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Abstract: The development of novel catalysts for degrading organic contaminants in water is a
current hot topic in photocatalysis research for environmental protection. In this study, C3N5

nanosheet/Ag2CO3 nanocomposites (CNAC-X) were used as efficient photocatalysts for the visible-
light-driven degradation of methylene blue (MB), and tetracycline hydrochloride (TC-HCl) was
synthesized for the first time using a simple thermal oxidative exfoliation and in situ deposition
method. Due to the synergistic effect of nanosheet structures, carbon defects, and Z-scheme hetero-
junctions, CNAC-10 exhibited the highest photocatalytic activity, with photodegradation efficiencies
of 96.5% and 97.6% for MB (60 mg/L) and TC-HCl (50 mg/L) within 90 and 100 min, respectively. The
radical trapping experiments showed that ·O2

− and h+ played major roles in the photocatalytic effect
of the CNAC-10 system. Furthermore, intermediates in the photodegradation of MB and TC-HCl
were investigated to determine possible mineralization pathways. The results indicated that C3N5

nanosheet/Ag2CO3 photocatalysts prepared in this work could provide an effective reference for the
treatment of organic wastewater.

Keywords: n-C3N5/Ag2CO3; photocatalysts; Z-scheme heterojunction; methylene blue; tetracycline
hydrochloride; water remediation

1. Introduction

Water pollution is a major worldwide environmental issue, and organic pollutants
such as dyes and antibiotics possess a significant impact on the environment and human
health [1,2]. According to previous reports, approximately 700,000 tons of various synthetic
dyes are released into the water environment each year [3]. Methylene blue is one of the
most common industrial azo dyes. These organic dyes and their intermediates usually
have complex and stable aromatic structures, making them difficult to be degraded natu-
rally. They are also carcinogenic and can cause a variety of dysfunctions in humans [4–6].
Tetracycline is a typical broad-spectrum antibiotic and is now widely used in the control
of bacterial infections as well as livestock breeding and agricultural production activi-
ties [1,7–10]. However, due to the characteristics of antibiotics, they are not fully utilized in
humans and animals, and a large amount of unmetabolized antibiotic residues released
has a negative impact on the ecosystem and biological health [8,9,11,12]. In order to effec-
tively eliminate organic pollutants from water, many researchers have explored a wide
range of wastewater treatment technologies, such as physical adsorption [13], microbial
degradation [14], electrochemical methods [15], and photocatalytic degradation [16,17].
However, physical adsorption only transfers organic pollutants from the aqueous phase to
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other phases without mineralizing them [18]; microbial degradation is limited by the high
chemical stability of organic matter and its strong bactericidal ability [14]; and electrochem-
ical methods can effectively mineralize organic matter but require continuous power input,
leading to increased energy consumption and costs [15].

Currently, photocatalytic degradation based on semiconductor materials has become
a promising green technology for organic removal due to its effective decomposition of
organic pollutant molecules. Compared with traditional wastewater treatment technology,
photocatalysis has the advantages of stronger degradation ability, higher mineralization
rate, no secondary pollution, more simple operation, and lower cost [19]. In photocatalytic
systems, semiconductor photocatalysts generate electron-hole pairs via electron leap under
light excitation and further produce reactive oxygen species (ROS) such as ·OH and ·O2

−

through a series of redox reactions, resulting in pollutant degradation and mineraliza-
tion [20]. Therefore, the efficiency of photocatalytic reactions to degrade pollutants is
largely determined by the performance of semiconductor catalysts containing energy band
structure and surface structure, and it is critical to select a semiconductor material with
superior photocatalytic activity [21].

Carbon nitride (CN) materials, due to their unique properties, such as low cost, metal-
free, good visible light response, as well as controllable band and surface structure, have
received significant attention [22]. Compared to g-C3N4 (Eg = 2.7 eV), widely reported
previously, g-C3N5, as a novel carbon nitride material, exhibits superior photocatalytic
activity due to more nitrogen-rich groups being introduced into triazole units. These
nitrogen-rich groups change the C/N ratio in the molecular structure and expand the
original π–π conjugation framework, resulting in a narrower optical band gap and more
abundant electron sites in g-C3N5 [23–27]. However, similarly to other single semiconduc-
tors used in photocatalysis, the application of unmodified g-C3N5 is still constrained by
factors such as the high complexation rate of photogenerated carriers and small specific sur-
face area. To address these shortcomings, many researchers have reported various g-C3N5
modification methods, such as surface structure modification [22,28], modulation of energy
band structure [29], elemental doping [25], and heterojunction construction [30,31]. Among
these modification strategies, coupling with other semiconductors to form heterojunction
can effectively improve the performance of photocatalysts [32]. In recent years, a large
number of silver-based nanomaterials, such as AgCl [33], Ag2CrO4 [34], Ag3PO4 [35], and
AgVO3 [36], have been shown to be novel photocatalysts with visible light responsiveness.
Ag2CO3 is a p-type semiconductor photocatalyst with a narrow band gap and good visible
light activity, and it has gained extensive attention for its excellent degradation performance
against organic pollutants [37]. However, silver-based nanomaterials are susceptible to
photocorrosion when exposed to visible light, which limits their catalytic performance
and stability. The CN material can be coupled with silver-based nanomaterial to form a
heterojunction structure, which not only improves the separation rate of photogenerated
carriers and further enhances the photocatalytic activity, but also effectively suppresses
the photocorrosion of silver-based nanomaterials [38]. Furthermore, the introduction of
structural defects has been proven to induce the capture of photogenerated electrons and re-
duce the complexation with holes, thus ensuring the effective separation of photogenerated
carriers [32].

To the best of our knowledge, there is no report on coupling C3N5 nanosheets with
Ag2CO3. Therefore, we report a nitrogen-rich C3N5 nanosheet/Ag2CO3 Z-scheme het-
erojunction with carbon defects prepared by thermal oxidative exfoliation and in situ
deposition. The microstructure, crystalline phase, surface chemistry, optical properties,
and electron transfer pathways of the catalysts were investigated by characterization and a
series of photodegradation experiments on MB and TC-HCl. Furthermore, radical trapping
experiments and intermediate product analysis were used to elucidate the degradation
mechanisms of MB and TC-HCl. In conclusion, the novel photocatalyst developed in
this work can generate ROS to treat organic wastewater by depending only on visible
light as the energy source. Therefore, this study is in accordance with the current concept
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of combining energy conservation and environmental management and can provide an
effective reference for water pollution control.

2. Experiment
2.1. Materials

3-amino-1,2,4-triazole (3-AT), melamine, isopropanol (IPA), p-benzoquinone (BQ),
triethanolamine (TEOA), and tetracycline hydrochloride (TC-HCl) were purchased from
Macklin (Shanghai, China). AgNO3, NaHCO3, ethanol, and methylene blue (MB) were
produced by Sinopharm chemical reagent Co., Ltd. (Shanghai, China). All reagents used
in this experiment were of analytical grade without further refinement. Ultrapure water
(18.25 mΩ/cm) was used throughout the study.

2.2. Synthesis of g-C3N4

Typically, 5 g of melamine was put into an Al2O3 crucible with a cover and then heated
to 500 ◦C for 3 h at a heating rate of 3 ◦C/min in a muffle oven. The resulting yellow sample
was ground into powder for the subsequent experiment.

2.3. Synthesis of g-C3N5

The synthesis method of g-C3N5 was based on a previous study [39]. Briefly, 5 g of
3-AT was added into an Al2O3 crucible with a half-cover state and then heated to 500 ◦C
for 3 h at a heating rate of 3 ◦C/min in a muffle oven. The resulting brown sample was
ground into powder for the subsequent experiment.

2.4. Synthesis of g-C3N5 Nanosheet (n-C3N5)

g-C3N5 with a nanosheet structure (n-C3N5) was prepared by thermal exploitation of
the g-C3N5 obtained above. Typically, 1 g of g-C3N5 was uniformly dispersed into an open
crucible to keep g-C3N5 in full contact with air. The crucible was heated in a muffle furnace
at 500 ◦C for 1 h followed by 520 ◦C for 2 h at a heating rate of 3 ◦C/min. The product was
cooled naturally in the muffle furnace, and the obtained pale-yellow powder was n-C3N5.

2.5. Synthesis of n-C3N5/Ag2CO3 Composite (CNAC)

The n-C3N5/Ag2CO3 composites with different mass ratios were produced via an
in situ chemical precipitation reaction (Figure 1). Firstly, 0.3 g of as-prepared n-C3N5
was dispersed in 100 mL of ultrapure water and continuously sonicated for 3 h to form a
suspension. Secondly, a certain amount of AgNO3 solution (0.037 g, 10 mL) was added to
the above suspension and stirred for 1 h under dark conditions to ensure the adsorption
equilibrium of Ag+ on the surface of n-C3N5. Thirdly, a NaHCO3 aqueous solution (0.018 g,
20 mL) was added dropwise to the above mixture of Ag+/n-C3N5 at a rate of 10 mL/h, and
the mixture was stirred continuously for 18 h in the dark to facilitate the growth of Ag2CO3
nanoparticles. Lastly, the resulting precipitate was collected by centrifugation, washed
three times with ultrapure water and ethanol, and dried at 60 ◦C in a vacuum oven for
12 h. The as-prepared complex was denoted as CNAC-10. For comparison, the CNAC-X
(X represents the weight percentages of Ag2CO3 in CNAC) with different mass ratios
were prepared by controlling the amount of AgNO3 and NaHCO3, referred to as CNAC-5,
CNAC-10, CNAC-15, and CNAC-20. The bare Ag2CO3 was also fabricated without the
addition of n-C3N5.
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Figure 1. Illustration of the fabrication procedure of the n-C3N5/Ag2CO3 (CNAC) composite.

2.6. Characterization

The morphology of the as-prepared samples was observed by field emission scanning
electron microscopy (SEM; Sigma 300, ZEISS, Oberkochen, Germany) with an acceleration
voltage of 3 kV. The specific surface areas were investigated using the Brunauer–Emmett–
Teller (BET) method using a nitrogen absorption analyzer (Autosorb IQ3, Quantachrome,
Boynton Beach, FL, USA). The crystal pattern information of samples was investigated by X-
ray diffraction (XRD; Smartlab SE, Rigaku, Japan) with Cu Kα radiation at 40 kV and 40 mA
(λ = 1.54 Å) at a scanning speed of 2 ◦/min. Fourier transform infrared (FT-IR) spectroscopy
(400–4000 cm−1) was performed using Vertex 70 (Bruker, Bremen, Germany). Electron
paramagnetic resonance (EPR) was measured at room temperature on an EMXplus-6/1
wave spectrometer (Bruker, Bremen, Germany). Electron spin resonance (ESR) signals
were detected with a JES FA200 spectrometer (JEOL, Tokyo, Japan). X-ray photoelectron
spectroscopy (XPS; Thermo ESCALAB 250XI, Waltham, MA, USA; Measuring voltage 16 kV;
Current 14.9 mA; Beam spot 650 µm; Charge calibration with C 1s = 284.8 eV) was used to
analyze the chemical states of photocatalysts. The Ultraviolet-visible diffuse reflectance
spectra (UV-vis DRS) were probed on a Lambda 750S spectrophotometer (PerkinElmer,
Waltham, MA, USA). Photoluminescence (PL, FLS1000, Edinburgh, UK) spectra were
measured with an excitation wavelength of 340 nm. The photodegradation pathways of MB
and TC-HCl were analyzed by Ultimate 3000 UHPLC-Q Exactive high-performance liquid
chromatography-tandem mass spectrometry (HPLC-MS, Thermo Scientific, Waltham, MA,
USA) with a C18 column (250 mm × 4.6 mm, 5 µm). Mobile phase A was 0.1% formic acid;
mobile phase B was acetonitrile. The gradient A:B = 95:5, the flow rate was 0.8 mL/min,
and the column temperature was 30 ◦C. The Mass Spectrometry Analyzer was Thermo
Scientific Q Exactive (Warping rate = 40 mL/min; Auxiliary gas rate = 10 mL/min; positive
ion 4 kV; Capillary temperature = 300 ◦C).

2.7. Photoelectrochemical Measurements

The transient photocurrent responses (I-t curves) and electrochemical impedance
spectroscopy (EIS) were performed on a CHI 760E workstation with a three-electrode
system. In the electrode model, the counter electrode is the Pt electrode, the reference
electrode is the Ag/AgCl electrode, and the working electrode is ITO conductive glass.
The test procedure of photoelectrochemistry is described as follows. In total, 10 mg of the
catalyst was dispersed in 1 mL of 0.25% Nafion solution and sonicated for 30 min to form a
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homogeneous suspension. Then, the 150 µL suspension was added dropwise on ITO glass
and dried at room temperature for photoelectricity testing.

2.8. Photocatalytic Experiments

The photocatalytic performance of the resulting photocatalysts was evaluated via
simulated visible light irradiation (λ > 400 nm) by a 300 W xenon lamp using methylene
blue (MB) and tetracycline hydrochloride (TC-HCl) as target contaminants. Firstly, 50 mg of
catalyst was added into MB (60 mg/L, 50 mL, and pH = 8.0) solution, and 20 mg of catalyst
was added into TC-HCl (50 mg/L, 50 mL, and pH = 4.8) solution. Then, the two mixtures
were sonicated for 5 min to ensure the catalyst was uniformly dispersed. The solutions
were magnetically stirred under dark conditions for 30 min to reach adsorption equilibrium
before visible light treatment. During illumination, 2 mL of the suspension was taken out
at intervals and passed through a 0.22 µm filter to remove the photocatalyst. The residual
concentrations of MB and TC-HCl in the filtrate were determined using an ultraviolet-
visible spectrophotometer (UV-2700, Shimadzu, Japan) at 664 and 357 nm, respectively.

3. Results and Discussion
3.1. Phase and Microstructure of Photocatalysts
3.1.1. SEM, EDX and BET Analysis

The structures and microscopic morphologies of bulk g-C3N5, n-C3N5, Ag2CO3,
and CNAC-10 were analyzed by field emission scanning electron microscopy (FE-SEM)
(Figure 2a–d). The morphology of pristine g-C3N5 is relatively smooth with a tightly
stacked rock-like structure, whereas n-C3N5 has a fluffy flake-like structure with a large
number of mesopores and a significant reduction in planar size, indicating a tight overall
structure of C3N5 was successfully stripped. The nanosheet-like and mesoporous structures
not only increased the specific surface area and active sites of the catalysts but also im-
proved the visible light absorption and accelerated the transfer of photogenerated charges,
thereby boosting photocatalytic activity [40]. The BET analysis further confirmed that
thermal exfoliation is an effective way to fabricate C3N5 nanosheets with a large specific
surface area. The N2 adsorption–desorption curve (Figure S1) shows that the specific
surface area of n-C3N5 increased remarkably from 10.6 m2/g to 177.9 m2/g compared with
that of g-C3N5. As for pure Ag2CO3, it can be observed that it is composed of numerous
polyhedral rod-like particles with an average size of 0.2–1 µm and a smooth surface. In
terms of CNAC-10, the Ag2CO3 nanoparticles are tightly attached to the surface of n-C3N5,
forming a heterogeneous junction structure. Meanwhile, the size of Ag2CO3 nanopar-
ticles slightly decreased, which may be due to the improving dispersion of Ag2CO3 in
the nanosheet structure of n-C3N5 [30]. The EDX pattern of CNAC-10 (Figure 2e) clearly
reveals the distribution of C, N, O, and Ag elements in the CNAC-10 composite, confirming
the formation of binary materials.

Figure 2. SEM images of (a) g-C3N5, (b) n-C3N5, (c) Ag2CO3, and (d) CNAC-10; (e) EDX mappings
of C, N, O, and Ag elements for CNAC-10.
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3.1.2. XRD Analysis

X-ray diffraction (XRD) was used to analyze the crystal pattern information of the
synthesized catalysts (Figure 3). The bulk g-C3N5 presented two distinct diffraction peaks
at 2θ = 13.5◦ and 27.5◦, corresponding to the (100) and (002) planes of the carbon nitride
material, respectively [41]. The weak peak at 13.5◦ referred to an in-plane repeating
triazole ring in the g-C3N5 structure, while the main peak at 27.5◦ was related to the
tight interlayer stacking structure of the aromatic system; these results are consistent with
previous reports [23]. Moreover, we discovered that the (002) peak of n-C3N5 shifts to 28.0◦,
corresponding to a reduction in the interlayer stacking distance in the n-C3N5 structure,
which facilitates the acceleration of photogenerated charge transfer [39]. The decrease of
the diffraction peak at 13.5◦ also confirms the successful exfoliation of the n-C3N5 interlayer
stacking structure, resulting in smaller planar size compared to g-C3N5 [28]. As for pure
Ag2CO3, all the diffraction peaks correspond to the standard monoclinic phase of Ag2CO3
(JCPDS NO. 26-0339), with sharp diffraction peaks and no other impurity peaks detected,
indicating the good crystallinity and high purity of the prepared Ag2CO3 [42]. However,
no Ag2CO3 diffraction peaks were found in CNAC-X composites, probably due to the
low content or high dispersity of Ag2CO3 particles grown in situ on the surface of n-C3N5
nanosheets, resulting in weak diffraction intensity [43,44].

Figure 3. XRD patterns of as-prepared photocatalysts.

3.1.3. FTIR and EPR Analysis

Fourier transform infrared (FT-IR) spectroscopy was used to investigate the surface
functional groups and molecular structures of the samples (Figure 4a). For g-C3N5, broad
peaks in the range of 2750 to 3500 cm−1 are attributed to residual -NH2 groups on the
catalyst surface or -OH bond stretching vibration of adsorbed water molecules [25]. The
peaks at 1639 and 1240 cm−1 are associated with the stretching vibrations of C=N and C-N
bonds, respectively [23]. The absorption peaks originating from 1300 to 1560 cm−1 are
related to the respiratory vibration of the triazine ring [39]. Additionally, the N-H bending
vibration is responsible for the peak observed between 700 and 1000 cm−1 [29]. Compared
to g-C3N5, an enhanced peak at 3164 cm−1 of the n-C3N5 nanosheet can be observed,
corresponding to the stretched vibrational absorption peak of the terminal -NH2 in the
n-C3N5 structure. In addition, the transmittance of N-H-related bands at 805 and 880 cm−1

also significantly increased, indicating that more N-H or -NH2 groups are generated in
the framework of n-C3N5, probably due to the erosion of oxygen. The high-temperature
oxidative exfoliation process could break the triazine structure of n-C3N5 and form C-
NH2 groups, producing structural defects for trapping electrons and thus improving the
separation of photogenerated carriers [45]. The results of EPR spectra (Figure 4b) provide
direct evidence for the existence of structural defects. Both g-C3N5 and n-C3N5 exhibit a
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dominant EPR signal with a g value of 2.0038, which is related to the unpaired electrons
of carbon atoms on the triazine ring [46]. Compared to g-C3N5, the EPR signal intensity
of n-C3N5 is significantly lower, suggesting that carbon vacancies were introduced into
the structure of n-C3N5, leading to a decrease in the number of unpaired electrons [45,47].
Regarding the spectrum of Ag2CO3, the absorption peaks located at 1448, 1376, 1058, 880,
and 707 cm−1 are ascribed to CO3

2− stretching vibrations in carbonates [42,43,48]. However,
the characteristic absorption peak of Ag2CO3 was not detected on the FT-IR spectra of
the CNAC-10 composites, suggesting that the characteristic peak of low content or high
dispersion of Ag2CO3 nanoparticles was covered up by the peak of n-C3N5. Additionally,
a slight decrease in the diffraction peak intensity of n-C3N5 was observed, which can be
explained by the chemical bonding interaction between n-C3N5 and Ag2CO3; therefore, the
chemical environment of n-C3N5 was changed, which was also previously reported [44,49].

Figure 4. (a) The FTIR spectra of g-C3N5, n-C3N5, Ag2CO3, and CNAC-10; (b) the EPR spectra of
g-C3N5 and n-C3N5.

3.1.4. XPS Analysis

The surface elemental composition and chemical conformation of CNAC-10 samples
were explored using XPS analysis. Figure S2 show the XPS measurement spectra of the
CNAC-10 composites, where the dominant peaks of four elements, C, N, Ag, and O, can
be clearly observed. In terms of the high-resolution XPS analysis of C 1s (Figure 5a), the
peaks at 284.4, 286.2, 287.6, 288.6, and 293.1 eV are assigned to the sp3 hybridized carbon
of the indeterminate carbon skeleton in n-C3N5, the C-NH group in the triazine structure,
the aromatic sp2 hybridized N=C–N group constituting CN structure groups, C=O bonds
in Ag2CO3 nanoparticles, and π-electron delocalization domains in C-N heterocycles,
respectively [23,25,31,50,51]. From Figure 5b, three peaks located at 398.4, 400.2, and
403.9 eV can be observed in the N 1s spectrum after deconvolution. The tertiary [N-(C)3]
and secondary (-C-N=C) nitrogen in the aromatic structure are represented by the peak
at 398.4 eV, the peak at 400.2 eV is attributed to an aliphatic C-N=N-C or residual C-NH2
group, and the weak peak at 403.9 eV is associated with π-π* bonding [23,26,30]. The Ag
3d spectrum with two peaks detected at 367.8 and 373.8 eV is ascribed to the Ag 3d5/2
and Ag 3d3/2 binding energies of Ag+, respectively (Figure 5d), indicating the presence of
Ag+ in CNAC-10 [42,48,52,53]. Additionally, as for the deconvoluted O 1s high-resolution
spectrum (Figure 5d), the center of the peak is located at about 531.1 eV, corresponding to
the C-O bond in Ag2CO3 [54]. Overall, XPS analysis confirmed the elemental chemical state
and surface properties of CNAC-10 composites, further proving the successful fabrication
of CNAC-10 samples.



Nanomaterials 2022, 12, 2701 8 of 19

Figure 5. XPS spectra of CNAC-10, (a) C 1s, (b) N 1s, (c) Ag 3d, and (d) O 1s.

3.2. Optical Properties of Photocatalysts
3.2.1. UV-vis DRS Analysis

The light absorption properties and energy band structures of g-C3N4, g-C3N5, n-
C3N5, Ag2CO3, and CNAC-10 were determined by UV-vis diffuse reflectance spectroscopy
(Figure 6a,b). The characteristic absorption peak of bare g-C3N4 is between 300–390 nm,
with an absorption edge of about 460 nm, mainly for ultraviolet light [55]. Compared with
g-C3N4, the absorption spectrum of g-C3N5 is red-shifted, and the band tail is extended
to around 620 nm, indicating that g-C3N5 can absorb a larger range of visible light, and
thus the photocatalytic activity is enhanced. The prolonged absorption edge of g-C3N5
is mainly owing to the overlap between N 2p orbitals in the aromatic system, which
extends the π-conjugated structure [23,56]. Furthermore, the absorption band tail of n-
C3N5 blue-shifted to approximately 570 nm with interlayer exfoliation. This blue-shifting
trend was attributed to the quantum confinement effect of the semiconductor, implying
the successful synthesis of n-C3N5 in a two-dimensional nanosheet structure by thermal
oxidative exfoliation [43,45,57]. The absorption band edge of pure Ag2CO3, with strong
absorption of visible light, is roughly 510 nm. After the Ag2CO3 nanoparticles were
deposited on the surface of n-C3N5, the absorption band tail of the n-C3N5/Ag2CO3
heterostructure was blue-shifted, and the band gap was widened. Subsequently, the band
gap values of g-C3N4, g-C3N5, n-C3N5, Ag2CO3, and CNAC-10 were calculated using the
Tauc Equation (1) [23]:

ahv = A(hv− Eg)n/2 (1)



Nanomaterials 2022, 12, 2701 9 of 19

where a, h, v represents the optical absorption coefficient, Planck’s constant, and optical
frequency, while A and Eg refer to the defining constant and band gap value, respectively.
The value of n is determined by the type of semiconductor leap (direct leap n = 1 and
indirect leap n = 4). According to previous reports, g-C3N4, g-C3N5, and Ag2CO3 are
indirect semiconductors, so their n values are 4 [39,54,55]. Therefore, the band gap values
of g-C3N4, g-C3N5, n-C3N5, Ag2CO3, and CNAC-10 can be calculated as 2.70, 2.00, 2.18,
2.43, and 2.34 eV, respectively.

Figure 6. (a) UV–vis DRS spectra and (b) bandgap energy of photocatalysts.

3.2.2. PL Analysis

The separation and migration efficiency of photogenerated charges have an important
effect on the photocatalytic activity of photocatalysts. Photoluminescence (PL) spectroscopy
was applied to explore the separation rate of photogenerated electron-hole pairs. Theo-
retically, photogenerated electrons tend to combine with holes under coulomb force to
generate fluorescence. Therefore, a lower fluorescence emission intensity means a higher
charge separation efficiency [58]. Previous reports showed that g-C3N4 had a high PL
intensity [1]. Figure 7a show that the prepared g-C3N5 presents a lower emission intensity
than g-C3N4, indicating a lower complexation rate of the photo-induced electron-hole pair
on g-C3N5. In addition, due to the ultrathin structure and the presence of carbon defects
after thermal oxidative stripping, the charge separation and transfer efficiency of n-C3N5 is
significantly enhanced, and the PL intensity is markedly decreased. However, compared
with monomeric materials, CNAC-10 composite exhibits the lowest PL intensity with the
addition of Ag2CO3 nanoparticles, indicating the synergistic effects of nanosheet structure,
carbon vacancies, and heterojunction structure all play important roles in enhancing the
photogenerated charge separation rate and photocatalytic activity of photocatalysts.

Figure 7. (a) PL spectra; (b) photocurrent response; and (c) EIS Nyquist plots.
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3.2.3. Photocurrent and EIS Analysis

To further test electron migration properties, the photocurrent response and electro-
chemical impedance of samples were measured on an electrochemical working device
configured with visible light irradiation (λ > 400 nm). Figure 7b display the photocurrent
curves of n-C3N5, Ag2CO3, CNAC-5, CNAC-10, CNAC-15, and CNAC-20, among which
CNAC-10 exhibits the highest photocurrent intensity within four cycle periods. In gen-
eral, a stronger photocurrent response corresponds to a faster electron migration rate [59].
This revealed that the CNAC-10 sample has a lower electron-hole pair complexation rate
compared to n-C3N5, Ag2CO3, and other CNAC-X composites, thus possessing higher
photocatalytic activity. Additionally, similar results are shown in the photoelectrochemical
impedance spectra. As shown in Figure 7c, the CNAC-10 composite has a smaller Nyquist
arc radius than g-C3N5, n-C3N5, Ag2CO3, and other CNAC-X composites. The charge
transfer resistance of the catalyst is positively correlated with the arc radius on the electro-
chemical impedance spectrum [60,61]. Therefore, EIS analysis indicates that the CNAC-10
composite has lower resistance to photogenerated charge migration than other samples. In
summary, the presence of the heterojunction structure and defects accelerated the interfacial
charge transfer between n-C3N5 and Ag2CO3; thus, the photocatalytic activity of CNAC-10
was boosted.

3.3. Photocatalytic Activity

The degradation performance of prepared photocatalysts against MB and TC-HCl was
investigated under visible light irradiation (λ > 400 nm) to evaluate their photocatalytic
activity. Prior to photocatalytic degradation, the reaction solution containing photocatalyst
and MB or TC-HCl was placed in dark conditions for the adsorption reaction for the desired
time. It can be seen from Figure 8a,c that the adsorption phase of MB and TC-HCl on photo-
catalysts reached equilibrium at approximately 30 min. For MB, the adsorption efficiencies
of g-C3N4, g-C3N5, n-C3N5, Ag2CO3, CNAC-5, CNAC-10, CNAC-15, and CNAC-20 were
4.0%, 11.4%, 32.3%, 5.3%, 33.3%, 38.2%, 35.6%, and 35.1%, respectively. However, the
prepared photocatalysts had almost no adsorption effect on TC-HCl owing to electrostatic
repulsion [23]. Subsequently, visible light degradation experiments were carried out by
applying a 300 W xenon lamp, and the outcomes are also shown in Figure 8a,c. The blank
experiment without the presence of photocatalyst proved that the concentrations of MB
and TC-HCl were relatively unchanged, demonstrating that the chemical properties of
MB and TC-HCl were stable and the direct photolysis of MB and TC-HCl by visible light
irradiation could be neglected. Compared to g-C3N4, the prepared g-C3N5 exhibits supe-
rior photocatalytic performance, mainly attributed to its better visible light capture ability.
Additionally, the degradation performance of n-C3N5 was further improved, with pho-
todegradation rates of 75.2% and 76.4% for MB and TC-HCl, respectively, mainly benefiting
from enhanced photogenerated charge separation efficiency by the ultrathin structure, and
carbon defects generated by thermal oxidative stripping. In addition, the photocatalytic ac-
tivity of CNAC-X composites was significantly enhanced with the introduction of Ag2CO3
nanoparticles. This is due to the formation of a heterojunction structure between n-C3N5
and Ag2CO3, which helps the charge transfer between both materials. Under visible light
irradiation, the degradation rates of CNAC-5, CNAC-10, CNAC-15, and CNAC-20 were
91.4%, 96.5%, 90.5%, and 81.9% for MB in 90 min; while 94.3%, 97.6%, 94.7%, and 90.8%
of TC-HCl were removed within 100 min. Therefore, the CNAC-10 sample exhibited the
highest photodegradation efficiency for MB and TC-HCl. However, the photocatalytic per-
formance of the composites decreased when the content of Ag2CO3 was further increased,
probably because the active sites of the CNAC-X composites were occupied by the excess
Ag2CO3 particles. Some representative photocatalyst composites for MB, TC-HCl or RhB
degradation reported in recent years are summarized in Table S1 [23,30,31,43,62].
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Figure 8. (a,c) The photodegradation of MB and TC-HCl in the presence of as-prepared catalysts
under visible light irradiations and (b,d) corresponding reaction kinetic constants of different samples
under visible light.

To further explore the photocatalytic activity of the samples, the kinetics of photocat-
alytic degradation of MB and TC-HCl were investigated using a pseudo-first-order model
[Equation (2)]:

−ln (C/C0) = k × t (2)

where C0 and C represent the concentration of MB or TC-HCl at illumination times of 0
and t, and k is the reaction rate constant. Figure 8b,d illustrate the pseudo-level fitting
curves for the removal processes of MB and TC-HCl by the synthesized photocatalysts. The
degradation kinetic constant k of CNAC-10 for MB was 0.031 min−1, which was 2.82 and
1.94 times higher than that of n-C3N5 (0.011 min−1) and Ag2CO3 (0.016 min−1), respectively.
The degradation kinetic constant k of CNAC-10 for TC-HCl is 2.54 and 1.89 times higher
than that of n-C3N5 and Ag2CO3, respectively. In summary, the coordinated effect of
nanosheet structure, carbon defects, and heterojunction structure plays a crucial role in the
photocatalytic performance of CNAC-X.

Moreover, cyclic photodegradation experiments of MB and TC-HCl were conducted
to explore the recoverability and stability of CNAC-10. After each cycle, the photocatalysts
were ultrasonically cleaned with ultrapure water and ethanol, recovered by high-speed
centrifugation, and dried under vacuum at 60 ◦C for 4 h for subsequent recycling. As
illustrated in Figure 9a, due to the inevitable catalyst loss, the removal rates of MB and
TC-HCl by CNAC-10 decreased slightly after four consecutive reuses, from 96.5% to 80.1%
and 97.6% to 85.4%, respectively. To further analyze the phase transition of the catalyst,
the XRD diffractograms of CNAC-10 before and after four cycles of degradation were
compared. Figure 9b demonstrate that the crystalline phase of the sample remains essen-
tially unchanged. In addition, new characteristic peaks were detected at 38.0◦ and 44.2◦,
corresponding to the (111) and (200) crystal planes of metallic silver. This indicates that
CNAC-10 was subjected to slight photocorrosion after four cycles, resulting in the partial
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photoreduction of Ag+ from Ag2CO3 nanoparticles to metallic silver [63]. In conclusion,
the cycling experiments reveal that CNAC-10 has superior recyclability and stability and
can be used as an efficient and durable photocatalyst for the photodegradation of MB and
TC-HCl in water.

Figure 9. (a) Four recycling runs of the CNAC-10 for MB and TC-HCl degradation and (b) XRD
patterns of fresh and used CNAC-10 after four recycling runs.

3.4. Photocatalytic Mechanism
3.4.1. The Possible Degradation Pathways

In order to clarify the degradation pathways of MB and TC-HCl, the intermediates
of their photocatalytic processes were determined by LC-MS. Figure S3a show the m/z
values of MB photodegradation at 90 min in the presence of a CNAC-10 catalyst, and
intermediate signal peaks with different m/z values can be observed. Based on the LC-MS
data and previous reports, two possible degradation pathways of MB were proposed
(Figure 10a) [64–67]. In pathway I, the original MB (m/z = 284) was converted to interme-
diate M1 (m/z = 228) by S-Cl bond breaking and demethylation processes, followed by
deamination and desulfonation reactions to produce intermediates M2 (m/z = 173) and
M3 (m/z = 110). Finally, it was transformed into a small molecule product M4 (m/z = 72)
by an oxidative ring opening reaction. For pathway II, the MB molecule was converted to
intermediate M5 (m/z = 305) via the breakage of S-Cl and N=C bonds and the formation of
S=O bonds. Then, M5 underwent a sulfonation reaction and S-C bond breakage to produce
intermediate M6 (m/z = 216). Through closed-loop reaction and hydroxylation, M6 was
decomposed to intermediates M7 (m/z = 135) or M8 (m/z = 153) and then became small
molecule products by a series of redox reactions. Similarly, according to the mass spectral
data of TC-HCl at 40 min of visible light treatment (Figure S3b), the possible degradation
path of TC-HCl in the photocatalytic system was reasonably deduced (Figure 10b) [1,7].
By losing N-methyl, TC-HCl molecules (m/z = 445) were converted to T1 (m/z = 431).
With the deletion of -CH3 and O=C-NH2 of T1, T2 (m/z = 388) was formed. Then, T2 was
decomposed into T3 (m/z = 362), T4 (m/z = 318), T5 (m/z = 249), and T6 (m/z = 170) fol-
lowing a series of ring opening, deacylation, deamination, and dehydroxylation reactions.
Additionally, small molecule products T7 (m/z = 99), T8 (m/z = 102), and T9 (m/z = 131)
were further generated. Finally, these small molecule compounds were mineralized to CO2
and H2O by the action of ROS.
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3.4.2. Roles of the Active Species

Free radical capture experiments were performed to investigate the important role of
ROS in the photocatalytic degradation of MB by CNAC-10. Isopropyl alcohol (IPA, 1 mM),
p-benzoquinone (BQ, 1 mM), and triethanolamine (TEOA, 1 mM) were selected as ·OH,
·O2
−, and h+ burst agents, respectively. As shown in Figure 11, the addition of IPA resulted

in a slight but not significant decrease in MB removal from 96.5% to 87.6%, indicating
that ·OH is not the major radical for the degradation of MB. However, the degradation
efficiency of MB was remarkably reduced with the addition of BQ and TEOA, from 96.5%
to 67.8% and 50.3%, respectively, indicating that ·O2

− and h+ play key roles in the MB
photodegradation. According to the results of free radical capture experiments, it can be
concluded that ·OH, ·O2

−, and h+ all contribute to the removal of MB to varying degrees,
and the order of the effect of ROS on MB photodegradation is h+ > ·O2

− > ·OH.
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Figure 11. Effects of radical scavengers on the degradation of MB for CNAC-10 system.

3.4.3. Potential Photocatalytic Mechanism

It is critical to measure the band edge positions of semiconductors for researching
the possible photocatalytic mechanism. Therefore, the energy band structures of n-C3N5
and Ag2CO3 were explored by XPS valence band spectroscopy. As shown in Figure S4a,b,
the valence band (VB) positions of n-C3N5 and Ag2CO3 are located at about 1.38 and
2.71 eV, respectively. Then, the conduction bands (CB) of n-C3N5 and Ag2CO3 are −0.80 eV
and 0.28 eV according to UV-vis DRS analysis with the equation Eg = EVB − ECB. Two
possible photogenerated carrier transfer mechanisms in the CNAC-10 system are revealed
in Figure 12, namely type-II heterojunction and Z-scheme heterojunction. Based on the
assumption that the photogenerated charge transfer mechanism between n-C3N5 and
Ag2CO3 is consistent with the type-II heterojunction when the CNAC-10 catalyst is excited
by visible light, the photogenerated electrons will be transferred from the CB of n-C3N5
to the CB of Ag2CO3 due to the higher CB and VB energy levels of n-C3N5 than the corre-
sponding energy levels of Ag2CO3. Simultaneously, the photogenerated holes of Ag2CO3
will be transferred to the VB of n-C3N5. Although the formation of type-II heterojunction
can improve the electron-hole separation efficiency of the photocatalyst, it is achieved at
the cost of reducing its redox ability [32,68]. Since the reduction potential of Ag2CO3 is
weaker than the standard redox potential of O2/·O2

− (−0.33 eV vs. NHE), the ·O2
− radical

cannot be generated by the electrons on its CB [23]. Similarly, the photogenerated holes
on the VB of n-C3N5 cannot react with H2O/OH− to generate ·OH radical because the
oxidation potential of n-C3N5 is lower than the standard redox potential of H2O/·OH
(2.27 eV vs. NHE) [30]. It is obvious that the type-II heterojunction is contradicted by the
results of radical trapping experiments. Therefore, the Z-scheme heterojunction transfer
system was proposed. In the Z-scheme system, the electrostatic attraction between the elec-
trons of Ag2CO3 and the holes of n-C3N5 makes the migration of photogenerated carriers
physically more reasonable than that of type-II heterojunctions. When exposed to visible
light, electrons generated on the CB of Ag2CO3 combine with holes on the VB of n-C3N5 to
form a Z-scheme structure. In this way, the purpose of separating the electron-hole pairs is
achieved, and the electrons and holes in the CNAC-10 system are concentrated on CB with
a higher reduction potential and VB with a higher oxidation potential, respectively. The
·O2
− radical can be generated by the reaction of photogenerated electrons on n-C3N5 with

oxygen molecules, while holes on Ag2CO3 can oxidize MB and TC-HCl directly or indirect
by reacting with H2O/OH− to form ·OH. The formation of Z-scheme heterojunction can be
further verified by ESR analysis. From Figure S5a,b, it can be found that no signals of ·O2

−

and ·OH are detected under dark conditions, while in the case of visible light irradiation,
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the ESR signal peaks of ·O2
− and ·OH can be clearly detected. On the whole, it is more

plausible that the Z-scheme photogenerated charge transfer system is used to explain the
action mechanism of ROS for CNAC-10 catalysts. According to the above analysis, the
reaction Formula (3)–(6), which may occur in the system, is proposed:

CNAC-10 + hv→ CNAC-10 (e−, h+) (3)

e− (n-C3N5) + O2 → ·O2
− (4)

h+ (Ag2CO3) + H2O/OH− → ·OH + H+ (5)

·O2
−/·OH/h+ + MB/TC-HCl→ CO2 +H2O. (6)

Figure 12. The proposed photocatalytic mechanism of MB and TC-HCl degradation by n-
C3N5/Ag2CO3 composite.

4. Conclusions

In this study, novel n-C3N5/Ag2CO3 composite photocatalysts were successfully
prepared by thermal oxidative stripping and in situ deposition for the efficient degradation
of MB and TC-HCl under visible light. According to the results of the characterization
analysis and experiments, it can be assumed that a close interaction between n-C3N5 and
Ag2CO3 occurred. Among the series of CNAC-X samples synthesized, CNAC-10 exhibited
excellent recyclability and the highest photodegradation efficiency for MB and TC-HCl.
Furthermore, the intermediates and possible degradation pathways of MB with TC-HCl
were analyzed by LC-MS. The high photocatalytic activity of CNAC-10 was attributed to the
synergistic effects of the ultrathin structure of the nanosheets, carbon defects, and Z-scheme
heterojunctions. In conclusion, n-C3N5/Ag2CO3 nanocomposite is a novel photocatalyst
that can effectively treat organic wastewater. Our work provides a new perspective for the
design of novel and efficient C3N5-based photocatalysts and contributes to the development
of low-cost and efficient photocatalysts for the control and remediation of environmental
pollutants in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano12152701/s1, Figure S1: The N2 adsorption-desorption
isotherms of g-C3N5 and n-C3N5; Figure S2: The XPS measurement spectra of the CNAC-10 compos-
ite; Figure S3: (a) m/z values of MB photodegradation at 90 min in the presence of CNAC-10 catalyst,
(b) m/z values of TC-HCl photodegradation at 40 min in the presence of CNAC-10 catalyst; Figure S4:
(a,b) The VB-XPS spectra of n-C3N5 and Ag2CO3, respectively; Figure S5: ESR signals of (a) ·O2

−

and (b) ·OH generated by CNAC-10; Table S1: Comparation of the photocatalytic performance of
photocatalyst composites.
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