
 265

CHINA  FOUNDRYVol. 18 No. 4 July 2021

Special Review

In situ monitoring methods for selective laser 
melting additive manufacturing process based on 
images - A review

https://doi.org/10.1007/s41230-021-1111-x

Bo Wu
1
, Xiao-yuan Ji

1
, *Jian-xin Zhou

1
, Huan-qing Yang

2,3
, Dong-jian Peng

2,3
, *Ze-ming Wang

4
, Yuan-jie Wu

1
,

Ya-jun Yin
1

1. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong 

University of Science and Technology, Wuhan 430074, China

2. Xi'an Space Engine Co., Ltd., Xi'an 710100, China

3. Center of National Defense Technology Industry Aerospace Special Components Additive Manufacturing Innovation, Xi'an 710100, China

4. Nuclear Power Institute of China, Chengdu 610213, China

Abstract: Selective laser melting (SLM) has been widely used in 

the fields of aviation, aerospace and die manufacturing due to its 

ability to produce metal components with arbitrarily complex shapes. 

However, the instability of SLM process often leads to quality fluctuation 
of the formed component, which hinders the further development 

and application of SLM. In situ quality control during SLM process is 

an effective solution to the quality fluctuation of formed components. 

However, the basic premise of feedback control during SLM process 

is the rapid and accurate diagnosis of the quality. Therefore, an in situ 

monitoring method of SLM process, which provides quality diagnosis 

information for feedback control, became one of the research hotspots 

in this field in recent years. In this paper, the research progress of in situ 
monitoring during SLM process based on images is reviewed. Firstly, the 

significance of in situ monitoring during SLM process is analyzed. Then, 
the image information source of SLM process, the image acquisition 

systems for different detection objects (the molten pool region, the 

scanned layer and the powder spread layer) and the methods of the 

image information analysis, detection and recognition are reviewed 

and analyzed. Through review and analysis, it is found that the existing 
image analysis and detection methods during SLM process are mainly 

based on traditional image processing methods combined with traditional 

machine learning models. Finally, the main development direction of in 

situ monitoring during SLM process is proposed by combining with the 

frontier technology of image-based computer vision. 
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1 Significance of in situ monitoring during 
SLM process

When SLM forming is conducted, a 3D digital model of the component 

is firstly sliced, discretized and dimension-reduced, and then the 

0-dimensional parameters (spot diameter, laser power), 1-dimensional 
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Fig. 1: Schematic diagram of SLM process 
[4]

parameters (scanning speed), 2-dimensional parameters (scanning 

interval), layer height, and support mode, are set to generate the G code 

that can be read and executed by an SLM equipment. Secondly, the 

equipment executes the corresponding G code of each layer and the 

metal powders are selectively melted and solidified "point by point, line 
by line and plane by plane" under the action of laser. When a layer is 
scanned, the working platform drops a height of a layer thickness along 

the Z-axis direction. When a new layer of metal powder is spread on the 

focal plane, the new powder layer is selectively melted and solidified 

rapidly, and fused with the former layer. The cycle is repeated until the 

component is formed 
[1-3]

. To prevent oxidation during SLM process, the 

SLM process is completed in an inert gas environment. The process of 

SLM is shown in Fig. 1. 

A laser spot with a very small diameter is used as the energy source 

in SLM technology, and the method of "discrete-dimension-reduction" 
is adopted to simplify complex manufacturing, which causes SLM 

technology to possess the characteristics of small molten pool size, fast 

scanning speed and complicated melting-solidification process. The above 
characteristics of SLM forming technology, which cause the molten 

pool region splashing and the plume extremely unstable during the 

SLM process, eventually cause the quality fluctuation to be accumulated 
and magnified layer by layer. In severe cases, the SLM process will be 

interrupted, or even cause the scrap of the component 
[1-3]

.

The poor quality stability of the formed components and the insufficient 
repeatability of SLM process have become the bottlenecks hindering 

further development, application and industrialization of SLM technology. 

Currently, the off-line inspection methods are mostly used to inspect the 

quality of components formed by SLM. However, off-line inspection 

has obvious hysteresis and does not allow the process parameters to be 

adjusted online to eliminate specific defects in time, which often leads to 
serious waste of materials, serious waste of time, and even delay of order 

delivery. To repair defects during SLM forming, SLM equipment operators 

are often required to be on constant duty so as to intervene timely when 

defects occur. However, the defect detection during SLM process based on 

human vision is susceptible to the physical and mental fatigue of workers, 

and it is difficult to achieve objective and accurate detection. Therefore, 
the in situ monitoring methods based on images during SLM process were 

developed to lay a foundation for improving the stability of quality of the 

component formed by SLM and the repeatability of the SLM process, and 

to provide quality diagnostic information for feedback control, which has 

become one of the research hotspots in the field in recent years [5, 6]
.

2 Information sources of 
defects in SLM process

Mater ia l mel t ing , evapora t ion , chaot ic 

movement, and jet of the molten metal in 

the melt pool will occur when a high-energy 

laser irradiates the powders. The recoater may 

vibrate or even get stuck when there are bulges 

on the powder bed. As shown in Fig. 2, these 

phenomena are accompanied by light, heat, 

sound, force, and other signals. There are two 

sources of visible light signal during SLM 

process. One is the LED light embedded in the 

building chamber. The other is the light emitted 

from the melt pool, spatters and plumes. The 

visible light could be detected and transferred 

into images by cameras. The heat signal mainly 

refers to infrared light. The detection of infrared 

light during SLM process mainly focuses on the 

infrared radiation emitted from the melt pool, 

spatters, plumes, scanned layer and powder 

coated layer. The heat signal could be detected 

and imaged by infrared (IR) or near-infrared 

(NIR) thermal imager. When the spatters and 

plumes are ejected from the melt pool, the 

acoustic signal is always caused by the pressure 

wave. The acoustic signal could be also 

generated when the powder-recoater recoats 

powder or collides with bulges in a layer. The 

microphone can be used to detect the acoustic 

signal. The thermal stress always generates the 

force signal. When the powder-recoater recoats 

powder, the force signal is also generated. The 

mechanical sensors are applied for the detection 

of the force signal generated during SLM 

process. The electrical signal is generated when 

the metal vapor is ionized into plasma. However, 

the electrical signal is too weak and includes 

noise. It is difficult to use the force signal and 

the acoustic signal to recognize defect type and 

grade. Therefore, visible light and infrared light 

are the two signals, which can reflect defects 

during the SLM process. These signals provide 

the most direct basis for in situ monitoring on 

quality, performance prediction and feedback 

control. The collection and analysis of the 

information mentioned above are important parts 

of in situ monitoring. 

Table 1 shows the results of the literature 

according to the information generated during 

the SLM process and the corresponding 

detection targets. Figure 3 shows examples of 

various types of images captured during the 

SLM process in some literature.

3D-CAD model
in slices

Deposition of a
powder layer

Melting of powder
by a laser beam

Powder Lowering

Novel geometries of
serial-materials
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Fig. 2: Influencing factors, macro products, macro defects and information during SLM process

Table 1: Classification results of literature according to information generated during SLM process and 

corresponding detection objects

Detection objects
Information categories

Visible light Infrared light Acoustic Force

State of melt pool 
and its adjacent space

[15-17, 27, 37-39, 56, 
48-49, 59, 61, 69]

[8-17, 27, 28-32, 35-36, 41, 45, 
54, 59-60, 64, 66, 68-69, 

72-73, 78]
[33, 34] [74]

Morphology of scanned layer 
and layer coated with powder

[7, 16, 18-20, 22-25, 43, 
46-47, 50-52, 62-63, 70-71]

[21, 26, 42, 44-46, 57-58, 67, 
72-73, 75-77]

Temperature and 
deformation along z-direction 

[40] [40]

Dynamics information generated 
during SLM process

[53]

3 In situ monitoring methods for 
SLM process based on images

As shown in Fig. 4, according to whether the sensor perceives 

information from the laser path, the in situ monitoring systems are 

divided into the coaxial in situ monitoring system and paraxial in 

situ monitoring system. Figure 5 presents the detection objects of 

the in situ monitoring system. In order to monitor different types 

of objects, various of in situ monitoring systems for SLM process 

are developed in this field, as shown in Fig. 6.
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Fig. 3: Examples of various kinds of images captured during SLM process from some literatures
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Fig. 4: Schematic diagram of in situ monitoring system during SLM process 
[79]

: (a) coaxial in situ monitoring 

system; (b) paraxial in situ monitoring system

Fig. 5: Detection objects during SLM process: (a) one-dimensional time sequence information (such as temperature, 
sound, atmosphere pressure, etc.) [80]; (b), (c) 2D spatial information (such as melt pool image, scanned layer 
image, image of layer coated with powder and infrared image, etc.) [81]

Fig. 6: Literature examples of image acquisition devices and schematic diagram  during SLM process

1-Laser source

2-Galvanometer scanner

3-Melt pool and powder bed

4-Semi-transparent mirror

5-High-speed CMOS camera and photodiode

6-Control interface and analyzing software

Laser
LaserScanner

Analyzer

Analyzer

Photodiode

cam
era

Melt pool

emission

1

2

3

4

5 6

(a) (b)

(a) (b) (c)

Compared with acoustic, electrical, mechanical and other 

signals generated during SLM process, optical signals 

conforming to human intuitive visual perception can be 

transformed into digital images by various cameras, which 

provides richer and more intuitive detection information and 

quality traceability information. Therefore, most of the in situ 

monitoring methods reported in literature are based on images. 

The detection objects include the melt pool and its byproducts, 

and the powder coated layer and scanned layer. The captured 

images are divided into the infrared thermal images and the 

visible light images according to the information of different 

light wave bands.
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Fig. 7: Paraxial in situ monitoring of state of melt pool during SLM process: (a) schematic diagram of monitoring system of melt 

pool and by-products (spatters and plumes) based on high speed visible light imaging 
[37]

; (b) melt pool and spatters 

under normal melting conditions 
[37]

; (c) Akagi information criterion values and Bayesian information criterion values of 

classification models with and without splash information [37]
; (d) visible light images stream during SLM process 

[38]
; 

(e) schematic diagram of the image stream converted to a pixel-related form 
[38]

; (f) and (g) defect areas detected using 

developed statistical methods 
[38]

; (h) grayscale changes of local "hot spots" in each frame 
[39]

; (i) time consuming curve (solid 

line) of proposed spatially weighted PCA algorithm [39]
; (j) scatter plots of four statistical descriptors for spatters in different 

melting states 
[37]; (k) and (l) detection results based on spatially weighted PCA clustering segmentation [39]

3.1 In situ monitoring of melt pool and its 

byproducts based on visible light imaging

Craeghs et al. 
[15-17]

 adopted the strategy of coaxial in situ 

monitoring, and used a large-area planar photodiode and a 

high-speed camera to capture images of the melt pool area at 

a high frequency during the SLM process 
[15-17]

. A real-time 

image processing method was also developed. By sampling 

and recording the location and the data of the melt pool at the 

same time, a data representation method that maps the data of 

the melt pool to the X-Y plane was also developed and used to 

detect deformation due to thermal stress and overheating 
[27]

. 

With the signal of the photodiode being analyzed, the dynamic 

relationship between the laser power and the photodiode signal 

was determined, and a feedback controller with the optimal 

bandwidth was designed based on this dynamic relationship 
[49]

. 

The anomaly detection method based on data representation 

does not seem to be with high accuracy. What is more, the 

feedback control mentioned may simply stop the process when 

an anomaly is detected, and the feedback controller may not be 

able to repair the defects generated during SLM process, but it 

created a precedent for the follow-up research in this field.
Figure 7 presents the device, images, image processing 

methods and results of the paraxial in situ monitoring of melt 

pool during SLM process. Grasso et al. 
[37]

 used a high speed 

visible light camera shown in Fig. 7(a) to collect images along 

the laser scanning path, and extracted different statistical 

descriptors for images of spatters [Fig. 7(j)]. In addition, three 

logistic regression models were respectively fitted to three 

data sets (data set only containing laser heating zone, data set 

not only containing the information of spatters, and data set 

(a) (b) (c) (d)

(e)
(f) (g) (h)

(i) (j)

(k) (l)
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only containing the information of spatters)
[37]

. As shown in 

Fig. 7(c), the capacity and fitting accuracy of the three models 
are evaluated using Akaike Information Criterion and Bayes 

Information Criterion. Comparative analysis demonstrates that 

the feature of spatters improves the performance of melting state 

recognition during SLM process, which seems to be consistent 

with the common sense in data science that more useful and 

relevant features always lead to higher accuracy. As shown in 

Fig. 7(e), a pixel-related image stream conversion method for 

PCA was proposed
[38]

. A statistical descriptor based on principal 

component analysis (PCA), which was used to process the 

images, can identify the defect area in the image [Figs. 7(f) and 

(g)]
[38]

. Finally, automatic defect detection was realized by using 

an image segmentation method based on clustering. To further 

improve the performance of defects detection during the SLM 

process of zinc powder, Marco et al. 
[39]

 proposed a segmentation 

method based on a spatial weighted PCA to represent the temporal 

correlation and spatial location information correlation of pixel 

intensity of each frame of video. The comparative analysis 

demonstrates that this method can detect defects faster than 

T-mode PCA during the SLM forming process of zinc powder [Figs. 

7(k) and (l)]. The camera for image acquisition is placed outside 

the building chamber on a tripod, which means that the angles 

and placement are not exactly the same each time. Therefore, the 

hyperparameters of the algorithm need to be tuned in advance.

Ji et al. 
[61]

 adopted the in situ monitoring system to collect the 

images of spatters during the forming process. The description 

operator in polar coordinates for the spatters in the image was 

designed to extract features of spatters, which can be used to 

distinguish different energy densities. The description operator is 

an effective feature to recognize different level of energy densities. 

As shown in Figs. 8(a) and (b), Scime et al. 
[64] modified the 

EOS M290 camera and added a high speed camera to capture 

the images that can reflect the melt pool topography [Fig. 8(c)]. 
As shown in Fig. 8(d), the images were firstly converted into 

coaxial form through image transformation algorithm, then, 

the visual word bags based on SIFT (Scale-Invariant Feature 

Taransform) and HOG (Histogram of Oriented Gradient) were 

employed to extract the image features [Figs. 8(e) and (g)]
[64, 66]

. 

The corresponding labels were obtained by observing the actual 

microscopic morphology of melt pool [Fig. 8(f)] 
[65]

. Finally, 

a data set for training the SVM model was constructed. The 

distribution of the data set after T-SNE processing is shown in 

Fig. 8(h) 
[66]

. The dimension of the features of images extracted 

by the Visual Word Bags method is high, which means that PCA 

should be applied on the data set before T-SNE to visualize the 

intrinsic 2-D distribution of the data set. The distribution of the 

data set after T-SNE processing does not seem to have high 

discrimination, but the method has been proved to be feasible to 

recognize the melt pool defects.

3.2 In situ monitoring of melt pool and its 

byproducts based on infrared imaging

As shown in Figs. 9(a) and (b), Ye et al. 
[29]

 used the paraxial near 

infrared high speed imaging system to capture the images of 

melt pool, spatters and plumes during SLM process [Fig. 9(c)], and 

obtained low resolution images (100×125) by downsampling. 

The low-resolution images were directly used as the input 

of the convolutional neural network (CNN) or as the input 

of the improved deep confidence network, respectively, to 

realize the melting state recognition during the SLM process. 

It was found that the improved deep confidence network 

needed less signal preprocessing, less parameter selection, and 

less feature extraction. The accuracy of identification of five 

melting states reached 83.40%, which is not a satisfying result, 

and the improved deep confidence network may be a little 

underfitting. When the architecture is designed effectively and 
the hyperparameters are tuned, convolutional neural network  

should perform much better than deep confidence network, 

which has been proved in their follow-up research.

(a) (b) (c)

(d)
(e)



272

CHINA  FOUNDRY Vol. 18 No. 4 July 2021

Special Review

Fig. 8: Melt pool morphology acquisition system based on high speed camera 
[64, 66] (a and b), image of melt pool 

captured by high speed camera 
[64] (c), image of melt pool after coordinate transformation [64] (d), color enhanced 

image of melt pool and the corresponding SIFT feature extraction results 
[66] (e), example of actual microstructure 

of melt pool 
[65] (f), schematic diagram of melt pool defect classification algorithm based on visual word bag and 

SVM 
[66] (g), 2D T-SNE distribution of data set constructed by visual word bags [66]

 (h)

Ye et al. 
[30]

 also designed single-track-scanning experiments 

with different laser powers or scanning speeds. The paraxial 

near-infrared high-speed imaging system shown in Figs. 

9(a) and (b) was employed to obtain images of melt pool, 

spatters and plumes under corresponding process parameters. 

The statistical features such as area, orientation of the main 

axis of the outer ellipse, circumference, length, width, and 

brightness were extracted by image processing method. The 

variation law of the statistical features of the image with the 

process parameters was studied. It was found that the features 

of plumes and spatters extracted from the images were 

significantly different under different melting conditions. In 

addition, the influence of process parameters on the width of 
melt track was studied [Figs. 9(e), (f)]

[29-30]
, which proved the 

feasibility of using plume-splash characteristics to identify 

melting state during SLM process. The similar conclusion that 

the feature of the spatters improves the performance of melting 

state recognition during SLM process has been also presented in 

the research of Grasso et al. 
[37]

. This provides a theoretical basis 

for melting state detection.

Zhang et al. 
[31]

 also adopted the system shown in Figs. 9(a) 

and (b). After adjusting the angle between the camera and the 

powder bed plane [Figs. 9(h), (i)], the images of melt pool, 

spatters and plumes during SLM process were captured again 

[Fig. 9(j)]. The sub-images were obtained from each frame 

by using the Kalman filter algorithm. The statistical features 

of melt pool, spatters and plumes were extracted based on 

the domain knowledge of SLM. After dimension reduction 

through PCA, a support vector machine model was trained, and 

achieved a 90.1% accuracy for the three melting states. What is 

more, Ye et al. also trained a CNN with an accuracy of 92.7%, 

which demonstrated that CNN was a promising model for in 

situ monitoring during SLM process. The CNN model may be 

a little underfitting. The accuracy should be higher when the 

architecture is designed effectively and the hyperparameters 

are tuned. What is more, there should be no doubt that the deep 

CNN models perform better than SVM on the image recognition 

task.

Based on the research 
[30]

, Zhang et al. 
[32]

 developed a new 

image processing method to extract the sub-images containing 

melt pool, spatters, and plumes. The features, such as the 

brightness of melt pool, the area of plumes, the orientation 

of plumes, the quantity of spatters, the area of spatters, the 

orientation of spatters and the speed of spatters, were extracted 

from images. The correlation between four different scanning 

qualities and the extracted features was studied. It was found 

that the features extracted by the image processing method 

could be used as the potential index of SLM quality evaluation. 

However, the features extraction method is based on the 

domain knowledge, which makes the massive data generated 

during SLM process underutilized. To accurately recognize the 

melt states based on images, the massive data generated during 

SLM process should be fully applied to develop the method for 

feature extraction.

As shown in Fig. 10(a), Grasso et al. 
[35]

 used the in situ 

monitoring system to capture the images [Fig. 10(b)] during 

the SLM process of zinc powder. The method to extract 

features of plumes [Figs. 10(c), (d)] was combined with data 

mining to implement the inspection, which demonstrated the 

applicability of features of plumes for distinguishing the state 

during SLM process. Based on the domain knowledge and 

experimental research, the data-driven automatic alarm rules 

were designed, and the in situ monitoring of melt stability 

during SLM process of zinc powder was implemented. As 

(f) (g)

(h)
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Fig. 9: In situ monitoring of melt pool, spatters and plumes during SLM process based on near infrared high speed imaging: 
(a), (b) in situ monitoring system (the angle between camera and powder bed is 30°) [29]; (c), (e) images of spatters 
and plumes 

[29, 30]; (d) data set generated through feature extraction by deep confidence network with a 400-400-
400-400 structure 

[29]; (f) curve of width of melt pool changing with scanning speed [30]; (g) curve of width of melt 
pool changing with energy density [30]; (h) and (i) in situ monitoring system (angle between camera and powder 
bed is 45°) [31]; (j) original image and images of melt pool, spatters and plumes obtained by Karman filtering [31]

; 

(k) flow chart of method of plumes extraction [32]; (l) flow chart of method of spatters extraction [32]; (m) first three 
principal components after PCA dimension reduction of data set containing all features 

[31]; (n) verification results 
of recognition ability of convolutional neural network and support vector machine [31]

; (o) statistical results of plume 

orientation and area of four states 
[32]

; (p) statistical results of spatters orientation and area of four states 
[32]

shown in Fig. 10(e), Grasso et al. 
[36]

 proposed a new plume 

feature description method, in which the plume periphery was 

fit with ellipse to represent the angle of the plumes. As shown 
in Fig. 10(f), the plumes and spatters were classified by support 

vector machine. The angle, gray scale and area of the plumes 

were used as the descriptors, and the scatter plot is shown in 

Figs. 10(g) and (h). Finally, the multi-mode control diagram 

based on SVM was used to monitor the stability during SLM 

(a) (b) (c) (d)

(h)(g)(f)(e)

(h)
(k)(j)(i)

(m)(l) (n)

(o) (p)
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Fig. 10: In situ monitoring during SLM process: (a) schematic diagram of in situ monitoring system of melt pool and 

by-products (spatters and plumes) based on high speed infrared imaging 
[35]

; (b) example of infrared image 
[35]

; (c) image after segmentation 
[35]

; (d) scatter plot of area and gray value of plumes extracted from image 
[35]

; 

              (e) circumscribed ellipse of plume 
[36]; (f) classification results of support vector machine [36]

; (g) and (h) scatter 

plots of dip angle, area and gray level of plume [36]

Fig. 11: In situ monitoring of state of melt pool during powder bed fusion process: (a) schematic diagram of paraxial 
high-speed infrared imaging system 

[58]; (b), (c) infrared image and contour extraction results of melt pool and 
its surrounding area at a certain time 

[58]

process at a faster speed. Although the performance of the 

proposed methods seems to be good, the features extracted 

from images are low level and have no semantic information. 

If the deep neural network is applied to extract high level 

semantic information, the performance to monitor the stability 

during SLM process would be better.

Foster et al. 
[58]

 used the infrared imaging system shown 

in Fig. 11(a) to measure the infrared radiation intensity of 

the laser-material interaction area in both space and time 

dimensions [Figs. 11(b) and (c)], and found that higher infrared 

radiation intensity and lower surface roughness, lower porosity, 

and coarser solidified grain structure were closely related. The 
result of this research work has important theoretical guiding 

significance. However, if some machine learning models or 

deep learning models are trained on the large amounts of image 

data sets, the data set with large amounts of images is utilized 

as it should be.

Forien et al. 
[59]

 used an in situ monitoring system to inspect 

the forming process of the 316L stainless steel single-track 

under different laser powers and scanning speeds. The defects 

characterized by X-ray imaging were associated with the 

thermal signals monitoring. Then, the probability of defect 

generated was calculated. It was found that the prediction 

of hole defects could be implemented by high-speed and 

high-temperature in situ monitoring of melt pool during the 

SLM process. Zouhri et al. 
[60]

 used the melt pool radiation in 

situ monitoring system to collect the radiation information 

of the melt pool region during the SLM process, and then 

conducted a correlation study with the density of the formed 

part. A description operator for infrared thermal signals was 

developed, based on which multiple support vector machine 

models for predicting the three types of density levels were 

trained. Compared with deep neural networks, the support 

vector machine demonstrated a better generalization ability 

for this problem. The reason why the SVM performs better 

than deep neural networks may be that the data set is small, 

and the deep neural networks are over fitted. When there are 
more samples in the data set, the deep neural networks may 

demonstrate better performance. Transfer learning may also 

improve the performance of deep neural networks.

(a) (b) (c)

(a) (b) (c) (d)

(e) (f) (g) (h)
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Krauss et al. 
[75]

 established an in situ monitoring system for 

SLM process based on infrared thermal imaging. Experiments 

under different process conditions were conducted and then 

the infrared images of the melt pool region were collected. The 

total area, circularity and aspect ratio of the melt pool area were 

extracted by applying image processing methods. The process 

parameters were correlated with the infrared image features, and 

the errors caused by insufficient heat dissipation were studied. 

The artificial defects in the range of 40 μm-500 μm were detected 
and analyzed. It is found that the total area of the melt pool area 

can well reflect the fluctuation of the scan length and overlap 
rate, and the roundness and aspect ratio can be used to detect 

geometric deviations. The infrared images of the melt pool 

collected during SLM process were just processed to extract 

the total area, circularity, and aspect ratio of the melt pool area 

to reflect the fluctuation of the scan length and overlap rate. 

The infrared images can also be used as the data set to train a 

machine learning model to quantitatively predict the fluctuation 
of the scan length and overlap rate.

Okaro et al. 
[77]

 used the coaxial in situ monitoring of melt 

pool area radiation system to collect a large amount of raw data 

generated during the SLM process. After testing the mechanical 

properties of the formed parts, the labels of the corresponding 

data were obtained. Then, the data set was generated and the 

principal components were extracted using random singular 

value decomposition (R-SVD). The semi-supervised learning 

method was used to model a small number of labeled samples 

and most unlabeled samples. The success rate of identifying the 

performance of the formed part is 77%, which demonstrates 

that the thermal history data collected based on the photodiode 

is connected to the feasibility of identifying the quality of the 

parts formed by SLM process. The success rate only being 

77% demonstrates that the semi-supervised learning may not 

be an industrial friendly strategy for the SLM monitoring. A 

greater number of labeled samples would improve the success 

rate. If the method to generate the data set could retain more 

information of the raw data, the success rate will also be higher.

3.3 In situ monitoring of scanned layer and powder-
spread-layer based on infrared imaging

As shown in Fig. 12(a), Raplee et al. 
[28]

 adopted the detection 

system based on infrared imaging to develop a method that 

could accurately correlate the thermal emissivity of the 

material shown in the collected infrared images with the actual 

temperature. The thermal history during the process was 

studied in detail, as shown in Figs. 12(b-e) 
[28, 57]

. To solve the 

problem that the accuracy of temperature data was reduced 

due to the different radiation intensity between the metal 

powder region and the scanned region of a layer, a method 

was developed to calibrate the temperature distribution from 

the infrared image [Fig. 12(e)]. The important thermal feature 

of the forming process was also determined. After analyzing 

the infrared imaging data, the transformation process from 

the metal powder to the scanned region was determined, and 

the thermal gradient and the advance velocity of solid-liquid 

interface were approximated, which were correlated with the 

changes in the internal microstructure of the parts observed in 

the experiment 
[57]

. Because the amount of the images collected 

(a) (b) (c)

Fig. 12: Paraxial in situ monitoring during PBF manufacturing process based on infrared imaging: (a) schematic 

diagram of scanned layer monitoring system based on infrared imaging 
[28], (b) changes of gray value of a 

position at different infrared images 
[28], (c) an infrared image of scanned layer [28], (d) and (e) infrared images 

of scanned layer with temperature difference due to local warping defect [28, 57]

(d) (e)
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Fig. 13: Defect recognition method of scanned layer images captured by paraxial infrared camera: (a) schematic 

diagram of defect recognition of infrared images of scanned layer based on CNN [67], (b) structure of CNN [67], 
(c) schematic diagram of depth separable convolution structure

 [67], (d) infrared image of a scanned layer [67], 
              (e) gradient-based class activation map 

[67]

is vast and the labels are easy to get, the task in this research 

could also be transferred to a pixel value regression task. Deep 

learning methods could be applied to help accurately correlate 

the thermal emissivity of the material shown in the collected 

infrared images with the actual temperature.

As shown in Fig. 13(a), Baumgartl et al. 
[67]

 proposed a 

convolutional neural network that uses the infrared image of the 

scanned layer collected by the paraxial infrared imaging system 

as the input to recognize the defects of powder region and spatters 

in the scanned layer during the SLM process. The structure of 

the convolutional neural network is shown in Fig. 13(b). To 

reduce the number of parameters and ensure the performance 

of CNN, the second and third convolutional layers of the neural 

network are deep separable convolutions [Fig. 13(c)]. The 

network obtained 96.80% accuracy on the collected test set. By 

calculating the class activation map of a specific input image and 
its recognition result, the focus of the network during recognition 

process was explained, and effectiveness of the network was 

proved. The architecture of CNN proposed in this research is 

satisfactory. If the CNN is pre-trained on a data set that possesses 

more similar images and more effective data augmentation 

approaches are applied, the accuracy rate will be higher.

Lough et al. 
[72]

 used in situ monitoring system based on short 

wave high speed infrared imaging, as shown in Fig. 14(a), to 

collect infrared images during the SLM process at a higher 

frame rate 
[72]

. By extracting features such as the time exceeding 

the threshold, the maximum radiation, and the maximum 

radiation attenuation rate [Figs. 14 (b), (e)], all the infrared 

images collected in the same layer were mapped into one 

image to represent the thermal history of each layer. Then, a 

three-dimensional reconstruction based on the thermal history 

of each layer was implemented. Finally, the results of three-

dimensional reconstruction were compared with the mechanical 

properties and micro-defects to establish the correlation between 

local properties and defects. It was found that the thermal 

characteristics of "exceeding threshold time" had the strongest 
correlation with the local performance and defects of the part, 

which provides the basis for the prediction of the quality of 

the parts during the SLM process 
[73]

. The essence of the three-

dimensional reconstruction of the heat history during SLM is 

to extract the pixel-level information and then combine the 

information in the same layer into an image, which is then 

employed to predict the quality. The efficiency of the method 
will be improved if the raw images are directly applied to 

predict the quality instead of being 3D reconstructed.

Williams et al. 
[76]

 developed an in situ monitoring system, 

which integrated the powder bed infrared imaging and melt pool 

region infrared imaging. The calibration of temperature was 

carried out through experiments, and the surface temperature of 

the whole scanned layer, the surface temperature of the powder 

spread layer and the temperature of the melt pool region were 

measured. By forming cylindrical parts of different heights, the 

relationship between interlayer cooling time (ILCT) and the 

porosity, microstructure and mechanical properties of the parts 

(a)

(e)

(b)

(c) (d)
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Fig. 14: In situ monitoring of melt pool region during SLM forming process based on infrared image: (a) schematic 

diagram of high speed short wave infrared imaging system [72, 73]
; (b) changes of pixel value in fixed 

position of multi-frame infrared images and schematic of threshold value 
[72]

; (c) single layer thermal 

information image and 3D reconstruction results obtained by mapping method of "super threshold time" 
[72]

; 

(d) comparison between actual defect detection results and 3D reconstruction results based on infrared 
thermal information 

[72]; (e) examples of five thermal characteristics, such as single-layer molten pool 
area, time over threshold, maximum radiation and maximum radiation attenuation rate [73]

; (f) comparison 

between actual defect detection results and three-dimensional reconstruction results obtained by mapping 
method of "super threshold time" 

[73]

was studied. It is found that the surface temperature of scanned 

layer and the temperature of powder spread layer are important 

factors affecting the quality of parts during SLM process. A 

different ILCT leads to a different shape of melt pool. Shorter 

ILCT makes melt pool a stable shape and could eliminate the 

hole defects to a certain extent. A quantitative model, which 

could be generated by data-driven machine learning methods, 

may make this approach more accurate. The relationship 

between ILCT and the porosity, microstructure and mechanical 

properties of the parts may be modeled by regression models, 

such as DNN and SVR. 

3.4 In situ monitoring of scanned layer and 

powder spread layer based on visible light 
imaging

Foster et al. 
[18]

 used the high resolution imaging system shown 

in Figs. 15(a) and (b) to collect and analyze the images of 

the powder spread layer and scanned layer [Figs. 15(c)-(e)]. 

The quality of each scanned layer and powder spread layer 

during SLM process was identified and the 3D reconstruction 
of the testing results was realized. Abdelrahman et al. 

[19]
 also 

used the slice result of the 3D model of the part as a mask to 

associate it with the images of the corresponding layer, and then 

(a) (b) (c)

(d)

(f)

(e)
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Fig. 15: Paraxial in situ monitoring of scanned layer during SLM process: (a and b) physical diagram and schematic 

diagram of in situ monitoring system 
[19,22], (c, d and e) defects in scanned layer and powder spread layer [18], 

(f and g) scanned layer image segmentation and results of three dimensional reconstruction 
[19], (h) image of 

scanned layer and powder spread layer [22], (i) defect recognition results [22]

implemented the segmentation of the part region in the images 

of each layer. By applying the level set image segmentation 

algorithm to the image of the segmented parts region, automatic 

detection of the defects of scanned layer was realized. Finally, 

3D reconstruction was carried out based on the detection 

results of each layer [Figs. 15(f), (g)]. Reutzel et al. 
[22]

 also 

used affine transformation to convert the high resolution 3D CT 
detection results of the formed parts into the spatial positions 

of the acquired images, which were employed as labels. After 

feature extraction of the collected images, support vector 

machines were trained and generated recognition accuracy 

above 80%. The recognition results are shown in Fig. 15(i). The 

image segmentation approach applied in the research is based 

on the level set, which is an interactive image segmentation 

algorithm and takes additional initial contour as input besides 

the original image. The initial contour may directly affect the 

final segmentation result. The mass image data could be applied 
as the data set for a deep learning based image segmentation 

approach, which does not need initial contour, takes the original 

image as input and directly generates accurate segmentation 

results.

As shown in Fig. 16(a), Grasso et al. 
[23]

 used the paraxial 

in situ monitoring system for EBM process. A method for 

detecting the uniformity of the powder spread layer based on 

high-resolution imaging combined with image segmentation and 

morphological operations was proposed. In addition, a method 

for detecting the local overheating of scanned layer based on 

high-speed imaging combined with difference of pixels between 

frames was also proposed. The defects in the powder spread 

layer and scanned layer can be quickly detected by the above 

two methods, as shown in Figs. 16(b) and (c). As shown in Figs. 

16(d) and (e), Grasso et al. 
[24]

 also independently developed the 

experimental device. The imaging system was equipped with six 

directional light sources consisting of LED strip lights placed 

in six different locations on the ceiling of the build chamber, 

which enhanced the quality of the captured images. The image 

segmentation methods based on different active contours under 

different illumination conditions were studied. It is found that 

under appropriate lighting conditions, the geometric deviation 

detection can be accomplished with a lower error by combining 

the image preprocessing algorithm with the image segmentation 

algorithm. As shown in Fig. 16(g), Grasso et al. 
[25]

 applied the 

paraxial in situ monitoring system to SLM process, and proposed 

a statistical process monitoring method for processing images 

with complex geometric shapes. By coupling the edge-based 

and region-based image segmentation algorithms, the contours 

of the scanned layer were reconstructed and compared with the 

standard geometry of the scanned layer. Finally, the defects of 

each layer were detected successfully during the SLM process. A 

deep learning based image segmentation method, which fuses the 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Fig. 16: Paraxial in situ monitoring of powder spread layer and scanned layer during PBF process: (a) schematic 
diagram of in situ monitoring during EBM process 

[23], (b) scratch defects on powder spread layer [23], 
               (c) local overheating defect on scanned layer 

[23], (d) self-developed SLM equipment with visible light camera [24], 
          (e) schematic diagram of illumination scheme 

[24], (f) contour in a scanned layer extracted by edgeless 
active contour algorithm 

[24], (g) schematic diagram of EOS built-in paraxial in situ monitoring system [25], 
              (h) and (i) detection results of contour edge of scanned layer and defects in scanned layer 

[25]
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low-level information of image elements and high-level semantic 

information, could make full use of the massive image data and 

detect small defects during the SLM process more accurately 

than classical image segmentation methods.

Furumoto et al. 
[46]

 observed the solidification process of 

iron-based powder melts by using the high-speed imaging 

system, and studied the influence of thickness of layer on 

the solidification characteristics of the melt, which directly 

reflected the formation process of the melt under the action 

of laser. The surface tension of the metal liquid and the 

bonding force caused by the wetting characteristics of the 

metal liquid on the front layer will affect the morphology of 

the melt 
[48]

. Furumoto et al.
[48]

 also observed the melt pool 

and its solidification process during the formation of a single 

track, and found that the size of the melt pool increased with 

the increase of laser power and decreased with the increase of 

scanning speed. The area of melt pool is usually larger than the 

size of laser beam spot. As the layer thickness increases, the 

formation of melt pool becomes unstable or even chaotic. After 

solidification, an uneven molten track would be formed, and 

powder spatters would be more obvious. The increased layer 

thickness also causes the molten powder to form a ball, which 

is difficult to be wet with the substrate. The results of this 

research have important theoretical guiding significance. When 
the research was completed, the efficient artificial intelligence 
algorithms, such as AlexNet and EfficientNet, have not been 
proposed because of the hardware restriction. If the collected 

image data are fully mined and the quantitative model is built 

by machine learning methods or deep learning methods, the 

data will have greater value.

Kleszczynski et al. 
[47]

 proposed two methods to analyze the 

quality of scanned layer and powder spread layer during SLM 

process. One method is based on the imaging system of the 

high-resolution visible light camera, as shown in Figs. 17(a) 

and (b) 
[47]

. An image-based bulges detection algorithm of the 

scanned layer was developed, and a quantitative measurement 

method for analyzing the parts regions of each forming layer 

was proposed 
[50]

. As shown in Figs. 17(c)-(f), obvious forming 

layer defects, such as scanned layer bulges, were detected on the 

microscopic scale, and the geometric features of the defects in 

(a)
(b)

(c)

(d) (e)
(f)

(g) (h) (i)
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Fig. 17: Paraxial in situ monitoring system of powder spread layer and scanned layer during SLM process: (a) and 
(b) physical diagram and schematic diagram of system based on high resolution imaging 

[47], (c) bulges 
in scanned layer 

[47], (d) bulge in powder spread layer [50], (e ) and (f) collapse of scanned area due to weak 
support 

[51], (g) recoater equipped with acceleration sensor [52], (h) and (i) scanned layer with bulges and 
acceleration measurement results 

[52]
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the image were also measured to realize the positioning of the 

key areas 
[51]

. Another method is to combine the image of the 

scanned layer collected by the high-resolution imaging system, 

and use the acceleration sensor as shown in Fig. 17(g) to detect 

the collision of the recoater and the bulges in the scanned layer. 

Thereby, the threshold of detection of bulges in the scanned 

layer based on images was set 
[52]

. Finally, the knowledge base 

for the detection of the bulges in the scanned layer during the 

SLM process was established. This research proposed a method 

of quality monitoring by processing the signals from multi-type 

sensors and provided a new idea for monitoring the quality of 

scanned layer. With the improvement of measurement accuracy 

of various sensors and the development of big data processing 

algorithms, the fusion of the signals collected from multi-type 

sensors will be one of the main directions in future research.

As shown in Fig. 18(a), Scime et al. 
[62]

 used the EOS M290 

built-in paraxial camera to collect the images of the powder 

spread layer with defects [Figs. 18(b), (c) and (d)]. The sub-

images of defects shown in Fig. 18(e) were obtained by 

manual interception of the defect areas in the images. With 

37 convolution kernels as pattern extractors and convolution 

results of each pixel of the original image as basic data sets, 

100 basic visual words were generated by clustering algorithm 

[Fig. 18(f)]. Then, the data set for KNN (K-nearest neighbours) 

inferencing was acquired. During detection, the original high-

resolution image was meshed, and the visual word histogram 

of the sub-image was employed as the input of KNN to obtain 

the recognition result of the sub-image [Fig. 18(g)]. As shown 

in Fig. 18(h), to improve the performance of defect recognition, 

Scime et al. 
[63] 

proposed the convolutional neural network using 

multi-scale gray image as input, and trained the network through 

transfer learning method to overcome the obstacle of small 

data scale. The confusion matrix representing the classification 
performance of the neural network is shown in Fig. 18(i). The 

defect detection result of an image of powder spread layer in 

Fig. 18(c) is shown in Fig. 18(j). The quality monitoring task 

during SLM process was converted to an object detection task. 

KNN and CNN were applied to recognize the sub-images of 

the original images. Sliding window, which is essentially an 

enumeration method, is used as the detection method, which is 

time-consuming. Many real time object detection approaches 

with high mAP (mean average precision) should be able to solve 

this problem in a better way.

As shown in Figs. 19(a) and (b), Lu et al. 
[70]

 built a set of in 

situ monitoring devices for SLM process. Light emitting diode 

(LED) light strips were installed onto the chamber walls of the 

(a) (b) (c)

(d) (e) (f)

(g) (h)
(i)
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Fig. 18:  Schematic diagram of paraxial image acquisition system built in EOS M290 [62] (a), original image captured [62] (b), result 
of brightness enhancement of captured image 

[62] (c), image of powder spreading layer with defects [63] (d),examples 
of six types of defects in powder spread layer [62, 63] (e), schematic diagram of defect classification algorithm based 
on visual word bag and KNN [62] (f), example of defect detection results in scanned layer image [62] (g), multi-scale CNN 
structure for defect classification [63] (h), confusion matrix representing the performance of MsCNN [63] (i), example of 
defect detection results in powder spread layer image [63] 

(j)

machine to achieve uniform lighting during image capturing. 

The Nikon D500 DSLR camera was used to capture optical 

images during the printing process
 [70]

. Ten samples were formed 

under different process parameters by changing laser power 

and scanning speed, and the images of powder spread layer 

and scanned layer during the process were collected, as shown 

in Figs. 19(c)-(e) and (h). The image processing technology 

for images of both scanned layer and powder spread layer was 

developed, and features were quantified and recognized. The 
experimental results demonstrated that the test results of density 

(a) (b) (c)

(e)

(f)
(g)

(i)

(j)
(h)

(d)
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Fig. 19: Paraxial in situ monitoring of scanned layer and powder spread layup-forming layer during SLM process: 
           (a) illumination layout designed for in situ monitoring during SLM process 

[70]
; (b) schematic diagram of image 

acquisition system 
[70]; (c) image of scanned layer with defects [70]; (d) image of scanned layer with black slag [70]

; 

          (e) image of uneven spread powder layer [70]; (f) relationship between results of image quantitative analysis and 
          density 

[70]; (g) relationship between results of image quantitative analysis and mechanical properties [70]
; 

               (h and i) image collected during SLM process and its binary processing results 
[71]

; (j) number of optical images and 

          CT images collected under condition of single layer thickness distance 
[71]; (k) relationship between 

               image quantitative analysis results of each sample process and results of nondestructive testing 
[71]

based on Archimedes’ principle and mechanical properties 

of sample were correlated with the quantitative results of the 

image of sample during SLM process [Figs. 19 (f), (g)], which 

proved that the in situ monitoring system based on image 

processing was feasible to infer the mechanical properties of 

parts. Lu et al. 
[71]

 conducted nondestructive testing on the parts 

by Micro CT based on the previous study 
[70]

, and reconstructed 

the CT scan results of the components. The correlation between 

quantified features of images collected during SLM process and 
actual defects was verified. The feasibility of using the image 
of powder spread layer and scanned layer during SLM process 

to evaluate the defects of parts was also proved. If statistical 

models or machine learning models, which could predict the 

mechanical properties and the defects of parts quantitatively, 

could be trained based on the images collected during the SLM 

process, the approaches proposed in the above research will be 

more useful in engineering applications.

3.5 Summary of image analysis methods used 

in the in situ monitoring for SLM process

Table 2 summarizes the image analysis methods applied in 

SLM process. According to the semantic level of the image 

Table 2: Summary of image analysis methods used in the in situ monitoring for SLM process

Brief description

Semantic level of image analysis

Low Middle High

Typical algorithms Image processing
Image processing + 

machine learning
Deep learning

Comments

Extract the basic features of 
images manually, such as 

brightness, geometry and texture

Extract the basic features of 
images manually and recognize 

the defects automatically

Extract the basic features of 
images automatically and 

recognize the defects 
automatically

Qualitative analysis Quantitative analysis
Automatic, accurate and 

quantitative analysis

References
[9, 12-19, 23-25, 27-28, 46-49, 

51-52, 57-59, 70-73, 75-76]
[22, 30, 32, 35-39, 60-62, 64, 

66-67]
[11, 29, 31, 63, 67]

(a) (b) (c) (d)

(e)
(f) (g)

(h)

(i) (j) (k)
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information processed, the image analysis methods are divided 

into three categories: low, middle, and high semantic level 

image analysis methods. It can be seen from Table 2 that most 

of the existing image analysis methods of in situ monitoring 

during SLM process are mainly based on traditional image 

processing approaches and traditional machine learning models. 

The low semantic level image analysis methods and middle 

semantic level image analysis methods are low in efficiency 

and accuracy compared with the high semantic level image 

analysis methods. The high semantic level image analysis 

methods based on intelligent deep neural networks have already 

been used for in situ monitoring for SLM process and shown 

satisfactory results.

4 Summary
The in situ monitoring methods during selective laser melting 

process based on images are reviewed. Firstly, the significance 
of in situ monitoring during SLM process was introduced. 

Then, the image information source of SLM process, the image 

acquisition systems for different detection objects (the molten 

pool region, the scanned layer and the powder spread layer) 

and the methods of the image information analysis, detection 

and recognition are reviewed and analyzed. It is found that the 

existing image analysis methods of in situ monitoring during 

SLM process are mainly based on traditional image processing 

approaches and traditional machine learning models. The in 

situ monitoring during SLM process based on images has been 

proved to be an effective means of monitoring the process 

stability and quality. It is believed that the in situ monitoring 

during SLM process based on images will have the following 

development trends:

(1) Intelligent perception and inferencing

With the rapid development of image-based computer 

vision algorithms, the intelligent deep neural networks that 

perform well in natural image detection and segmentation tasks 

will be used in the in situ monitoring during SLM process, 

which greatly improves the efficiency and accuracy of online 
detection, and liberates researchers from the complicated and 

inefficient feature design work.
(2) Multi-sources and multi-scales image information fusion 

analysis

In addition to the image acquisition systems for visible and 

infrared bands, other nondestructive testing systems (such as 

X-ray microimager, etc.) also tend to be used for the in situ 

monitoring during SLM process, which could generate multi-

sources and multi-scales image information. Therefore, in 

situ monitoring during SLM process will be implemented in a 

more comprehensive and detailed way through the fusion and 

analysis of multi-sources and multi-scales image information.

(3) Industrialization

The high-end industry's continuous pursuit of component 

quality stability and the achievement of in situ monitoring 

during SLM process based on a more intelligent, efficient, 

comprehensive, and detailed way will definitely promote the 

implementation and industrialization of this technology.

(4) Establishment of technical standards and multi-terminal 

data sharing

Manufacturing execution system (MES), Internet of Things 

and 5G technology will enable the interconnection of many in 

situ monitoring systems for SLM process and render the image 

database for in situ monitoring more complete. In addition, 

the industrialization of this technology will inevitably give 

birth to the establishment of this technical standard, which 

will ultimately help the in situ monitoring systems of different 

terminals to achieve data sharing and improve the monitoring 

performance, so as to provide high-quality decision-making 

information for the next step of feedback control research.
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