4 electrodes as a
function of (g) phosphating temperature, (h) reaction time and (i) mass of NaH2PO2.
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electrodes, suggesting the enhanced specific capacity and faster
redox reaction kinetics. As the scan rate increases from 10 to
30mV s−1, the CV curves of NiCoP/NiCo2S4 electrode remain
symmetric redox peaks (Fig. 5b), indicating the great reversi-
bility of redox reactions. As shown in Fig. 5c, there is a near
linear relationship between peak currents and the square root of
scan rates, demonstrating that the redox reactions for the
NiCoP/NiCo2S4 electrode are diffusion-controlled [3,36]. The
improved specific capacity can also be achieved by analyzing the
discharge curves, as depicted in Fig. 5d, where the discharge
plateau of the NiCoP/NiCo2S4 electrode is much longer than
others at the same current density of 10A g−1. Additionally, in
contrast to the NiCo2O4, NiCo2S4, and NiCoP electrodes, the
discharge curves of the heterostructured NiCoP/NiCo2S4 remain
steady discharge plateau as the current densities increase from
10 to 50A g−1, indicating the good rate performance (Fig. 5e and
Fig. S5). The highest specific capacity obtained for the NiCoP/
NiCo2S4 electrode is 251.1mAh g−1 at a high current density of
10A g−1 (Fig. 5f), which is higher than that of NiCo2O4

(76.9mAh g−1), NiCo2S4 (154.2mAh g−1) and NiCoP
(180.0mAh g−1). Importantly, the NiCoP/NiCo2S4 electrode
exhibits exceptional capacitive retention at a high current den-
sity. Even after increasing the current density to 50A g−1, the
NiCoP/NiCo2S4 electrode shows a capacity of 190.3mAh g−1,
which is about 76% retention of that at 10A g−1. The specific
capacity of NiCoP/NiCo2S4 is close or even superior to many
similar materials, such as Co3S4 (234.0mAh g−1 at 8A g−1) [8], R-
Co3O4 (212.6mAh g−1 at 2mA cm−2) [18], Ni3S2@PANI
(247.6mAh g−1 at 11.4A g−1) [44], and NiCo2O4 (183.1mAh g−1

at 1.6 A g−1) [45]. Fig. 5g–i, Figs S6 and S7 show the electro-
chemical performances of the NiCoP/NiCo2S4 electrode under
different phosphating conditions. It is clear that the optimal
condition for the NiCoP/NiCo2S4 electrode is 400°C for 2 h with
0.5 g of NaH2PO2, which presents the highest specific capacity.
The outstanding specific capacity and high rate capability of

the heterostructured NiCoP/NiCo2S4 electrode render it a great
potential as the cathode in aqueous Zn-ion battery. An aqueous

Zn-ion battery was assembled by using the NiCoP/NiCo2S4
electrode as the cathode and Zn plate as the anode with the
mixed solution of 1mol L−1 KOH and 0.01mol L−1 Zn(CH3-
COO)2 as the electrolyte. The NiCoP/NiCo2S4 reacts with OH−

on the cathode, while reversible Zn(OH)2−/Zn0 stripping/plating
occurs on the anode (Fig. 6a). Fig. 6b displays the CV curves of
the NiCoP/NiCo2S4//Zn battery at various scan rates. Well-
defined symmetric redox peaks can still be observed even at a
high scan rate of 60mV s−1, revealing the highly reversible redox
reaction. As shown in the charge-discharge curves of Fig. 6c, the
discharge plateau of the NiCoP/NiCo2S4//Zn battery is
approximately at 1.7 V. Additionally, the NiCoP/NiCo2S4//Zn
battery shows better performances than the NiCo2S4//Zn battery
(Fig. S8). Particularly, the NiCoP/NiCo2S4//Zn battery exhibits
much higher specific capacity than the NiCo2S4//Zn battery,
which is clearly demonstrated by comparing the CV and dis-
charge curves (Fig. S9). Notably, the NiCoP/NiCo2S4//Zn battery
yields an incredibly high specific capacity of 265.1mAh g−1 at a
high current density of 5A g−1 (Fig. 6d), which is substantially
higher than that of the NiCo2S4//Zn battery (144.3mAh g−1) and
most reported Zn-ion batteries, such as Ni(OH)2/CNFs//Zn
(184mAh g−1 at 5mA cm−2) [46], Co3O4//Zn (162mAh g−1 at
1A g−1) [47], Ni3S2//Zn (148mAh g−1 at 0.2 A g−1) [48], NiO//
ZnO (203mAh g−1 at 0.5mA cm−2) [14], NiCo2O4//Zn
(183.1mAh g−1 at 1.6 A g−1) [45], Zn//R-Co3O4 (240.8mAh g−1 at
2mA cm−2) [18]. The NiCoP/NiCo2S4//Zn battery possesses a
specific capacity of 139.7mAh g−1 with ~53% capacity retention
at 10A g−1, indicating its excellent rate capability. The high rate
capability of the NiCoP/NiCo2S4//Zn battery was further
demonstrated in Fig. 6e, where the current density increased
from 5 to 10A g−1 and returned to 5A g−1. The NiCoP/NiCo2S4//
Zn battery delivers an average capacity of 264.9, 242.1, 206.2,
175.8, 155.2, and 139.7mAh g−1 at 5, 6, 7, 8, 9, 10A g−1,
respectively. When the current density is reduced back to 5A g−1

after 50 cycles, the average capacity of 274.4mAh g−1 is recov-
ered, revealing excellent rate performance. Fig. 6f shows the
long-term cycling performance of the NiCoP/NiCo2S4//Zn bat-

Figure 6 (a) Schematic diagram of the reaction mechanism of the NiCoP/NiCo2S4//Zn battery. (b) CV and (c) charge-discharge curves of the NiCoP/
NiCo2S4//Zn battery. (d) Specific capacities versus current densities and (e) rate performances of the NiCo2S4//Zn and NiCoP/NiCo2S4//Zn batteries.
(f) Cycling test of the NiCoP/NiCo2S4//Zn battery and the SEM image of the NiCoP/NiCo2S4 cathode after 5000 cycles (inset).
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tery collected at a high scan rate of 100mV s−1. The NiCoP/
NiCo2S4//Zn battery maintains 96.9% of the initial capacity after
5000 cycles. The NiCoP/NiCo2S4 nanosheet arrays are well-
reserved (inset in Fig. 6f), further demonstrating the excellent
cycling performance.
Energy density and power density are two important para-

meters to estimate the practicability of energy storage devices.
Fig. 7 shows the Ragone plots of the as-assembled NiCo2S4//Zn
battery and NiCoP/NiCo2S4//Zn battery. It can be observed that
the NiCoP/NiCo2S4//Zn battery delivers a maximum energy
density of 444.7Whkg−1 at the power density of 8.4 kWkg−1.
When the power density is increased to 16.3 kWkg−1, the energy
density still remains 228.2Wh kg−1. While the NiCo2S4//Zn
battery only delivers a maximum energy density of
240.5Whkg−1 at the power density of 8.3 kWkg−1. The energy
density of the obtained NiCoP/NiCo2S4//Zn battery is close to or
even higher than those of some aqueous Zn-ion batteries
reported previously, such as NiO//ZnO (355.7Wh kg−1 at
17.9 kWkg−1) [14], Ni2P//Zn (318.0Wh kg−1 at 1.4 kWkg−1)
[49], Ni3S2//Zn (419.6Whkg−1 at 1.8 kW kg−1) [48], Ni3S2@
PANI//Zn (386.7Whkg−1 at 3.9 kWkg−1) [44], Co3O4//Zn
(241.0Whkg−1 at 1.5 kWkg−1) [47], Co3O4@NiO//Zn
(215.5Whkg−1 at 3.5 kWkg−1) [50], NiCo2O4//Zn
(210.7Whkg−1 at 19.5 kWkg−1) [45], and Co-Ni(OH)2//Zn
(138.0Whkg−1 at 1.7 kWkg−1) [51]. The inset of Fig. 7 shows
that two as-fabricated batteries connected in series can effec-
tively power heart-shaped light-emitting diodes (LEDs) indica-
tors, demonstrating the great promise for potential practical
utilization.

CONCLUSION
In summary, we report the synthesis of heterostructured NiCoP/
NiCo2S4 nanosheet arrays on carbon cloth through treating
NiCo2S4 nanosheet arrays in the presence of P source, and
demonstrate its excellent property as the electrode material in
aqueous Zn-ion batteries. The high electrochemical activity
between NiCoP and NiCo2S4 enables fast electron transport and
rapid ion diffusion. As a result, the NiCoP/NiCo2S4 electrode
shows a large specific capacity of 251.1mAh g−1 at a high current
density of 10A g−1 and satisfactory rate capability (retaining

about 76% even at 50A g−1). Furthermore, the assembled NiCoP/
NiCo2S4//Zn battery delivers a high specific capacity of
265.1mAh g−1 at 5 A g−1, excellent cycling stability with 96.9%
retention after 5000 cycles, as well as a competitive energy
density of 444.7Whkg−1 at the power density of 8.4 kWkg−1.
The successful construction of aqueous Zn-ion batteries by
interfacial engineering of electrode materials sheds light on the
exploration of high-performance energy storage devices in the
future.
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原位构筑富异质结界面的双金属硫/磷化合物提升水
系锌电池性能
杨方1, 沈越年2, 岑泽1, 万杰1, 李世杰3*, 何冠杰4, 胡俊青2,5,
徐开兵2*

摘要 目前开发高倍率和稳定的水系锌离子电池电极材料仍然是一个
挑战. 本研究提出了一种磷化辅助界面工程策略, 将NiCo2S4纳米片可
控转化为NiCoP/NiCo2S4异质结构作为水系锌离子电池电极材料. 具有
丰富界面的多组分异质结构不仅提高了电极材料的电导率, 而且增强
了锌离子的扩散路径. 和预期结果一样, NiCoP/NiCo2S4电极材料在
10 A g−1的电流密度下其容量高达251.1 mA h g−1, 且具有优异的倍率性
能(电流密度高达50 A g−1时, 其容量保持约为76%). 此外, 以NiCoP/

NiCo2S4为正极组装的锌离子电池也展现了优异的比容量(在5 A g−1的
电流密度下高达265.1 mA h g−1),长循环稳定性(经过5000圈循环后比容
量保持率为96.9%)和高能量密度(在8.4 kW kg−1的功率密度下高达
444.7W h kg−1). 因此, 本研究为构建具有丰富界面的异质结电极材料
提供了一种简单的磷化辅助界面工程策略, 为未来开发高性能储能器
件提供了理论基础.
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