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Abstract: Nanostructures of zinc oxide (ZnO) are considered promising photocatalysts for the degra-
dation of organic pollutants in water. This work discusses an in situ growth and UV photocatalytic
effect of ZnO nanostructures on a Zn plate immersed in methylene blue (MB) at room temperature.
First, the Zn surfaces were pretreated via sandblasting to introduce a micro-scale roughness. Then,
the Zn plates were immersed in MB and exposed to UV light, to observe ZnO nanostructure growth
and photocatalytic degradation of MB. Scanning electron microscopy, energy dispersive spectroscopy,
X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy were
used to characterize the Zn surfaces. We observed the growth of stoichiometric and crystalline ZnO
with a nano-leaf morphology and an estimated bandgap of 3.08 eV. The photocatalytic degradation of
MB was also observed in the presence of the ZnO nanostructures and UV light. The average percent-
age degradation was 76% in 4 h, and the degradation rate constant was 0.3535 h−1. The experimental
results suggest that room temperature growth of ZnO nanostructures (on Zn surfaces) in organic dye
solutions is possible. Furthermore, the nanostructured surface can be used simultaneously for the
photocatalytic degradation of the organic dye.

Keywords: ZnO; nanostructure; photocatalyst; water treatment

1. Introduction

Semiconductor photocatalysis and its application in water pollutant degradation
have been the subject of extensive research over the past two decades [1,2]. It involves
the absorption of light by a semiconductor, the generation of electron-hole pairs, and
subsequent redox reactions that produce free radicals also known as reactive oxygen
species (ROS) [3–5]. ROS are utilized to mineralize water contaminants; hence the process
aids the complete degradation of contaminants rather than just physical separation [6].
Nano-sized metal oxides have been widely studied for this application [7,8]. TiO2 is the
most popular metal oxide photocatalyst owing to its optoelectronic properties, stability, and
relative non-toxicity [9–11]. Another metal oxide that is comparable to TiO2 is ZnO [5,12].
ZnO is an n-type wide bandgap semiconductor (3.37 eV) with a high exciton binding
energy at room temperature, and high electron mobility. It is also non-toxic, low-cost, and
abundant [5].

Researchers have used various methods to synthesize ZnO nanostructures [13]. These
methods can be broadly categorized into solution-based and vapor phase methods. Some
examples of solution-based methods are sol-gel [14], hydrothermal [15,16], electrochemical
deposition [17,18], and coprecipitation [19]. In these methods, the morphology and size
of the nanostructures can be controlled by various experimental parameters, types of
solvents, and reaction conditions [12,17]. Solution-based methods are simple and less
energy consuming than the vapor phase methods, such as physical vapor deposition,
chemical vapor deposition, thermal evaporation, and pulsed laser deposition [12]. However,
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both categories involve precursor chemicals, high temperatures, and/or vacuum systems,
which can be costly, energy consuming, and toxic to the environment.

In recent years, there has been much interest in environmentally benign nanostructure
synthesis methods [20]. Especially in nano-photocatalysis, where the intended application
is environmental remediation, it is desired that their synthesis approaches do not involve
the use of toxic chemicals [21]. Additionally, ZnO nano-photocatalyst synthesis meth-
ods need to be cost-effective to promote their wide-spread use in water treatment. This
means the synthesis methods should be simple and not require expensive equipment [21].
One such green nanostructure approach is the hot water treatment (HWT) method which
simply involves the immersion of metal surfaces in hot deionized (DI) water [22]. In a
previous work, we reported the synthesis of ZnO nanostructures by HWT of Zn and its
use for the photocatalytic degradation of methylene blue (MB) [23]. One of the signifi-
cant advantages of this method is that it does not require any chemical additives [22]. In
addition, the temperature used in HWT (75–95 ◦C) is much lesser than the conventional
nanostructure synthesis methods [22]. Another precursor-free and water-based ZnO nanos-
tructure synthesis method is the submerged photosynthesis of crystallites (SPSC) reported
by Jeem et al. [24] and Zhang et al. [25]. They showed that ZnO nanostructures could be
synthesized just by the immersion of Zn plates in room temperature DI water and exposure
to UV light. They used a submerged liquid plasma process as a surface pretreatment to
introduce ZnO seed layers, which initiated the nanostructure growth process [24,25]. The
growth process involved hydrothermal as well as photoinduced reactions [24,25].

This work is inspired by the SPSC process and investigates if ZnO nanostructure
growth can occur in situ in the organic dye solution, which one wants to degrade via pho-
tocatalysis. In other words, we designed a single-step approach where the photocatalyst
synthesis and its application happen simultaneously. For this, we immersed a Zn plate
in an aqueous MB solution at room temperature and exposed it to UV light. We used a
simple and low-cost sandblasting process as a surface pretreatment, which introduced
micro-scale roughness on our Zn surfaces [26]. Our results show that leaf-shaped ZnO
nanostructures are formed when Zn surfaces are immersed in MB. We did not observe a
significant difference in the nanostructure growth with or without UV light. Nevertheless,
we observed the degradation of MB due to the photocatalytic activity of the nanostructures.
The main advantages of this nano-photocatalyst synthesis method are that it does not
require high temperatures or any chemical additives, and it is simple, low-cost, and envi-
ronmentally friendly. Moreover, the ZnO nanostructures in our photocatalyst design are
attached to the Zn surface. Researchers have given much emphasis to the immobilization
of photocatalysts to avoid agglomeration of the nanostructures, secondary pollution, and
nanostructure reclamation from the water, which could be expensive [27,28]. Our method
achieves photocatalyst immobilization in a single step. The materials characterization,
possible growth mechanisms, and photocatalytic performance of the ZnO nanostructures
are discussed.

2. Results and Discussion
2.1. Materials Charecterization

Scanning electron microscopy (SEM) was used to investigate the Zn plate surface
before and after its immersion in MB solution. The micro-scale roughness introduced on the
Zn surface by sandblasting can be observed in Figure 1a. Figure 1b,c show the formation
of leaf-shaped ZnO nanostructures on the Zn surface after it was immersed in MB for 4 h,
with and without UV irradiation, respectively. In both samples, the nanostructures had
approximate lengths ranging from 300 to 600 nm and widths ranging from 150 to 250 nm.
Low magnification images of both samples show some irregular structures, which could be
amorphous Zn(OH)2. Overall, the sample surfaces are uniformly covered with leaf-shaped
nanostructures. Figure 1d,e show the ZnO nanostructures grown on Zn surfaces immersed
in pure DI water, with and without UV light, respectively.
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surfaces immersed in MB in the dark, and DI water with and without UV light showed a 
similar chemical composition (Figures S2–S4). 

 
Figure 2. (a) SEM image and (b–d) corresponding EDS maps of ZnO nanostructures grown on Zn 
surface in MB and with UV light, and (e) elemental composition of the same. 
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Figure 1. SEM images of (a) Zn surface after sandblasting. ZnO nanostructures on Zn surface grown
(b) in MB with UV light, (c) in MB without UV light, (d) in DI water with UV light, and (e) in DI
water without UV light. The insets show higher magnification images of the same.

The morphology of the nanostructures grown in DI water is the same as in MB.
However, the density of nanostructure growth is less in DI water, both in the presence and
absence of UV light. Most of the DI water nanostructures had lengths ranging from 100 to
200 nm and widths ranging from 50 to 200 nm, but some structures with sizes similar to
those grown in MB were also observed. The comparison of ZnO nanostructure growth in
the two mediums (MB and DI water) and the presence and absence of UV light are further
discussed in Section 2.2.

Energy dispersive X-ray spectroscopy (EDS) was used to analyze the chemical com-
position of the Zn surfaces. EDS mapping of the ZnO nanostructures grown in MB with
UV light showed an even distribution of Zn and O (Figure 2a–d), indicating the growth of
stoichiometric ZnO. The higher atomic percentage of Zn is most likely due to the underly-
ing Zn plate (Figure 2e). The compositional analysis of the irregularly shaped structures
showed a higher O ratio, possibly due to Zn(OH)2 (Figure S1). The EDS results of Zn
surfaces immersed in MB in the dark, and DI water with and without UV light showed a
similar chemical composition (Figures S2–S4).
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Figure 2. (a) SEM image and (b–d) corresponding EDS maps of ZnO nanostructures grown on Zn
surface in MB and with UV light, and (e) elemental composition of the same.

X-ray diffraction (XRD) was used to analyze the crystal structure of the ZnO nanostruc-
tures. Figure 3a shows the XRD profile of the sandblasted Zn surface before its immersion
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into MB. The peaks centered at 36.2◦, 38.9◦, 43.1◦, and 54.2◦ could be attributed to (002),
(100), (101), and (102) crystal planes of Zn (crystallography open database entry 9008522).
After 4 h of immersion in MB, we observed the appearance of a peak at 34.4◦, which can
be attributed to the (002) crystal plane of hexagonal wurtzite ZnO (crystallography open
database entry 1011258). No other peaks were observed; hence, we could not confirm the
presence of Zn(OH)2 from XRD.
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X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical
composition of the samples. Figure 4a shows the XPS survey spectrum of the Zn surface
immersed in MB and exposed to UV light for 4 h. Figure 4b shows the Zn 2p XPS spectrum.
Since the Zn 2p3/2 peaks of elemental Zn and ZnO are very close, it is difficult to distinguish
between elemental Zn and ZnO on the sample. Hence, Auger Zn LMM spectrum of the
sample was obtained (Figure 4c) [29]. The Auger peak could be fitted to two peaks centered
at kinetic energies of 987.6 eV and 990.4 eV [29]. The former is attributed to ZnO and the
latter to elemental Zn. Thus, XPS also confirmed the formation of ZnO nanostructures on
the surface of the Zn plate. The O 1s spectrum (Figure 4d) of the sample could be fitted to
two peaks, one centered at 530.29 eV and the other at 532.11 eV. The lower binding energy
peak is attributed to O2− in the stoichiometric wurtzite ZnO lattice, whereas the higher
binding energy peak can be attributed to OH or H2O groups attached to Zn [30]. Hence,
the XPS analysis also indicates the presence of Zn(OH)2 on the sample, which could be the
irregularly shaped white layers observed in the SEM images [25,29].

The optical bandgap of the ZnO nanostructures was estimated using UV-Vis diffuse
reflectance spectroscopy, Kubelka-Munk function (F(R)), and Tauc plot [31,32]. The diffuse
reflectance measurement of the ZnO nanostructures synthesized by the immersion of Zn
plates in MB and exposed to UV light for 4 h is shown in Figure 5a. F(R) is given by
Equation (1), where α is the absorption coefficient, s is the scattering coefficient, and R is
the diffuse reflectance. Here, we assume that s does not depend on wavelength and is,
therefore, a constant. The absorption coefficient is related to the bandgap according to the
Tauc equation (Equation (2)). Here, h is Planck’s constant, ν is the frequency, A is a constant,
Eg is the bandgap energy, and n is 1

2 for direct bandgap. Hence, the Tauc equation could
be rewritten as Equation (3). Figure 5b shows the graph plotted according to Equation (3).
The optical bandgap of the ZnO nanostructures was estimated by extrapolating the linear
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portion of the plot to the x-axis, where (F(R).hν)2 is zero. The value of the bandgap obtained
from the plot was 3.08 eV, which is lower compared to the bandgap of bulk ZnO (3.37 eV).
Further investigation needs to be done to determine the reason for the lower bandgap;
however, it could be due to defects in the ZnO nanostructures [33,34].
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2.2. Nanostructure Growth Mechanism

The chemical reactions involved in the room-temperature growth of ZnO nanostruc-
tures on a Zn plate are explained by Jeem et al. [24] and Zhang et al. [25]. In their work,
both hydrothermal (Equations (4)–(8)) and photoinduced reactions (Equations (9)–(13))
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were involved in the synthesis of ZnO nanostructures. The latter produced OH·, which
converted into OH−, which is important for the formation of ZnO [25].

Zn→ Zn2+ + 2e− (4)

2H2O + 2e− → H2 + 2OH− (5)

Zn2+ + 2OH− → Zn(OH)2 (6)

Zn(OH)2 + 2OH− → Zn(OH)4
2− (7)

Zn(OH)4
2− → ZnO + 2OH− + H2O (8)

ZnO + hv→ e− + h+ (9)

H2O + h+ → OH· + H+ (10)

ZnO + H2O + 2h+ → Zn2+ + 2OH· (11)

e− → eaq
− (12)

OH· + eaq
− → OH− (13)

In our work, the SEM images show that ZnO nanostructure growth in MB is very simi-
lar in the presence and absence of UV light. Based on this, we assume that hydrothermal re-
actions are dominant during ZnO nanostructure growth in our study. Reactions (1) and (2)
are the anodic (oxidation) and cathodic (reduction) reactions, respectively, involved in
the corrosion of Zn metal in water [25]. We believe that the micro-rough surface created
by sandblasting acts as a corrosion micro-cell, as described by Zhang et al. [25]. In the
experiments involving UV light, we observe the degradation of MB. This indicates that
light does produce hydroxyl radicals. However, they do not seem to participate in the
growth of ZnO, at least in this experiment duration (4 h). Longer treatment times may yield
different results [24,25], which will be explored in future studies.

We also want to address two other observations from our experiments. The first
one is the presence of Zn(OH)2 on our sample surfaces as indicated by EDS and XPS
analysis. According to the chemical reactions listed above, Zn(OH)2 is formed as an
intermediate during the formation of ZnO. The conversion of Zn(OH)2 to ZnO requires an
alkaline environment. Hence, Zn(OH)2 could persist on the sample surface if enough OH−

were not available for it to form ZnO [25,35]. Another observation is the enhancement in
nanostructure growth in MB compared to in DI water. Wang et al. have reported that the
presence of organic dyes can affect the growth direction of ZnO nanostructures during
hydrothermal synthesis [36]. Their results show that the presence of anionic dyes during
the growth of ZnO nanowires led to a reduction in the growth of ZnO nanowires along
the c-axis. This was due to the electrostatic attraction between the dye anions and the Zn2+

ions [36]. We hypothesize that the presence of dissolved MB cations in the vicinity of the Zn
surface could be responsible for the electrostatic attraction of more OH− ions. This could
increase the interactions between Zn2+ and OH− and thus enhance the growth of ZnO.

2.3. Photocatalytic Degradation of Methylene Blue

Figure 6 shows the normalized concentration (C/C0) of MB vs. time plot during
different degradation experiments. The curves show average C/C0 values from three exper-
iments, and their standard deviations are shown in the error bars. Please see Figures S5–S7
for the UV-Vis profiles from all experiments. There was no change in MB concentration be-
fore and after the 30 min stirring in the dark. Two control experiments were performed, one
where only MB was exposed to UV light and the other where the Zn plate was immersed in
MB but not exposed to UV light. MB degradation was negligible in both scenarios. These
results show that the degradation observed when Zn plates were immersed in MB and
exposed to UV light is due to the photocatalytic effect of the ZnO nanostructures on the
surface of the Zn plate. The average percentage degradation of MB is 76% in 4 h. According
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to the Langmuir-Hinshelwood mechanism, photocatalytic degradation can be modeled
as pseudo-first order reaction described by the equation Ln(C0/C) = kt, where k is the
degradation rate constant. Hence, Ln(C0/C) was plotted against time and linearly fitted to
find the degradation rate constant from the slope, which is 0.3535 h−1.
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Florica et al. [37] reported a similar study in which ZnO nanowires were synthesized by
a precursor-free thermal oxidation method on Zn foils and were used for the photocatalytic
degradation of MB. They reported a percentage degradation of 57% in 320 min and a
degradation rate constant of 0.1542 h−1. However, it is worth mentioning that comparing
photocatalyst performances based only on degradation percentage and rate constant is not
the best practice. Various other factors affect a photocatalyst’s performance, such as its
morphology and crystal structure, the wavelength and intensity of the light source, and the
type, concentration, pH, and volume of the organic dye used in the experiments [17,38–41].
Table 1 shows some works that reported the synthesis of ZnO nanostructures that are
immobilized on various surfaces. The photocatalytic degradation of MB and some other
organic dyes are also shown. We have limited this table to pure ZnO nanostructures and
excluded reports that modified ZnO nanostructures by doping or forming heterojunctions
with other materials.

Here, we acknowledge that various methods can control the morphology [42], crystal
structure [17,43,44], bandgap [45–47], and defects [48,49] of ZnO nanostructures by altering the
reaction conditions, thereby fine-tune its photocatalytic performance. The main distinction of
this work is that ZnO nanostructures are synthesized on a micro-rough Zn plate without using
any chemical additives, precursors, or high temperatures. Moreover, photocatalyst synthesis
and its application for photocatalytic dye degradation co-occur, which makes this process
extremely simple and less energy consuming. This result is of significant importance in the
current scenario of increased interest in cost-effective, energy-efficient, and environmentally
friendly nanostructure synthesis methods for photocatalytic applications.

One of the limitations of this work is that the ZnO nanostructure growth mechanism is
not fully understood. In a future study, we will investigate the how the ZnO nanostructure
growth is affected by the time of immersion of the Zn plates in MB. It is important to under-
stand if the nanostructures continue to grow during longer immersion times, which may
alter their photocatalytic performance. We will also investigate the effect of concentration,
pH, and type of organic dye on the photocatalytic activity, as well as the photocatalytic
degradation mechanism. We also plan to test the durability of the nanostructures against
photocorrosion. Understanding the growth mechanism and durability determines the
long-term reusability of the ZnO nanostructures which is crucial for photocatalytic water
treatment applications.
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Table 1. Different methods to synthesize ZnO nanostructures immobilized on different surfaces and
their photocatalytic degradation performances.

ZnO Synthesis

Organic Dye
Solution (Type,

Volume,
Concentration)

Light Source
(Wavelength
and Power)

Best
Photocatalytic
Performance

or Rate
Constant

Ref.

Method
Nanostructures

immobilized
on

Materials used Reaction
parameters

Hydrothermal Si and glass
Zinc acetate, zinc

nitrate, hexam-
ethylenetetramine

60–150 ◦C, 13 h
(approx.)

Methylene Blue,
12 mL, 10 mM

Fluorescent
lamp, 375 nm,

18 Watts

45% in 6 h,
0.0021 min−1 [50]

Hydrothermal PDMS/PET
Zinc acetate, zinc

nitrate, hexam-
ethylenetetramine

60–90 ◦C, 10 h
(approx.)

Methylene Blue,
40 mL, 10 mM

Fluorescent
lamp, 375 nm,

18 Watts

50%
degradation in

6 h,
0.0018 min−1

[51]

Thermal
oxidation Zn Nil 500 ◦C, 12 h Methylene Blue,

35 × 10−6 M

UV lamp,
312 nm,
15 Watts

57%
degradation in

320 min,
0.1542 h−1

[37]

Spray
pyrolysis

FTO coated
glass

Zinc acetate,
methanol 425 ◦C

Methylene Blue,
volume not

reported, 1 mM

UV light,
wavelength

and power not
reported

98.1%
degradation in
120 min, rate
constant not

reported

[52]

Anodization Zn

Potassium
bicarbonate,

orthophosphoric
acid, hydrochloric
acid, oxalic acid,

and sodium
hydroxide

10–40 V DC for
anodization,
pre and post

treatment
annealing at

300 ◦C.

Phenol, 50 mL,
5 ppm

UV lamp,
254 nm, 6

Watts

82%
degradation in

4 h, 0.44 h−1
[17]

Anodization
and O2 plasma

annealing
Zn Potassium

bicarbonate

1 V DC,
pretreatment
annealing at
300 ◦C and

post treatment
thermal and
O2. plasma
annealing

(200–350 ◦C)

Phenol, 50–80 mL,
5–10 ppm

UV lamp,
254 nm, 6

Watts

70%
degradation in

4 h, 0.31 h−1
[35]

Hydrothermal Zn

Zinc nitrate,
hexamethylenete-

tramine,
methylamine,

potassium
hydroxide

120–180 ◦C,
2–12 h

Rhodamine B,
10 mL, 1 × 10−5 M

UV lamp,
wavelength

and power not
reported

80%
degradation of
rhodamine B in

3 h, rate
constant not

reported

[15]

3. Materials and Methods
3.1. ZnO Nanostructure Synthesis

Zn plates (Purchased from amazon.com, USA, manufacturer name: LTKJ Ltd.) of
99.9% purity and 0.3 mm thickness were cut into pieces of dimension 25 mm × 25 mm.
Sandpaper of size p3000 was used to clean any surface contamination on the plates. Then,
the Zn plates were sandblasted using Al2O3 abrasives of size 120 grit at a pressure of 80 psi
to introduce micro-scale roughness on the plate surface. After sandblasting, they were
cleaned by ultrasonication in acetone, isopropyl alcohol, and DI water for 10 min each.
After this, the Zn plates were immersed in an aqueous solution of methylene blue (SPI
supplies, West Chester, PA, USA) (50 mL) at a concentration of 2.5 ppm (mg/L) contained
in a glass beaker. The solution was stirred for 30 min in the dark using a magnetic stirring
bar to establish adsorption–desorption equilibrium. Then, the Zn plates and MB were

amazon.com


Catalysts 2022, 12, 1657 9 of 12

irradiated with 254 nm UV light from an 8-Watt UV lamp fixed at a vertical distance of
15 cm, for 4 h. Three control experiments were conducted to investigate the effects of UV
light and MB on the ZnO nanostructure growth: (1) Zn plates were immersed in MB and
left in the dark for 4 h, (2) Zn plates were immersed in pure DI water and exposed to UV
light, and (3) Zn plates were immersed in pure DI water and left in the dark for 4 h. In
all experiments, MB/DI water was continuously stirred throughout the experiment and a
cold-water bath was used to prevent the increase in water temperature in the beaker.

3.2. Materials Characterization

SEM (JOEL JSM-7000F, Tokyo, Japan ) along with EDS (EDAX Element, Pleasanton,
CA, USA) were used to analyze the morphology and map the chemical composition of
the Zn surfaces. XRD (Rigaku Miniflex 600, Tokyo, Japan) was used to analyze the crystal
structure, XPS (Thermo Scientific K-Alpha, Waltham, MA, USA) was used to investigate
the surface chemical states of the samples. The sample surfaces were etched for 10 s, to
clean the surfaces before XPS analysis. UV-Vis diffuse reflectance spectroscopy (Shimadzu
UV-3600, Kyoto, Japan) was used to estimate the bandgap of the ZnO nanostructures.

3.3. In Situ Photocatalytic Degradation Experiment

The concentration of MB at regular intervals of time was measured using UV-Vis
absorbance spectroscopy (Agilent Carry 60, Santa Clara, CA, USA). A total of 3 mL of MB
was retrieved from the as-prepared solution, after 30 min of stirring in dark, and every
hour after the UV light was switched on. Beer-Lambert law was used to estimate the
concentration of MB from the UV-Vis peak (at 664 nm) absorbance values. If C0 represents
the initial concentration of MB and C, the concentration at a particular time, the percentage
degradation of MB was calculated using ((C − C0)/C0) × 100 [53].

4. Conclusions

Zn plates were immersed in an aqueous solution of MB, and an in situ ZnO nanostructure
growth and UV photocatalytic effect were investigated. Leaf-shaped ZnO nanostructures were
formed on the surface of the Zn plate both in the presence and absence of UV light. In the
presence of UV, the ZnO nanostructures acted as a photocatalyst and degraded MB. The average
MB degradation was 76% in 4 h. The results show that nanostructured ZnO photocatalysts
could be synthesized simply by the immersion of Zn plates in MB solutions, without any
chemical additives or heating. Hence, this is a low-cost, low-energy, and environmentally
benign method to synthesize ZnO nanostructures for photocatalytic applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12121657/s1, Figure S1: (a) SEM image and (b–d) corre-
sponding EDS maps of irregularly shaped ZnO nanostructures grown on Zn surface in MB and
with UV light, and (e) elemental composition of the same. Figure S2: (a) SEM image and (b–d)
corresponding EDS maps of ZnO nanostructures grown on Zn surface in MB and without UV light,
and (e) elemental composition of the same. Figure S3: (a) SEM image and (b–d) corresponding EDS
maps of ZnO nanostructures grown on Zn surface in DI water and with UV light, and (e) elemental
composition of the same. Figure S4: (a) SEM image and (b–d) corresponding EDS maps of ZnO
nanostructures grown on Zn surface in DI water and without UV light, and (e) elemental composition
of the same. Figure S5: Time dependent UV-Vis spectra of MB with ZnO nanostructures and UV
light. Figure S6: Time dependent UV-Vis spectra of MB with ZnO nanostructures without UV light.
Figure S7: Time dependent UV-Vis spectra of MB with UV light only.
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