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Abstract: Flux formulations are specified to target chemical and physico-chemical parameters. Chem-
ical parameters set flux element transfer behaviours and weld metal oxygen contents. Physico-
chemical parameters such as slag viscosity, surface tension and melting range are targeted to ensure
an acceptable weld bead profile and surface appearance. Slag detachability is an important physico-
chemical property required to ensure high welding productivity, smooth weld bead surface and no
slag entrapment. Here, bead-on-plate welding tests were made with and without metal powder
additions, including aluminium powder as a de-oxidiser. Difficult slag detachability was observed
in weld runs made with metal powder additions. Mineralogy of the post-weld slags, and thermo-
chemical calculations, show that the flux was modified due to the aluminothermic reduction of MnO
and SiO2 from the slag to form alumina. Increased quantities of spinel phase were identified in
the post-weld slag samples, at the weld pool–slag interface. The combined effect of increased slag
viscosity, from increased spinel in the slag, and lowered weld pool solidus temperature, resulted in
the formation of a rough bead surface morphology, which, in turn, caused mechanical fixation of the
slag to the weld bead. Flux modification to higher CaF2 content should ensure that higher quantities
of spinel phase can be tolerated in the slag.

Keywords: slag; flux; phase chemistry; fluoride; spinel; mineralogy; oxy-fluoride; glass

1. Introduction

Submerged arc welding (SAW) consists of complex interactions of physical, electrical
and chemical effects in the arc cavity [1,2]. In addition to the machine input selections of
current, weld wire diameter, voltage, travel speed, current polarity and electrode (weld
wire) extension, the flux chemistry and its chemical effects on the molten flux (slag) are
important process input selections [3,4]. The welding flux performs several process func-
tions: it forms a slag (molten flux) layer around the arc plasma to shield the arc from
atmospheric oxygen and nitrogen, it limits weld metal hydrogen absorption from moisture,
it limits arc energy losses from the arc to the environment by forming an opaque low
conductivity slag boundary around the arc cavity, and it transfers alloying elements to
the weld metal [3,4]. In carbon steel SAW, the weld pool manganese and silicon contents
are controlled via flux formulation, in combination with the weld wire and base metal
chemistries [3–5]. Micro-alloying may also be performed via the molten flux; for example,
the addition of Ti to the weld pool [3,4]. Significant quantities of fluoride minerals, typically
CaF2, are added to the flux to ensure that the flux melts at approximately 50 ◦C lower
than the weld metal [6]. For carbon steel, this translates to a relatively low flux melting
temperature, as the steel solidus temperature is in the order of 1480 ◦C; therefore, the flux
should be sufficiently molten at approximately 1400 ◦C. This temperature guideline appears
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to be selected to ensure that the slag solidifies after the weld pool steel has solidified [6].
The maximum weld pool temperature has been reported as 2000 ◦C [7,8]. Due to this wide
temperature range applied to the slag in SAW, the slag properties also change widely across
this temperature range. The flux is also formulated to be a “short” or “long” slag, depend-
ing on the welding application [9,10]. Most fused fluxes form “short” slags since their
compositions are selected close to the multi-component system’s eutectic composition [10].
Consequently, the difference in the slag liquidus temperature and solidus temperature is
small and the slag transitions over a small temperature interval from fluid to viscous [9–11].
Most agglomerated fluxes form “long” slags with the opposite melt characteristics to a
“short” slag [11]. In addition to its role in setting the liquidus and solidus temperatures
in the slag, CaF2 is also used to set the process physico-chemical properties of the slag to
enhance its process application. For example, the slag viscosity and surface tension are
also influenced by CaF2 as the F− serves as network modifier anion [12]. Several recent
studies are available on SAW flux development, linking physico-chemical properties of
the molten flux(slag) to flux input compositions via regression studies and fundamental
slag structure studies, respectively [13,14]. However, these studies were not focused on the
multi-component system of CaF2-SiO2-Al2O3-MgO, relevant to this study. Furthermore,
even though fluoride-based fluxes are used in the continuous casting of steel and electro
slag refining (ESR), the target compositions in these types of fluxes differ substantially from
the flux composition ranges as applied in SAW with either much lower or much higher
CaF2 content and high CaO contents [15,16].

Another critical physical parameter is slag detachability from the weld metal. Good
slag detachability is required to ensure high welding productivity because no extra time
should be used to mechanically remove any slag sticking to the weld metal. Additionally,
in multi-pass welding, an easily detachable slag is critical to prevent any contamination of
subsequent weld runs due to remnant slag added into the weld pool [17]. Fundamental
reasons given for good slag detachability vary from ensuring a large difference in thermal
expansion between the solid slag and weld metal; to preventing the formation of excessive
quantities of high-melting-point phases such as spinel (MgO·Al2O3), Cr2O3 or perovskite
(CaTiO3); to the prevention of formation of a chemical bond via interlayer formation
between the slag and weld metal; and to ensuring that a low-strength slag is formed
from the molten flux [3,7,17–20]. Conflicting findings have been reported; for example,
in one study, perovskite in the slag was found to be detrimental to slag detachability [20],
and in another, perovskite was recommended to aid in slag detachability due to its higher
coefficient of thermal expansion, as compared with the underlying high Ni–Cr alloy weld
metal [21]. In some instances, a small quantity of solid phase is added to improve slag
detachability. For example, up to 2 mass% ZrO2 is added to basic fluxes to compensate for
their similar thermal expansion coefficient to that of the steel weld metal [3]. Spinel can
also be used to induce micro-stresses in the glass phase to enhance slag detachability due to
its different thermal expansion coefficient to the solidified glass phase [9]. It is well stated
that the application of the weld flux in the particular welding set-up must be investigated
in the welding tests to make any conclusions on slag detachability because the interaction
of chemical and welding parameters in the process determines slag detachability [18].

The addition of CaF2 in the flux formulation is also used to control the weld metal ppm
O and limit hydrogen pick-up into the weld metal. Although the weld pool and arc cavity
are isolated from the atmosphere, oxygen is added into the weld pool via the dissociation
of oxides in the flux. Oxides decompose in the arc plasma due to high temperatures, in the
order of 2000 ◦C to 2500 ◦C [22,23]. Oxygen is adsorbed onto molten weld wire droplets
in the arc plasma and transferred into the weld pool via the molten wire droplets [24,25].
The rank of oxide stability in the arc plasma was measured from least stable to most stable
as MnO and SiO2, MgO, Al2O3, TiO2, Na2O, K2O, and CaO [24]. The effect of fluorides
in the flux is to lower the PO2 in the arc cavity by forming fluorine-based compounds via
reactions similar to reaction (1) between SiO2 and CaF2 [26,27]. Similarly, the PH2 is lowered
to limit hydrogen pick-up into the weld metal [28,29]. Hydrogen pick-up in the weld pool
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is also limited by reactions of water vapour and CaF2, according to reaction (2), and by
formulating the flux chemistry for increased hydrogen dissolution capacity [27–29].

SiO2(l) + 2CaF2(g)↔ 2CaO(s) + SiF4(g) (1)

H2O(g) + CaF2(g)↔ CaO(s) +2HF(g) (2)

The empirically determined trend of flux basicity (BI) vs. ppm O in the weld metal
is generally used to design fluxes for the target oxygen content in the weld metal. The BI
expression is shown in Equation (3) in mass% values [30].

BI = [CaF2 + CaO + MgO + BaO + SrO + Na2O + K2O + Li2O + 0.5(MnO + FeO)]/[SiO2 + 0.5(Al2O3 + TiO2 + ZrO2)] (3)

By ensuring that the flux solidus temperature is lower than the weld pool steel solidus
temperature, maximum time is allowed for chemical interaction between the flux and
the underlying weld pool steel. Increased reaction time between the weld pool steel and
covering slag is important to ensure that oxide inclusions have more time to float out of the
weld pool steel, to the slag–weld pool interface to ensure clean steel in the weld metal [31].
The flux chemical composition is usually not changed significantly during slag formation
in SAW, although some FeO is added due to the oxidation of steel Fe to FeO [22,32–35].
In our recent studies, aluminium powder was applied in the SAW process as a de-oxidiser
element to increase metal powder alloying in the weld pool [36–39]. The added aluminium
powder significantly changed the flux chemistry via reduction reactions of oxides of SiO2
and MnO, similar to reaction (4) for MnO reduction by aluminium. The increased Al2O3
content in the slag has important effects on the physico-chemical properties of the slag.

3MnO(l) + 2Al(l)↔ 3Mn(l) + Al2O3(s) (4)

The objective of this study was to investigate slag phase chemistry modifications due
to the application of aluminium powder in the alloying of carbon steel weld metal and use
this information to interpret slag detachability differences. The post-weld slag chemistry is
discussed with the aid of calculations in FactSage 7.3 thermochemical software, using the
FToxid database [40,41].

2. Materials and Methods

SAW welding tests were made as bead-on-plate runs onto steel plates of 350 mm in
length, 12 mm plate thickness and 300 mm plate width. Weld heat input was 2.0 kJ/mm
(500 A, 28 V, 42 cm/min) welded DCEP (direct current electrode-positive) with a 3.2 mm di-
ameter wire. Structural steel grade EN 10025-2 was used as a base plate material. The chemi-
cal analyses of the base plate and weld wire are summarised in Table 1. Major element levels
in the weld wire analysis are from the supplier’s specification sheet, supplied by Afrox
Ltd., Johannesburg, South Africa. The base plate steel was analysed by optical emission
spectroscopy (OES), model SpectroMax XF, 2018, from SPECTRO Analytical Instruments
GmbH, Kleve, Germany. The oxygen content in the base plate and weld wire was analysed
by combustion method.

Table 1. Composition of steel base plate and weld wire used in welding tests.

Sample %C %Si %Mn * O %Al %P %S %Ti %Cu %Cr Balance

Plate 0.120 0.155 1.340 7 0.067 0.019 0.007 0.005 0.030 0.160 Fe

Wire 0.110 0.137 0.990 3 0 0.009 0.023 0 0.140 0 Fe

* ppm.

Commercial agglomerated flux of the composition presented in Table 2 was used in
the welding experiments, following a previous detailed study on a selection of commercial
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agglomerated fluxes [42]. This is an aluminate basic flux (basicity index (BI) = 1.4) and was
extensively analysed as reported previously [42]. The main consideration in the selection
of this flux is its likely thermodynamic stability in the presence of aluminium powder as a
de-oxidiser element. The metal powder additions used as additions in the SAW tests were
sourced as Al (99.7% Al) supplied by Sigma-Aldrich, St. Louis, MO, USA, Ti (99.5% Ti)
supplied by PLS Technik GmbH & Co., Niedernberg, Germany, and Cu (99.8% Cu) supplied
by Goodfellow, Hintingdon, UK.

Table 2. Bulk chemistry of flux used in welding tests (mass%).

%MnO %CaO %SiO2 %Al2O3 %CaF2 %MgO %FeO %TiO2 %Na2O %K2O

6.8 0.1 19.6 24.9 17.9 22.2 2.4 1.0 1.6 0.2

The welded plate was sectioned to remove cross-section samples of the weld metal
for major element analyses by OES, and total oxygen content analyses were performed
by the combustion method. Due to higher concentrations of Ti and Al in the weld metal,
compared with low-carbon steel, the %Al and %Ti were analysed by ICP-OES (inductively
coupled plasma optical emission spectrometry). The weld metal sample was digested by a
three-acid digestion method, using HNO3, HCl and HF. The weld metal results confirmed
significant alloying of the weld metal from the added metal powders, and also increased
%Mn and %Si in the weld metal due to the aluminothermic reduction of MnO and SiO2
from the flux [36,38]. Due to significant changes measured in the bulk compositions of post-
weld slags, compared with the original flux chemistry, these changes are quantified and
interpreted in this study. Furthermore, slag removal from MP1 and MP3 welds, made with
metal powder additions were difficult, requiring light mechanical impact. In comparison,
the slag from the BC weld, welded in the absence of metal powder additions, effectively
self-removed without the requirement of any mechanical impact.

The post-weld slag bulk chemistry and mineralogy were analysed. Slag bulk chemistry
was analysed by inductively coupled plasma optical emission spectrometry (ICP-OES).
Sample digestion in HCl and HF was used for major element analysis, and sample fusion
in Na2O2 and Na2CO3, with subsequent digestion in HCl was used for minor element anal-
ysis. The slag F-content was analysed by the titration method, following sample digestion
in HClO4. Slag crystallinity was analysed by XRD (X-ray diffraction) analyses. The XRD
samples were prepared according to the standardised Panalytical backloading system,
which provides a nearly random distribution of the particles. The samples were anal-
ysed using a PANalytical X’Pert Pro powder diffractometer (Malvern Panalytical, Almelo,
The Netherlands) in θ–θ configuration with an X’Celerator detector and variable divergence
and fixed receiving slits with Fe-filtered Co–Kα radiation (λ = 1.789 Å). The mineralogy was
determined by selecting the best-fitting pattern from the ICSD database to the measured
diffraction pattern, using X’Pert Highscore plus software (version 4.9).

Phase chemistry of the slag phases in the sample polished sections were assessed by
SEM (scanning electron microscopy). Phase chemistry analysis was measured by using a
Zeiss crossbeam 540 FEG (field emission gun) scanning electron microscope. EDX (energy
dispersive X-ray) analyses were performed at 20 kV and 5.6 mm working distance. The SEM
analyses were performed at the edge of the slag surface which was in contact with the weld
metal during welding. Therefore, comparison of the slag SEM analyses at this interface to
the bulk slag chemistry should show up any major composition differences that occurred
due to the welding process.

3. Results

The post-weld slag bulk chemistry in Table 3 illustrates significant chemistry changes
in the MP1 and MP3 slags when compared with the Base Case (BC) slag. These changes
are due to the addition of metal powder to the weld pool, as compared with the Base Case
(BC) slag formed in the absence of metal powder additions [36–39]. Mainly, MnO and SiO2
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decreased and Al2O3 and TiO2 increased, as shown in the Table 3 analyses for MP1 and
MP3, relative to the BC slag analysis. The increase in Al2O3 is due to the use of aluminium
metal powder as a de-oxidiser metal in the weld pool, and due to the aluminothermic
reduction of MnO and SiO2 [36,38]. The increased TiO2 content is due to the oxidation of Ti
to its oxide. Although some Cu was analysed in the MP3 bulk slag, the presence of copper
in the slag SEM phase analysis was not confirmed. Therefore, the Cu analysed in the bulk
slag chemistry was most likely due to metallic Cu loss to the slag.

Table 3. Bulk chemical compositions of post-weld slags (mass%).

Sample %MnO %CaO %SiO2 %Al2O3 %CaF2 %MgO %FeO %TiO2 %Na2O %K2O

BC 6.5 2.3 19.8 25.9 14.3 23.3 4.4 1.0 2.2 0.2

MP1 4.6 3.4 15.1 31.6 11.0 23.2 4.0 5.4 1.6 0.2

MP3 3.8 2.6 11.7 34.8 8.6 18.3 4.4 14.4 1.3 0.2

Figure 1 illustrates that the XRD analyses identified similar crystalline phases in all the
post-weld slags, namely, spinel (MgAl2O4), corundum (Al2O3), fluorite (CaF2), periclase
(MgO), quartz (SiO2) and the NaMg3AlSi3O10F2 oxy-fluoride phase. The characteristic
hump in the count rate values at low 2Θ values indicates the presence of amorphous phase.
Figures 2–6 display the typical phase assembly in BSE (backscattered electron) images
in each post-weld slag sample, and the associated phase compositions analysed by SEM.
Although the BC slag sample was previously investigated in detail, a new area of analysis
is shown in Figure 2 to show the unaltered molten flux for comparison with the altered
slags from the MP1 and MP3 tests shown in Figures 3–6 [42].
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Table 4. SEM analyses of marked phase positions in Figure 2 (mass%).

Position %Al %Mg %Ca %F %Si %Ti %Mn %Fe %Na %K %O Phase

1 35.1 15.9 0 0 0 0.3 2.3 0 0 0 46.4 Spinel

2 35.1 15.8 0.1 0 0 0.3 2.2 0.3 0 0 46.2 Spinel

3 35.1 15.9 0 0 0 0.4 2.2 0.3 0 0 46.0 Spinel

4 35.1 16.0 0 0 0 0.4 2.3 0.4 0 0 45.8 Spinel

5 4.2 11.3 14.6 10.5 13.9 0.6 6.0 0.5 2.9 0 35.5 Glass

6 3.3 13.9 13.3 11.4 13.9 0.6 6.0 0.3 2.4 0 34.8 Glass

7 7.4 16.2 7.0 10.9 14.7 0.8 2.5 0 2.4 0.7 36.9 Glass

Bulk Slag 13.7 14.1 9.0 7.0 9.2 0.6 5.0 3.4 1.6 0.2 36.1

The presence of spinel crystals in the Al-Mg-Ca-F-Si-Ti-Mn-Fe-K-Na-O oxy-fluoride
matrix glass is confirmed in the analyses summarised in Table 4, for the marked phase areas
in Figure 2. The spinel crystals are close to 20 µm in cross-sectional dimension. Feathery
wisps appear in the matrix glass, such as in position 7 in Figure 2.

Figure 3 shows a BSE image of an area in the MP1 slag. The phase areas consist of
Ti-containing spinel crystals in the oxy-fluoride glass matrix phase. The presence of a
large cluster of spinel crystals at the top left-hand edge of the sample is clear, as seen from
the octahedral crystalline shape of the spinel crystals. The analyses in Table 5 confirm
the pick-up of Ti in the spinel and matrix glass phases, compared with the BC phase
analyses in Table 4. Some variability is seen in the glass phase fluoride content in Table 5.
Some variability in the fluoride contents in similar samples was reported for the phase area
analyses in agglomerated flux material of the MgO-Al2O3-SiO2-CaF2 system, melted under
laboratory conditions [43].
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Table 5. SEM analyses of marked phase positions in Figure 3 (mass%).

Position %Al %Mg %Ca %F %Si %Ti %Mn %Fe %Na %K %O Phase

1 27.1 15.1 0.5 0 1.1 6.3 3.2 0.2 0 0 46.6 Spinel

2 28.9 15.1 0 0.3 0 2.4 1.8 0.5 0 0 51.0 Spinel

3 27.8 14.9 0.2 0 0.3 4.5 2.6 0.3 0 0 49.5 Spinel

4 1.0 9.8 25.2 14.4 11.8 1.4 6.3 0.2 1.5 0 28.4 Glass

5 0.7 10.2 23.6 16.6 9.9 1.2 4.8 0.1 1.7 0 31.2 Glass

6 0.5 9.2 26.5 20.8 9.2 1.8 4.1 0.1 1.6 0 26.2 Glass

7 0.9 8.7 25.0 23.0 9.5 2.1 4.6 0 1.4 0 24.8 Glass

8 0.5 9.5 25.2 22.3 10.0 1.9 4.4 0.1 1.7 0 24.4 Glass

Bulk Slag 16.7 14.0 8.0 5.3 7.1 3.2 3.5 3.1 1.2 0.2 37.6

Figure 4a shows the BSE image of a smaller area in the MP1 slag, and Figure 4b
shows EDX mapping of this area. It is clear from the data displayed in Figure 4b that the
larger angular crystals are the spinel crystals embedded in a matrix of Al-Mg-Ca-F-Si-Ti-
Mn-Fe-K-Na-O oxy-fluoride glass phase from which Al-Mg-Si-Ti-Mn-O containing small
phase areas appear to be exsolved upon cooling. Interestingly, Ti is distributed across all
phases, in agreement with the phase analyses in Table 5. However, it is seen from the EDX
maps that the distribution of Ti is not uniform, because Ti appears to be present in higher
concentrations at the outer edges of the large spinel crystals, metal areas and at points
inside the exsolved Al-Mg-Si-Ti-Mn-O phase areas. The spinel crystals are typically 40 µm
in cross-sectional dimension.
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Figure 5. BSE image of slag area at the slag–weld metal interface: MP3 slag sample. (See Table 6 for
the analyses of the numbered phases in Figure 5).

Table 6. SEM analyses of marked phase positions in Figure 5 (mass%).

Position %Al %Mg %Ca %F %Si %Ti %Mn %Fe %Na %K %O Phase

1 1.3 6.4 27.1 12.7 8.8 0.7 3.6 0 1.5 0 38.0 Glass

2 33.0 11.7 0.5 0 0.2 0.6 2.4 0.2 0 0 51.2 Spinel

3 45.4 0 0.1 0 0 0.1 0.1 0.7 0 0 53.6 Alumina

4 29.9 14.8 0.2 0 0.2 1.8 1.4 0.5 0 0 51.2 Spinel

5 25.4 13.8 6.5 0 1.7 1.3 2.0 0.1 0.2 0 49.1 Spinel

6 4.0 8.7 15.6 13.9 9.6 1.4 2.3 0 1.6 0.2 42.6 Glass

7 4.7 9.5 14.9 12.4 10.2 1.5 2.3 0 1.7 0.2 42.6 Glass

8 3.6 8.5 16.3 12.8 9.1 1.4 2.4 0 1.5 0.2 44.2 Glass

Bulk Slag 18.4 11.0 6.3 4.2 5.5 8.7 2.9 3.5 0.9 0.1 38.6

Figure 5 shows the phase assemblage of an area in the MP3 slag. The phases in the MP3
slag are similar to those in the MP1 slag, consisting of spinel crystals set in the oxy-fluoride
glass matrix phase. The phases in Figure 5 contain less Ti than the phases in Figure 3,
although Ti is incorporated into both the oxy-fluoride glass matrix and spinel phases in
slags MP1 and MP3. It is possible that some of the Ti analysed in the bulk slag composition
in Table 3 represent metallic Ti. Comparison of the phase chemistries at positions 2 and 3 in
Figure 5 and Table 6 indicates the modification of pure Al2O3 to spinel (MgAl2O4).

Figure 6a shows the BSE image of a smaller area in Figure 5, and Figure 6b shows EDX
mapping of this area. The element distribution in Figure 6b corresponds to that in Figure 4b
as angular spinel crystals embedded in the Al-Mg-Ca-F-Si-Ti-Mn-Fe-K-Na-O oxy-fluoride
glass phase matrix, with small phase areas of Al-Mg-Si-Ti-Mn-O phase exsolved upon
cooling. Titanium is distributed across all phases, with higher concentrations at the edges
of the large spinel crystals and as points inside the exsolved Al-Mg-Si-Ti-Mn-O phase areas.
The spinel crystals are typically of 25 µm in cross-sectional dimension.
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4. Discussion

The solid crystalline phases present in the polished sections displayed in Figures 2–6
may have formed as cooling phases as the post-weld slag cooled down from the high weld-
ing temperatures close to 2000 ◦C in the weld pool to room temperature [7,8]. This possibil-
ity was investigated by calculating the phase solidification curves for each slag composition
in Table 3, using the Equilib module in FactSage 7.3 thermochemical software, and selecting
the FToxid database [40,41]. Although there are no multi-component phase diagrams of the
system of interest in this study, the FactSage thermochemical software calculation outputs
for the CaO-SiO2-MgO-Al2O3-CaF2 system were confirmed to be accurate compared with
some equilibrated slag samples in a previous study [44]. Therefore, the FactSage calcula-
tions in this study are used with confidence as the basis of the expanded multi-component
system relevant to our study. In addition, there are a few published studies available on
the phase chemistry and physico-chemical properties of fluxes in the system of Al2O3-
MgO-CaF2-Na2O-K2O-Fe2O3 [9,10,45]. These studies confirmed that the MgO and Al2O3
in the flux reacted to form spinel upon heating of the flux, even at temperatures as low as
700–800 ◦C, and more easily at 1200 ◦C to 1500 ◦C. Spinel phase formation occurred even
when the flux glass phase was only partially molten at 1200 ◦C [9]. The authors confirmed
that the lighter spinel phase floated from the bulk slag. Furthermore, the authors point
out that the differences in thermal expansion coefficients of the spinel phase and the liquid
slag phase may be used to induce micro-stresses in the slag to ensure good separation
between the slag and the underlying metal [9]. This is an important design aspect in the
development of welding fluxes because it ensures good bead shape, surface finish and high
welding productivity [17].

The solidification curves in Figure 7a–d are in general agreement with the reported
high-temperature-phase chemistry in this flux system, namely, the presence of a liquid slag
phase and solid spinel crystallites [9,10]. The solidification curve calculations predict that
the flux mixture was completely liquid at the weld pool temperature reported in the litera-
ture, 2000 ◦C [7,8]. Upon cooling, spinel precipitated as the primary solidification phase.
Due to the increased alumina content in the modified MP1 and MP3 slags, the percentage
spinel phase is increased to double that of the BC slag at 1400 ◦C. Clearly the increased
alumina content in the MP1 and MP3 slags would significantly increase the two-phase slag
viscosity, compared with the unaltered BC slag viscosity [9,45]. As indicated before, due to
the exponential increase in slag viscosity with increased solid phase proportion, even slight
increases in the proportion of spinel phase in the slag result in a drastic increase in slag
viscosity [10]. Slag viscosity is double that of the CaF2 matrix phase with every 10 mass%
increase in solid phase [46]. Figure 7d shows the liquid glass curves from Figure 7a–c for
easier comparisons. The curves illustrate that although the slag liquidus temperatures
are similar at 1682 ◦C, 1730 ◦C and 1670 ◦C, the precipitation phase formation sequence
sets these slags apart. For example, at 1400 ◦C the BC slag contains 25% spinel phase,
compared with 38–39% spinel in the MP1 and MP3 slag. Increased spinel content in the
MP1 and MP3 slags is due to the higher quantity of Al2O3 present in the MP1 and MP3
slags, in combination with fewer glass matrix formation compounds of SiO2 and MnO
from aluminothermic reduction of the slag. Furthermore, it appears that at the lower
temperatures close to 1000 ◦C, the higher TiO2 in MP3 slag somewhat compensates for
the increased spinel phase formation due to higher %Al2O3 and lower %SiO2 and %CaF2
contained, as compared with the MP1 slag.
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Another aspect in the investigation of slag detachability is the difference in solidifica-
tion temperatures of the slag and the weld metal. Table 7 summarises the weld metal alloy
solidus temperatures and the spinel proportions in each slag at 1400 ◦C and at the weld
pool solidus temperature, as calculated in FactSage 7.3. The value of 1400 ◦C is considered
with reference to the flux design guideline that the slag should be melting at 50 ◦C below
the solidus temperature of carbon steel [6]. However, MP1 and MP3 weld metals have
lower solidus temperatures than carbon steel resulting in increased spinel content in the
MP1 and MP3 slags at the weld metal solidus temperatures, of approximately 40% spinel
phase compared with only 23% spinel phase in the BC slag. Therefore, it is conceivable that
the MP1 and MP3 weld bead surface morphology is solidified as rough surfaces due to
the high spinel content as the cause of high viscosity slags at the weld pool–slag interface.
The result is mechanical fixation of the slag to the rough weld bead surface, identified
previously for different welding conditions [18].

Table 7. Comparison of weld pool solidus temperatures and slag spinel content.

Sample Weld Pool Solidus
Temperature (◦C)

Slag Spinel Content at
1400 ◦C (Mass%)

Slag Spinel Content at Weld Pool
Solidus Temperature (Mass%)

BC 1457 25 23

MP1 1363 38 40

MP3 1311 39 43

As pointed out above, the spinel phase grows from oxide slag according to the
parabolic rate law at higher temperatures, in the order of 1400 ◦C [10,47]. Figure 8 shows
the growth rate relationship reported in the literature applied here to calculate the time
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required for a spinel crystal to grow to a specific size at different temperatures. At 1700 ◦C,
close to the liquidus temperatures of slags BC, MP1 and MP3, the rate equation predicts
that a 10 µm spinel crystal can crystallise and grow from the molten glass phase in 2.0 s and
a 20 µm crystal in 7.9 s. The BC weld metal solidification time was calculated to be about
four seconds, using the weld ripple lag distance and travel speed [32,33]. In comparison,
the typical spinel crystal sizes observed in the BSE images of Figures 2, 4 and 6 are 20 µm,
40 µm and 25 µm in the BC, MP1 and MP3 slags, respectively. These observations are in
agreement with the formation of the larger spinel crystals observed in MP1 slag (40 µm)
from the enhanced process whereby Al2O3 is formed in aluminothermic reduction, and not
only from spinel formation from the matrix glass phase.
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Figure 8. Estimated spinel growth rates calculated from the growth equation in reference [47].

The relative phase changes in the slags are further analysed in the following pseudo-
ternary phase diagrams to chart possible improvements in flux formulations to compensate
for the increased Al2O3 and decreased SiO2 and MnO in the slag, when using aluminium
as deoxidiser element in SAW. The pseudo-ternary phase diagrams in the CaF2-SiO2-Al2O3-
MgO-TiO2-FeO system were calculated in the Phase Diagram module of FactSage 7.3,
by selecting the FToxid database. These diagrams are not as precise in their thermochemical
phase boundaries as the curves in Figure 7, because here only the approximate compositions
in terms of the major composition compounds are considered. However, in Figure 7, the pre-
cise compositions as shown in Table 3 are used as inputs to the calculations. Figure 9a–c
displays the pseudo-ternary diagrams at 1400 ◦C for the fixed %SiO2, %TiO2 and %FeO
for each post-weld slag composition, and each post-weld slag composition is indicated as
a filled marker. The %CaO and %MnO were not specified because these low-percentage
compounds may be easily incorporated into the oxy-fluoride matrix phase, as displayed
in Figures 4 and 6. Figure 9a–c shows that the 1400 ◦C liquidus boundary is moved little
with changes in %SiO2 and %TiO2. The phase field of interest, the (liquid + spinel) phase
field, is somewhat enlarged as the (liquid + olivine + spinel) phase field shrinks with
increased %TiO2.
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By increasing the %CaF2 in the starting flux, the slag composition may be adjusted
to accommodate the additional spinel from the aluminothermic reduction process. This is
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illustrated in Figure 10 in which the BC flux composition was adjusted to attain approxi-
mately 20% spinel at 1250 ◦C. These adjustments in %CaF2 should sufficiently compensate
for the increase in percentage Al2O3 in the slag from aluminothermic reduction, to prevent
viscosity and slag detachability problems caused by excessive spinel formation at the
lowered alloy steel solidus temperatures.
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Figure 10. Solidification curve for the adjusted flux chemistry composition (30% CaF2–23% SiO2–23%
Al2O3–23% MgO), as calculated in FactSage 7.3 [40,41].

Therefore, the flux should be formulated to manage the slag phase proportions of
matrix oxy-fluoride glass phase to spinel crystals. Increasing the proportion of matrix oxy-
fluoride glass phase in the slag will ensure a fluid slag at lower temperatures to improve
slag detachability. As highlighted in previous studies, the flux CaF2 content should be
increased to increase the proportion glass matrix phase in the slag, but also to reduce
the size and increase the dispersion of spinel crystals formed upon solidification of the
slag [8,43].

5. Conclusions

1. The aluminate basic flux was modified to increased %Al2O3 and %TiO2 and decreased
%SiO2 and %MnO due to aluminothermic reduction;

2. Titanium was incorporated in the two-phase post-weld slag, in both the oxy-fluoride
glass matrix and in the spinel phase;

3. Increased quantities of spinel crystals were formed in the modified slag from added
alumina, resulting in increased slag viscosity;

4. The combination of increased flux viscosity due to spinel formation and lowered weld
pool solidus temperatures caused a rough bead surface morphology which, in turn,
caused mechanical fixation of the slag to the weld bead surface;

5. Increased %CaF2 in the flux formulation should compensate sufficiently for the in-
creased spinel formation from Al2O3 added into the slag due to aluminothermic
reduction, and thus prevent viscosity and slag detachability problems caused by
excessive spinel formation.
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