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In situ dynamic observations of perovskite
crystallisation and microstructure evolution
intermediated from [PbI6]

4� cage nanoparticles
Qin Hu1,2,3,*, Lichen Zhao1,4,*, Jiang Wu1, Ke Gao3, Deying Luo1, Yufeng Jiang3, Ziyi Zhang3, Chenhui Zhu5,

Eric Schaible5, Alexander Hexemer5, Cheng Wang5, Yi Liu6, Wei Zhang7, Michael Grätzel4, Feng Liu3,8,

Thomas P. Russell3,9, Rui Zhu1,2,10 & Qihuang Gong1,2,10

Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials

with their extraordinary optoelectronic properties. In particular, the remarkable device

efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here,

we investigate the perovskites crystallisation kinetics and growth mechanism in real time

from liquid precursor continually to the final uniform film. We utilize some advanced in situ

characterisation techniques including synchrotron-based grazing incident X-ray diffraction to

observe crystal structure and chemical transition of perovskites. The nano-assemble model

from perovskite intermediated [PbI6]
4� cage nanoparticles to bulk polycrystals is proposed

to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion

mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped

morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process

of the perovskites formation and transformation from the molecular to the microstructure

over relevant temperature and time scales is successfully demonstrated.
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T
hin-film photovoltaics that use hybrid lead halide perovskites
as photon-conversion layers have been a rapidly developing
technology, offering remarkable device performance at low

production costs (https://www.nrel.gov/pv/assets/images/efficiency-
chart.png)1–4. Tremendous efforts have been devoted into
improving the device power conversion efficiency5 and long-term
stability6, and notable progresses have been achieved. However, the
device performance is strongly influenced by the perovskite crysta-
llinity and film morphology. Many of the optoelectronic properties of
perovskites such as light harvesting, charge carrier transport and
diffusion can be markedly influenced by the crystallisation and
morphology of perovskites7,8. Although the correlations between
material quality and device performance have been investigated
widely, the in-depth understanding of the crystallisation kinetics and
growth mechanism of the perovskites, especially the sight into
material transformation from precursor solution to solid phase in a
continuous manner has not been revealed.

The hybrid lead halide perovskite precursor is a low-viscosity
solution that can form colloidal aggregates in solution and
take complicated nucleation and growth pathways during
drying process9. The solvent removal rate, diffusion of the
constituents and crystallisation processes are critical in generating
the kinetically trapped morphologies of the perovskite films.
Various factors, such as lead sources10, precursor solvents11 and
assisted additives12 affect not only the crystallisation but also the
microstructure formation in perovskite thin film formation.
Many studies on the ex situ observation13 of the crystallisations
and the effects on the surface morphology have been reported.
For example, the cuboid size of perovskite CH3NH3PbI3 could
be controlled by the dipping time of the PbI2 substrate into
CH3NH3I (MAI) solution and the MAI concentration14. A series
of scanning electron microcopy (SEM) images of the statistic
perovskite samples could correlate the surface morphology
changes and the cuboids crystallisation behaviour under various
growth conditions. It is well known that an incontestable limi-
tation of these ex situ studies are the insufficient information
collection to further scrutinize perovskites growth mechanism. In
addition, there are also some literatures reporting the chemical
pathways from the plumbate intermediate15,16 or metastable
phase17,18 to the certain perovskite crystal identified by the in situ
X-ray diffraction. However, the time evolution of crystallisation
and phase transition in such in situ cases usually begins with the
prepared solvent-intermediated complex film, not the pristine
mixed solution in our work. For these kinds of methodologies
without the analysis of the pure precursor, they cannot draw a
conclusion on whether the perovskite crystal growth begins in the
solution phase or in the solid phase. Even though there are a few
reports observing the perovskite crystallisation from drop-casting
solution to dry film19, however, the full transformation process to
pure perovskite was not achieved, and the clear formation
mechanism was still indistinct with existence of by-products in
the final dried film. Hence, a comprehensive investigation of
perovskites crystallisation dynamics and morphology evolution
from the very original precursor to the solid-phase crystals in situ
and in real time is critically important to further improve the
material quality and the corresponding device performance.

Here, we present a study, apply some in situ on-line
characterisation techniques to systematically investigate the
perovskites crystallisation kinetics and growth mechanism from
the precursor solution to the uniform film. The use of in situ
grazing incidence X-ray diffraction (GIXD) with in situ Fourier
transform infrared spectroscopy (FTIR) reveals the crystalline
formation and chemical composition reactions of perovskite
materials over relevant time and temperature scales. A nano-
assemble model from perovskite intermediate nanoparticles to bulk
polycrystals is proposed to understand perovskite formation at a

molecular- or nano-scale. The temperature-dependent crystal-
lisation process also makes effects on the final film morphology.
The time evolution of the film morphology under in situ heating is
obtained by the compound optical microscope. The formation of
periodic patterns during the growth process is observed which
could be attributed to a competition between the linear growth of
the crystals and a depletion of crystallisable material. The
crystallisation-depletion mechanism is developed to elucidate the
periodic nucleation and the kinetically trapped morphology at
a mesoscopic level. Based on these dynamics studies, the
whole process of the perovskites formation from molecular to
microstructure is successfully demonstrated.

Results
Perovskites crystallisation and structure transformation. All
GIXD measurements were performed on beamline 7.3.3 at
Advanced Light Sources of Lawrence Berkeley National Laboratory
with critical methods to obtain the perovskites structure formation
and crystal growth in real time. To in situ monitor the whole
evolution process at the very beginning with the precursor solution,
a compatible mini-slot-die printer20 was integrated with on-line
GIXD, as shown in Supplementary Fig. 1. For the traditional spin-
coating technique21, most of the deposition solution is ejected
during rotation and the subsequent thermal annealing process
begins with the intermediated complex film, hindering the capture
of the whole crystallisation process. The in situ printing experiment
was conducted in the helium atmosphere to reduce the air
scattering. The perovskite precursor solution was prepared by
mixing 0.4 M lead acetate (Pb(Ac)2) and 1.2M methylammonium
iodide (MAI) in anhydrous N,N-dimethylformamide (DMF).
A PEDOT:PSS-coated silicon wafer was used as the sample
substrate. Different substrate temperatures were adjusted to control
the kinetics of crystallisation. A series of 2D GIXD images at
different stages of drying are shown in Fig. 1 and Supplementary
Fig. 2. In a starting solution, the mixed precursors are essentially
point scatters dissolved in DMF, where the liquid scattering from
DMF dominates, with a diffuse reflection at qB1.5Å� 1 being
evident. As the solvent, an intermediate forms formed
characterized by a peak with a spacing of B1nm (qB0.6Å� 1),
which then transformed into the perovskite crystallites. The
kinetics of this structural transformation can be controlled by the
substrate temperature and solution concentration.

The time evolution of perovskite crystallites formation was
captured by time-resolved GIXD measurements at room tempera-
ture (RT), 60, 80 and 100 �C shown in Fig. 2a–d (2D intensity-time
colour mappings are shown in Supplementary Fig. 3). The peak
intensity, peak position and the peak area shown in Fig. 2e–h were
calculated from the characterized peaks of GIXD through Multi-
peak Mode fitting. A quite slow drying process was observed in the
RT condition. At RT, a broad diffuse reflection at qB0.4Å� 1,
characteristic of the scattering arising from the dissolved
components, was observed initially (5 s per frame). With time,
the reflection gradually shifted to higher q, indicating the formation
of aggregates (intermediate state of order) in the solvent that were
the precursors to form the crystals. As the solvent evaporated, the
reflection decreased in intensity, with the appearance of the cubic
(100) plane reflection at 1.0Å� 1 of perovskite (CH3NH3PbI3,
abbreviated as PVSK) observed. The crystalline reflections from the
perovskite intensified and sharpened as crystallisation proceeded.
In the high q region, a broad diffraction peak (1.5–2.5Å� 1) was
seen initially, arising from the average intermolecular distances
between solvent molecules. This broad peak may also be the form
factor of the intermediates formed prior to perovskite crystal-
lisation. As the DMF continued to evaporate, high ordered
reflection characteristics of the perovskite crystals lattice plane
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dominated. The reflection characteristics of the perovskite crystals
increased as the volume fraction of the crystals increased, whereas
the reflection at 0.6Å� 1 decreased, implying that the precursor
aggregates were transformed during the crystallisation, as shown in
Figs 1 and 2a–d. As can be seen, both the 0.6Å� 1 intermediate
peak (abbreviated as Peak A) and 1.8Å� 1 peak (abbreviated as
Peak B) in Fig. 2 at RT show a reduction roughly at frame 180
(B900 s), accompanied with the rapid perovskite crystal growth.
Perovskite precursors in solution22 are charged species, including
an octahedral [PbI6]4� centre and other cooperative ions. Thus,
the 0.6Å� 1 diffraction peak was assigned to the Pb2þ and its
surrounding ions and molecules and the formation of an ion cage
by electrostatic forces. The outmost shell of the ion cage is
surrounded by DMF molecules. During solvent evaporation, the
inter-cage distance gradually decreased, as evidenced by the
scattering at low q (peak shifting from 0.4Å� 1 to 0.6Å� 1), and
then close packs to give a 0.6Å� 1 steady peak. After the material
transformation at RT, two peaks located at 0.48Å� 1 and 0.70Å� 1

appeared, arising from the MAI �PbI2 �DMF adduct (abbreviated
as Complex in Fig. 2a–d) and MAI crystallites (Supplementary
Fig. 4) with an intensity B10% that of the major perovskite peak.
The precursor–solvent adduct was also described in the previous
reports23.

When a higher thermal annealing temperature was used, the
film drying was much more rapid, and thus, a shorter X-ray
exposure time (0.1 s per frame) was used. As seen from the 60, 80
and 100 �C experiments in Fig. 2e–h (blue curves), the structural

transformation occurred more rapidly, 12.5, 5 and 1.8 s,
respectively. It should be noted the MAI �PbI2 �DMF adduct
complex was not observed in the final product at elevated
temperatures, indicating instability at these higher temperatures.
At 100 �C, a prolonged heating for perovskite film led to PVSK
decomposition and PbI2 formation, as evidenced by the
appearance of the PbI2 (001) peak at 0.9 Å� 1 peak (B5.34% in
amount comparing to perovskite roughly estimated by the
characteristic peak area ratio). Further increasing heating
temperature to 120 �C led to the formation of more PbI2, and
this process was time-dependent, as seen from Supplementary
Fig. 2 and Supplementary Fig. 5. Thus, reducing heating time
and increasing the drying speed can be a viable route to
kinetically trap the structure in a stable perovskite form. We also
developed printing in parallel with a hot air quenching process
(HAQ, 180 �C hot air) to continue increase the crystal growth
speed, in which the heating and drying can be completed within
several seconds and PbI2 formation can be effectively suppressed.
However, this process was too fast to be probed in the current
GIXD system.

The crystal sizes determined from a Debye-Scherer analysis of
the reflection are plotted in Supplementary Fig. 6 and Suppleme-
ntary Note 1, from which detailed crystal growth kinetics can be
studied. The rate of crystallisation was modelled using the
Johnson-Mehl-Avrami model ((w(t)¼ 1� exp (�bn)24,25, where
w(t) is the transformed fraction of the material, t is time, b is a
state property which is independent of the time/temperature path,
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Figure 1 | GIXD profiles of printing perovskites. 2D grazing incidence X-ray diffraction (GIXD) images at different stages of drying along with time

annealing at different temperatures (300 frames): (a) room temperature (RT), (b) 60 �C, (c) 80 �C and (d) 100 �C (�C is short as deg).
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and n is the growth exponent) combined with the nucleation and
growth models. Using the perovskite (100) peak area to determine
w(t) and the kinetic formula26: ln (tw2� tw1)¼ Ea/RT� ln k0þ ln
(bw2� bw1), where Ea is the effective activation energy, R is the gas
constant, T is the temperature, and k0 is a rate constant
pre-factor. The calculated value of Ea was 81.4 kJmol� 1, which is

lower than 86.6 kJmol� 1 of the lead chloride precursor and
97.3B110 kJmol� 1 of lead iodide precursor18,27, indicating the
faster crystallisation and film formation for lead acetate precursor.
Also, the value of Ea for lead acetate precursor from slot die
printing in our research is larger than 67.5 kJmol� 1 obtained
from traditional spin coating27. This could be mainly because of
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Figure 2 | In situ integral GIXD profiles of printing perovskites. (a–d) In situ integral GIXD profiles at various temperatures along with time (300 frames) at

(a) RT, (b) 60 �C, (c) 80 �C and (d) 100 �C. (e–h) The diffraction peak intensity and the peak position of the characteristic peaks at different temperatures: (e) RT,

(f) 60 �C, (g) 80 �C and (h) 100 �C. The intensity of MAI and final complex adduct at RTwas doubled to show clear evolution process. Peak A is noted as the

broad peak shifting from 0.4Å� 1 to 0.6Å� 1, and Peak B is short of the broad peak shifting from 1.5Å� 1 to 2.0Å� 1. The peak shift process is shown in

Supplementary Fig. 3. MAI is short of CH3NH3I, Complex is abbreviated of the MAI � PbI2 �DMF adduct at RT. The abbreviation of CH3NH3PbI3 is PVSK.
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the different thermal kinetics of different procedure as well
as the different sample ambient environments such as humility
and so on. The plots along with the fittings are shown in
Supplementary Fig. 7. The transformation time (ln (tw2� tw1)) is
inversely proportional to T, thus the perovskite transformation
time decreases dramatically with the increasing temperature. This
is also consistent with our experiment results.

Perovskite chemical structure evolution at RT was studied
using in situ FTIR. Supplementary Fig. 8 shows the FTIR
spectra of pure DMF, MAI, HAc (acetic acid, CH3COOH) and
the perovskite films. The N-H stretching vibration of MAI
(B3030–3300 cm� 1), the O-H stretching vibration of HAc
(freedom 3500B3550 cm� 1, H-bonded 2500B3300 cm� 1),
the N-H stretching vibration of DMF (3300B3450 cm� 1), the
C-H symmetrical and asymmetrical bending vibrations
(1580B1750 cm� 1) and the C¼O stretching vibration of
DMF (1650B1700 cm� 1 ) were used to track the changes in
the chemical constitutions of the perovskite film28–30. From 1
to 13minutes, the O-H band in HAc and N-H band in
DMF deceased. The stretching vibration of COO-H disappeared
after 7min and the N-H band of DMF disappeared after
13min. Thus HAc evaporated more rapidly than DMF and
no HAc residue was left in fully dried film. The final spectrum
after 16min was a combination of bands from the perovskite
and MAI at the stretching vibration of the N-H band. In addition,
the dried film still had strong symmetric and asymmetric
C-H bending vibrations from DMF. The C¼O stretching
vibration of DMF also shifted from 1670 cm� 1 to 1650 cm� 1

along with a decrease of the peak intensity. These chemical
signatures indicated that DMF could be incorporated into
lead-based crystalline species31, leading to the formation of
a MAI �PbI2 �DMF adduct complex, which gave rise to the low q
diffraction peak in GIXD. Thus, the perovskite film formation at
different temperatures can be described in the following chemical

equations:

Room temperature :

Step1 : Pb CH3COOð Þ2 þCH3NH3IþDMF ! CH3NH3Ið ÞX
�PbI2 � DMFð ÞY þCH3NH2 " þDMFþCH3COOH "

ð1Þ

Step2: CH3NH3Ið ÞX �PbI2 � DMFð ÞY! CH3NH3PbI3 þPbI2
þMAIþ CH3NH3Ið Þm �PbI2 � DMFð Þn þDMF "

ð2Þ

Heating at 60 �C � 80 �C :

Step1: Pb CH3COOð Þ2 þCH3NH3IþDMF ! CH3NH3Ið ÞX
�PbI2 � DMFð ÞY þCH3NH2 " þDMF " þCH3COOH "

Step2 : CH3NH3Ið ÞX � PbI2 � DMFð ÞY
! CH3NH3PbI3 þDMF " þMAI "

ð3Þ

Heating at 100 �C:

Step1: Pb CH3COOð Þ2 þCH3NH3IþDMF ! CH3NH3Ið ÞX
�PbI2 � DMFð ÞY þCH3NH2 " þDMF " þCH3COOH "

Step2: CH3NH3Ið ÞX �PbI2 � DMFð ÞY! CH3NH3PbI3
þDMF " þMAI "

Step3: CH3NH3PbI3 ! PbI2 þMAI "

ð4Þ

The combined GIXD and FTIR characterisations revealed the
detailed structure transformation of perovskite crystals. Figure 3a
presented the nano-assemble model of the perovskites from the
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+
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Step 3
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a b

Step 2Step 1

[Pbl6]
4– cage in solution Intermediate nano-composition PVSK crystal

Figure 3 | The nano-assemble model of perovskite crystallisation. (a) The nano-assemble model of the perovskite from the precursor solution to the final

polycrystalline film, and the decomposition under high-temperature annealing. (b) The detailed crystal growth process from the [PbI6]
4� cage to

intermediate nano-composition, and finally to the perovskite crystal.
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pristine precursor solution to perovskite polycrystals.
Figure 3b shows the detailed perovskite crystal growth via the
[PbI6]4� -centred nanoparticles. In precursor solution, the
Pb(Ac)2 and MAI were dissolved in DMF. Solvent evaporation
led to the formation of Pb-centred ion-cages (CH3NH3I)X-PbI2-
(DMF)Y (abbreviated as intermediate in Fig. 1a, marked as Peak
A in Fig. 2e–h) as shown by equation (1). This ion cage is stable at
room temperature and when the cage concentration increases to a
point where the cages are forced into contact, they start to
transform into more stable perovskite crystals with PbI2,
MAI and another intermediate (CH3NH3I)m-PbI2-(DMF)n
(abbreviated as Complex in Fig. 2e–h). The ion cage should
be centred with a [PbI6]4� octahedron covered with MAI
and DMF shells, with a diameter of B1 nm. The Lewis acid
PbI2 provided a driving force to interact with the electron pair in
DMF (oxygen atom) and MAI (iodide ion) to stabilize the
product. At elevated temperature, the rapid decomposition of
(CH3NH3I)X-PbI2-(DMF)Y led to a higher yield of perovskite
crystals with much less PbI2 and MAI by-products, and thus,
high-temperature processing is beneficial in thin film fabrication.
At even higher temperatures, the perovskite will be not stable and
decompose into PbI2 and MAI (100 �C and above) with
prolonged heating.

Microstructure growth and film morphology evolution. The
perovskite film morphology has a vital role in optoelectronic
devices. The film drying kinetics as well as the crystallisation
dynamics directly from the liquid precursor is quite different
from processes like solvent exchange32 and vapour deposition33.
The temperature control34 of thin film drying is the most
accessible way to control the morphology in a continuous
fabrication process. Figure 4 and Supplementary Figs 9-11 show
the morphologies of printed perovskite thin films at different
temperatures and drying speeds. As seen from the SEM and
atomic force microscopy (AFM) images, low-temperature
processed perovskite thin films were dominated by large
irregular crystalline grains with domains tens of microns in size
(Supplementary Fig. 9). The non-continuous passivation of
perovskites layers is not favourable for device fabrication. The
60 �C-processed thin film with smaller size droplets were still not
continuous. At 80 �C, the film showed slightly enlarged droplets,
many of which merged together to form larger domains. When
the heating temperature was increased to 100 �C, a highly regular,

banded topography with a period of B2 mm was seen
(Supplementary Figs 10 and 11). The height variation of this
periodic structure at the surface, that is, the amplitude, was
B200 nm (Supplementary Fig. 10). At the centre of these banded
structures, a plateau consisting of nanoscopic crystallites was also
observed. These structures are very much akin to spherlitic
textures seen in semi-crystalline polymers and metals35–37,
where a radial growth of crystals emanates from a nucleus, and
as the crystals grow outward, the growth fronts impinge on each
other, arresting the crystallisation, forming the polygonal
textures. The sizes and shapes of the polygonal structures are
dictated by the areal density of nucleation35. The higher the
nucleation density, the smaller the textures.

Figure 5a shows a series of in situ optical microscope images of
the ripple formation (details are shown in Supplementary Fig. 12
with 0.02 s sampling time interval). Unlike polymeric spherulites
that arise from the radial growth of crystalline lamellae emanating
from a nucleation point, the banding in the perovskites are more
closely related to the Lisegang rings38, resulting from a periodic
precipitation reaction. The wavelength of the banding was
found to decrease with increasing processing, as seen from the
120 �C thin films (Supplementary Figs 10 and 13). The periodic
patterns observed in the perovskite crystallisation are a complex
interplay between solution flow, solute diffusion, the solvent
extraction and the crystal growth. When the perovskite solution is
deposited on an elevated heating substrate, the evaporation
process is more rapidly. Once the solution supersaturates,
the nucleation occurs, and the crystal growth followed by.
A rapid removal of solvent near the growth front induces
liquid convection that carries solute to the crystal face to allow
crystallisation to occur, depleting the volume in front of the
growth front. This crystallisation-depletion mechanism39,40 gives
rise to a concentration gradient and a periodic crystallisation of
the perovskite, as shown schematically in Fig. 5b,c. AFM images
in Fig. 4b show that the amplitudes of the bands decreased
with the increasing temperature, which would be consistent
with a more rapid diffusion of materials to the growth front
and a slower crystallisation growth rate41,42. By increasing the
precursor solution volume to decrease the crystal growth, the
periodicity of the bands decreased, whereas the amplitudes
increased (Supplementary Fig. 14). To increase the crystal growth
by rapidly removing the solvent within seconds using HAQ, the
morphology was dominated by small crystalline grains, hundreds
of nanometres in size, similar to the plateau region in the centre

0.25 µm

(1)b

a 60 °C 80 °C 100 °C 120 °C HAQ 

(2) (3) (4) (5)

0.32 µm
0.14 µm

–0.29 µm
–0.25 µm –0.15 µm –0.14 µm

0.18 µm
30 µm

0 µm

y: 20 µm

y: 20 µm

y: 12 µm

y: 16 µm

y: 2.0 µm
x: 

20
 µm

x: 
20

 µm

x: 
16

 µm

x: 
2.0

 µm

x: 
12

 µm

Figure 4 | SEM and AFM images of perovskite films. The scanning electron microscope (SEM) (a) and topographic atomic force microscope (AFM)

images (b) of perovskite films based on various heating temperatures, the printing speed was 30mms� 1 and the distance between the slot die head and

the substrate was 0.2mm. The white scale bars in a(1–4) are 10mm. The white scale bar in a (5) is 2 mm, whereas the red one in the corresponding

magnifying image is 500nm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15688

6 NATURE COMMUNICATIONS | 8:15688 |DOI: 10.1038/ncomms15688 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


of the banded texture. A root mean square roughness of HAQ
film was 4.7 nm, whereas the roughness of the printing films are
110.5 nm (60 �C), 119.3 nm (80 �C), 59.2 nm (100 �C), 38.2 nm
(120 �C). The low roughness of HAQ perovskite film indicated
the smoothness quality and could be readily used in device
fabrication. In addition, we also fabricated the perovskite films via
traditional spin coating or simple drop casting method to
compare with the slot die printing perovskites. Detailed
experiments and discussion are provided in supporting
Supplementary Fig. 15 and Supplementary Note 2.

We fabricated the inverted planar heterojunction perovskite
solar cells43 (PSCs) based on this research (Supplementary
Fig. 16) to investigate the film quality, and remarkable device
performances were achieved (Supplementary Fig. 16-20
and Supplementary Note 3). The champion PCE of 15.1% for
the small-area (0.09 cm2) PSC (Supplementary Fig. 18) and
champion PCE of 11.6% for the large-area (1.00 cm2) PSC
(Supplementary Fig. 19) were achieved. These results imply that
the perovskite films studied in this research have comparable
optoelectronic properties as the films fabricated with traditional
spin-coating process43, indicative of great potential for large-area
devices based on printing fabrictaion. Consequently, the banded
texture of the perovskite films is dictated by nucleation, which
decreases with increasing temperature, hence the increase in the
size of the structures, and a radial growth rate of the crystals, G,
with dimension of length/time, and the diffusion of materials to
the growth front, D, with dimension (length)2/time. The ratio of
D/G defines a length that characterizes the period of the banded
structures. This feature is similar to rhythmic crystallisation seen
in soft materials41,42.

Discussion
In summary, this study revealed the material transformation and
morphology formation of perovskites from precursor solution to
the polycrystalline film over relevant temperature and time scales.
We utilized some advanced in situ characterisation techniques to
address an important challenge in perovskite material research.

We identified a perovskite crystal intermediate, comprised of an
octahedral [PbI6]4� centre surrounded by cooperative ions. The
close packing of these ion cage species led to the formation of
perovskite crystallites, which then deposited onto the supported
substrate to form photoactive thin film. The nano-assemble
model via intermediate [PbI6]4� centre nanoparticles was
proposed to understand perovskites formation at a molecular
level. The growth kinetics in mesoscopic structure are dictated by
the rate of solvent evaporation and chemical constituent
diffusion, which also gives a handle of morphology control.
Elevated-temperature annealing led to a periodic crystallisation
growth habit, forming concentric ring patterns upon the crystal-
lisation-depleting mechanism. And increasing the rate of solvent
evaporation through the HAQ process, the morphology was
kinetically trapped, resulting in a smooth film state that was better
suited for thin-film optoelectronic devices. Importantly, the
current results show the interesting perovskite material science
at nano-to-meso scales, offering new perspectives to tune the
crystal kinetics and material transformation, and pave an avenue
to make high-quality perovskite thin films for wide optoelectronic
device applications.

Methods
Materials. MAI (CH3NH3I) was synthesized from CH3NH2 and HI based on the
reported literature44. Lead acetate (Pb(Ac)2) was purchased from Sigma Aldrich
and was dehydrated before use45. Poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS, PVP AI4083) was purchased from Heraeus
Clevios. [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) was purchased from
C-Nano Tech. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline was purchased from
Alfa Aesar. All the liquid reagents, including DMF, chlorobenzene (CB) and
chloroform (CF) were purchased from Acros and used as received.

Device fabrication. The devices were manufactured on the pre-patterned glass/
ITO substrates (3.0 inch� 1.0 inch, 20 O &� 1), then ultrasonically cleaned with
the following sequential steps: diluted detergent, deionized water, acetone and
isopropanol. Before spin-coating, the glass/ITO substrates were treated by
UV-Ozone for 15min. Then PEDOT:PSS was spin-coated onto the ITO substrates
at 4000 rpm for 30 s and subsequently annealed at 135 �C for 20min in ambient
atmosphere. 0.4M lead acetate (Pb(Ac)2) and 1.2M MAI were dissolved
in anhydrous DMF to prepare for the perovskite precursor solution. For the
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spin-coating samples, the precursor solution was spin-coated at 4000 rpm for 60 s,
and then the substrates were annealed at 80 �C for 5min. For the perovskite
through slot die printing method, coating was carried out at the optimized speed of
30mm s� 1 with the optimized solution pump speed of 70 ml min� 1, the distance
between the slot die head to the substrate was set at from 0.2mm to 0.4mm. Then
the substrate with the wet perovskite precursor film was transferred under the hot
nitrogen (B180 �C) operated by a Deluxe heat gun and removed quickly as soon as
the yellow wet film became dark brown dry film. For small-area devices, the
perovskite films cooled down to room temperature, the PC61BM (20mgml� 1 in
CB and CF at the volume of 4:1) solution was printed on the top of perovskite
layer. For the PC61BM, the coating speed is 10mm s� 1 with the solution pump
speed of 70ml min� 1, the distance between the slot die head and the substrate was
set at 0.3mm. To achieve uniform PC61BM layer in large area (1.00 cm2) and make
the PC61BM layer fully cover the perovskite layer, the PC61BM (20mgml� 1 in CB)
solution was spin-coated on the top of perovskite layer at 1000 r.p.m. for 30 s. The
whole sampling process was performed in a N2-filled glove box. Afterwards,
10 nm-thick 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline and 100 nm-thick
metal silver electrode were thermally evaporated in the vacuum chamber with the
base pressure of o4� 10� 4 Par through a shadow mask.

Characterisation of PSCs. The cells (active area: 0.09 cm2
B1.00 cm2) were

irradiated under 100mWcm� 2 by a 150W class AAA solar simulator (XES-40S1,
SAN-EI) with an AM 1.5G filter. The light intensity was calibrated by a KG-5
silicon diode. The IPCE spectra were measured using a lock-in amplifier coupled
with a monochromator (Crowntech, Qtest Station 2000, USA). The light
intensity of the monochromator was calibrated by a standard monocrystalline
Si photovoltaic cell. The champion devices were tested using an aperture mask
(small area of 0.09 cm2) to make an accurate illumination area.

Wide angle grazing incidence X-ray scattering measurements. GIXD
measurements were conducted on beamline 7.3.3 at Advanced Light Source,
Lawrence Berkeley National Laboratory. The wavelength of X-ray was 1.240 Å, and
the scattering intensity was detected by a PILATUS 2M detector. The mini slot die
instrument was installed in helium box, and a surveillance camera was used to
monitor the slot die head for the solution flow. The substrate under the slot die
head was pre-aligned and the incident angle was adjusted to 0.5� for the in situ
probe. The slot die printer was fixed at an accurate distance from the substrate to
ensure the uniform quality of the film and the reproducibility. The exposure time
was 5 s in single mode for each frame when the substrate was in room temperature,
whereas the typical exposure time was 0.1 s in burst mode when the substrate was
heated at 60B120 �C. All the Si substrates were covered with PEDOT:PSS.
The 2D GIXD images were sector averaged using Nika software package.
The integrated peak area, the FWHM of the peaks and the crystal size were
performed using IGOR software.

Other characterisations. The morphological SEM images were obtained through
FESEM, Zeiss, ULTRA-55. The AFM images were collected in tapping mode by the
Dimension 3100 AFM combined with NanoScope 3D systerm, Veeco Instruments
Inc. The FTIR spectra were taken in transmission mode on a Thermal Scientific
Nicolet 6700 spectrometer, which was equipped with a deuterated triglycine sulfate
detector. Samples for FTIR measurements were prepared onto KBr substrates
(International Crystal Laboratories). The optical microcopy images were
collected by Zeiss Axioskop 2, F5 plus compound microscope integrated with
a thermocouple module.

Data availability. All relevant data are available from the corresponding authors
upon reasonable request.
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