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ABSTRACT. We have applied in situ monitoring of mechanochemical reactions by high-energy 

synchrotron powder X-ray diffraction (PXRD) to study the role of liquid additives on the 

mechanochemical synthesis of the archetypal metal-organic framework HKUST-1, which was 

one of the first and is still among the most widely investigated metal-organic framework 

materials to be synthesized by solvent-free procedures. It is shown here how the kinetics and 
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mechanisms of the mechanochemical synthesis of HKUST-1 can be influenced by milling 

conditions and additives, yielding on occasion two new and previously undetected intermediate 

phases containing a mononuclear copper core, and which finally rearrange to form the HKUST-1 

architecture. Based on in situ data, we were able to tune and direct the milling reactions towards 

the formation of these intermediates, which were isolated and characterized by spectroscopic and 

structural means, and their magnetic properties compared to those of HKUST-1. The results have 

shown that despite the relatively large breadth of analysis available for such widely investigated 

materials as HKUST-1, in situ monitoring of milling reactions can help in detection and isolation 

of new materials and to establish efficient reaction conditions for mechanochemical synthesis of 

porous metal-organic frameworks. 

INTRODUCTION 

Mechanochemistry, and in particular chemical transformations by ball milling or grinding, has 

emerged as a versatile synthetic approach to a wide range of molecules and materials,1 from 

pharmaceutical cocrystals2 and organic compounds,3 to nanomaterials,4 organometallic 

catalysts3a, 5 and coordination compounds.6 Besides minimizing the use of bulk solvents, 

mechanochemistry may provide unexpected advantages over solution chemistry, as evidenced by 

superior reaction selectivity7 and the ability to prepare molecules and materials that are not 

readily, or not at all, accessible from conventional solution-based methods.8 Mechanochemical 

methods have also proven suitable for the rapid and clean synthesis of microporous metal-

organic framework (MOF)9 or covalent organic framework materials.10 Following the synthesis 

of the moderately porous copper(II) isonicotinate MOF in pioneering work by the James group,11 

milling procedures have been developed for the synthesis of several popular MOF materials,12 
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including those with complex metal clusters as nodes, such as MOF-5,13 MIL-100,14 MOF-7415 

and UiO-66.16 Mechanochemically prepared materials were often found to exhibit porosity or 

catalytic properties that match or even surpass the analogous materials prepared from solution, 

with mechanochemistry offering additional synthetic benefits in energy consumption, reaction 

time and atom efficiency. Moreover, mechanochemical procedures enable the use of 

inexpensive, simple oxides or carbonates as metal precursors12c, 17 significantly reducing the 

generation of waste compared to conventional solution-based approaches which use soluble 

metal nitrates, chlorides or acetates. While the copper(II) trimesate framework HKUST-118 was 

at first synthesized by neat grinding,12a it was soon thereafter shown that milling in the presence 

of a small amount of a liquid (i.e. liquid-assisted grinding or LAG)19 leads to HKUST-1 material 

with improved crystallinity and surface area.17a, 20 It has been observed on several occasions that 

the selectivity and enhanced reactivity in milling can be achieved by using sub-stoichiometric 

amounts of liquid additives (LAG), or liquids together with catalytic salts (ion- and liquid-

assisted grinding, ILAG).17c While these additives were found to have a profound effect on 

mechanochemical reactivity,1a the mechanisms by which they accelerate or direct milling 

reactions are still poorly understood. Examples where the properties of a particular LAG additive 

were correlated with its observed effect have only recently been described,21 while in general, it 

is still unpredictable which properties are important to result in a specific effect. Consequently, 

the use of liquid additives is still mainly based on trial-and-error. 

Here, we have focused on systematically monitoring the influence of different liquid additives 

on the mechanochemical formation of the archetypal metal-organic framework HKUST-1.17a 

Since its discovery,18 HKUST-1 has been the subject of numerous studies due to its high stability 

and porosity, while its potential of having open metal sites makes it viable for separation22 and 
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catalysis.23 Due to its potential applications, HKUST-1 is one of only a few MOFs that are now 

commercially available.24 In order to gain direct insight into the mechanisms governing the 

mechanochemical formation of HKUST-1, we employed the recently developed in situ powder 

X-ray diffraction (PXRD) methodology to monitor25 the reaction as influenced by a choice of 

precursor and a range of liquid additives which differ in polarity and proton donating properties 

as well as their coordination capability. We have now been able to observe different reaction 

rates, changes in reaction pathways and diverse final yields when using different liquid additives 

(Figure 1). Furthermore, real-time in situ monitoring enabled us to discover two new 

intermediate phases, whose formation was dependent on the additives used as well as the 

experimental setup, and was used for tuning the milling conditions to isolate and characterize 

both intermediate phases. They both have monomeric copper(II) cores, and show different 

magnetic behavior compared to both precursors and the HKUST-1 product. The 

mechanosynthesis of HKUST-1 was here investigated from the most common precursor, 

copper(II) acetate monohydrate; Cu(OAc)2H2O, but we have also used copper(II) hydroxide as a 

“green” precursor17a without the paddlewheel secondary-building unit (SBU).   
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Figure 1. Mechanochemical synthesis of HKUST-1 from copper(II) acetate monohydrate 

precursor showing three reaction pathways which depended on the additive and reaction 

conditions. LAG A represents milling with additives containing longer aliphatic chains (Table 

1); LAG B corresponds to milling with additives as DMSO, methanol, acetone, 2-propanol and 

acetonitrile; and LAG C corresponds to milling interrupted in preassigned intervals, 

accompanied with opening of the jar for sampling. 

Experimental  

Mechanochemical routines. As LAG additives we used liquids with different polarity and 

proticity (Table 1). The ratio of liquid volume to the weight of the reactants was kept constant for 

all experiments. When using copper(II) acetate monohydrate as the copper source, the overall 

weight of copper(II) acetate monohydrate and 1,3,5-benzenetricarboxylic acid (H3btc)was 0.25 g 

(0.72 mmol of Cu(OAc)2H2O and 0.48 mmol H3btc). In another series of experiments, the 

overall weight of reactants were scaled up to 1000 mg and the reaction setup was modified 

slightly. In all experiments the ratio of liquid volume to weight of solid reactants, the so called  

parameter,26 was maintained at a value of 0.24 μL/mg (60 μL for small scale (0.25 g) 

experiments and 240 μL for 1 g experiments). 

In situ mechanochemical reaction monitoring was performed at two synchrotron sources, 

the European Synchrotron Radiation Facility (ESRF) in Grenoble and at the Berliner 

Elektronenspeicherring BESSY II, Helmholtz-Zentrum Berlin. The in situ monitoring of milling 

experiments at ESRF was performed at the beamline ID5B using the experimental setup 

described previously25, 27 and an in-house modified Retsch MM301 mill operating at 30 Hz. The 

reaction vessels were made from polymethymetacrylate (PMMA) with two stainless steel balls of 

7 mm in diameter (weight ≈ 1.4 g per ball) as grinding media. For each experiment, the total 
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weight of reactants was maintained constant, while the choice of liquid additive and 26 were 

systematically varied. 

Scaled-up milling experiments were also monitored by in situ PXRD at the µSpot beamline of 

BESSY II, Berlin. The scattered intensities were collected using a two dimensional MarMosaic 

CCD detector (3072 × 3072 pixels).28 Due to the larger load of reactants (1.0 g of solids with 240 

µL of the liquid) we needed to alternate the reaction conditions slightly. We used here a 10 mL 

self-constructed PMMA vessel with two 10 mm stainless steel balls (≈4g). Experiments were 

conducted for 30 to 90 min at 30 Hz using a vibrational ball mill (Pulverisette 23 , Fritsch 

GmbH, Germany). Measurements were carried out every 30 s (plus 3-4 s readout time). 

Analysis of in situ PXRD monitoring. HKUST-1 is an open framework whose pores may be 

populated with a variety of guest species, including the reactants themselves, whose distribution 

does not necessary adhere to the structure symmetry, thereby hindering Rietveld refinement. 

Analysis of the in situ PXRD reaction monitoring data was achieved by scaling the intensities of 

a set of reflections belonging to HKUST-1. This set of HKUST-1 reflections was initially 

obtained by a Pawley29 refinement of the last diffraction pattern from the LAG(MeOH) reaction 

in which this framework was the only remaining crystalline phase in the reaction mixture. For 

the analysis of other data sets, this set of reflections was, for each diffraction pattern individually, 

multiplied by a refined scale factor. Thus refined scale factor of each dataset was taken as a 

direct indication of the reaction progress towards the formation of HKUST-1. Scaling of the 

HKUST-1 intensities in different experiments relative to the same initial set of intensities allows 

comparison of reaction rates and yields of different LAG and NG experiments relative to the 

product of the LAG(MeOH) reaction.. In addition to the scale factor for HKUST-1 intensities, 

each diffraction pattern was modeled by refining unit cell and background parameters as well as 
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peak shape parameters. Diffraction patterns were processed in an automated fashion using the 

program Topas30 in batch mode. Refined parameters were written into a text file and used for 

further analysis and plotting. The relative scale factor, used as an indicator of reaction progress, 

shows large variations arising from variations in the amount of the material in the X-ray beam 

for each particular diffraction pattern collected during in situ monitoring. Time-resolved 2-

dimensional X-ray diffractograms were prepared using Mathematica31 after subtracting the 

background of each diffraction pattern by the Sonneveld-Visser32 algorithm implemented in 

Powder3D.33 

Ex situ milling experiments were performed by using the same selection of milling vessels 

and balls as for the corresponding in situ monitoring experiments, in a Retsch MM301 shaker 

ball mill operating at 30 Hz. Samples prepared in laboratory were analyzed by powder X-ray 

diffraction (PXRD) using the Phillips PW 3710 diffractometer with CuKα radiation, operating at 

a tension of 40kV and current of 40 mA. The data was collected using a flat plate sample on a 

zero background in Bragg-Brentano geometry, between 4° and 40° (2θ) with a step size of 0.02° 

and 1.0 s counting per step. 

Experiments on a 1 gram scale were conducted using a vibrational ball mill (Pulverisette 23, 

Fritsch GmbH, Germany) with a 10 mL stainless steel reaction vessel and a total solid loading of 

1000 mg (with 240 µL liquid). To achieve efficient mixing, milling experiments were performed 

at 30 Hz using two stainless steel balls (each ball weighed 4 g). Sampling was typically 

conducted every 0 s, 10 s, 60 s, 5 min, 15 min, and 60 min to perform qualitative analysis of the 

reaction pathway. Alternatively, ex situ experiments were conducted with additives ethanol and 

1-butanol, where the sampling was performed for every 1 min until 5 min of reaction time; for 

every 5 min until 60 min of reaction time, and for every 10 min until 120 min of milling. For 
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each sampling, the mill was stopped and the sample was taken from the reaction vessel and 

analyzed by PXRD.  Powder diffraction measurements were performed on a diffractometer D8 

Discover (Bruker AXS, Karlsruhe, Germany; Lynxeye detector) operated in transmission 

geometry (Cu-Kα1 radiation, λ = 0.154056 nm). Samples were sealed in glass capillaries (0.5 

mm; WJM-Glas, Müller GmbG, Berlin, Germany). Measurements were performed at room 

temperature in a 2 range from 5-50°, step size of 0.009 and 0.1-0.2 s per step.  

Intermediate phase isolation.  Milling experiments were performed by altering reaction 

times, copper precursor, molar ratio of the reactants, type of liquid additive, and the amount of 

the liquid additive. The best results were obtained from Cu(II):H3btc = 1:2 molar ration with 

ethanol or 1-butanol as liquid additives. 

Structure solution. The structure solution of intermediate 2 was derived from PXRD data. 

The PXRD data were indexed using the indexing routine of the software TOPAS (Version 5, 

Bruker AXS, 2014) Simulated annealing was conducted in EXPO.34 Final Rietveld refinements 

was performed using TOPAS. The experimental details, Rietveld plot and difference plots are 

shown in Supplementary information, Figure S25. 

Electron spin resonance (ESR) spectroscopy was conducted on microcrystalline samples of 

the mechanochemically prepared materials using an X-band Bruker Elexsys 580 FT/CW 

spectrometer equipped with a standard Oxford Instruments model DTC2 temperature controller. 

The measurements were performed at a microwave frequency of around 9.7 GHz with the 

magnetic field modulation amplitude of 0.5 mT at modulation frequency of 100 kHz. The ESR 

spectra were recorded from liquid nitrogen up to room temperature (78 K and 297 K). 
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Fourier-transform infrared attenuated total reflectance (FTIR-ATR) measurements were 

conducted using a Perkin-Elmer Spectrum Two instrument with a diamond crystal Quest ATR 

Accessory, in the range of 450-4000 cm–1. 

 

Results and discussion 

 

 

Direct synthesis of HKUST-1 by mechanochemistry 

 

The paddlewheel secondary building unit (SBU) in HKUST-1 characteristic for copper 

carboxylates is also found in copper acetate monohydrate, [Cu(OAc)2(H2O)]2, which is the most 

common precursor for either solution18 or mechanochemical12a, 20a synthesis of HKUST-1. 

Herein, in situ monitoring of the neat grinding synthesis of HKUST-1 starting from copper(II) 

acetate monohydrate and H3btc performed in PMMA vessels revealed a very slow low-yielding 

reaction, and a large amount of copper acetate remaining after 50 min milling (Figure 2a). As the 

use of LAG procedures was generally found to be beneficial for encouraging reactivity during 

the synthesis of metal-organic open architectures,25 we conducted a systematic screen of 

different liquid additives aimed at determining how the mechanosynthesis of HKUST-1 could be 

accelerated by LAG. It was shown immediately that the weakly-coordinating liquid additives 

such as hexane, cyclohexane, toluene, chloroform, dichloromethane, and even polar 

nitromethane, led to little or no enhancement compared to neat grinding (Figures 2, S1-S5). Even 

though these liquids could have entered the pores of the nascent HKUST-1 and stabilized it, they 

had little effect on the formation of HKUST-1 (Figure 2b). 
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Figure 2. (a)  In situ monitoring of the mechanochemical formation of HKUST-1 from copper(II) 

acetate hydrate and H3btc under neat milling conditions. Calculated diffraction patterns of 

participating crystalline phases are given on top of the time-resolved diffractogram. (b) 

Comparison of the formation efficiency of HKUST-1 under LAG reaction conditions using 

nitromethane and chloroform to neat grinding. Relative scaling of HKUST-1 intensities is 

explained in the Experimental section.  

 

In contrast, the formation of HKUST-1 by LAG was greatly facilitated in the presence of 

protic liquid additives. Alcohols, as polar and protic liquids, were the most efficient at 

accelerating the formation of HKUST-1, with methanol providing the fastest reactions and the 

highest reaction yield. With methanol as the additive, HKUST-1 was observed almost 

immediately in the reaction mixture, and maximum conversion was reached after ca. 5 minutes 

milling (Fig. 3a). Slower conversions were observed when using the same volumes of ethanol or 

iso-propanol as additives, requiring ca. 20 min for reaction completion (Fig. 3b). Polar aprotic 

liquid additives such as acetonitrile, acetone, N,N-dimethylformamide (DMF), N,N-

diethylformamide (DEF), were less efficient than polar and protic liquids at facilitating HKUST-
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1 formation. Moreover, acetonitrile provided the fastest initial reaction in our set of experiments 

but a poor final yield (Figure 3c), which may have been due to the competition between the 

additive (acetonitrile) and H3btc for the copper cations, thus hindering the formation of HKUST-

1. LAG using acetone, a mildly acidic O-donor liquid, was initially slower when compared to 

LAG using acetonitrile but the final yield was around three times higher. The ability of DMF and 

DEF, basic O-donor liquids, to accelerate the reaction was similar to acetone in terms of 

HKUST-1 formation, providing slower reactions but better final yield than for LAG using 

acetonitrile. To establish whether N-donor liquids could interfere with the HKUST-1 synthesis, 

we performed the in situ monitoring of the reaction in the presence of pyridine, a liquid additive 

known for its affinity towards coordination to copper. Milling with pyridine as liquid additive 

resulted in exclusive formation of a known copper(II) 2-D coordination polymer with the formula 

[Cu3(btc)2(py)3]n (Cambridge Structural Database code HUDHET), while the diffraction signals 

related to HKUST-1 could not be detected (Figure S22). These results suggest that the 

coordinating capabilities of the liquid additive have a profound effect on mechanochemical 

formation of HKUST-1. 

 

 

Figure 3. In situ monitoring of the formation of HKUST-1 using (a) methanol as an additive; (b) 

formation of HKUST-1 under LAG reaction conditions using simple alcohols in comparison to 
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neat grinding: and (c) formation of HKUST-1 under LAG reaction conditions using various 

aprotic liquids in comparison to neat grinding. Relative scaling of HKUST-1 intensities is 

explained in the Experimental section. Scattering of the values for the scale factor is due to 

variable amount of the sample in the X-ray beam for the collection of consecutive diffraction 

patterns. This scattering is most pronounced for acetone where the amount of HKUST-1 is 

highest causing the strongest absolute variations of HKUST-1 in the beam while relative 

variations are similar in all experiments. 

 

While the above results suggest that the selection of LAG liquid can accelerate or direct the 

mechanochemical synthesis of HKUST-1, the volume of LAG additive was found to have a 

profound effect on HKUST-1 formation. Adding 20 L of methanol instead of previously used 

60 L resulted in the slower and less extensive formation of HKUST-1 (Figure 4a). Mixing the 

protic additive with an aprotic one, such as in experiments involving ethanol-chloroform 

mixtures revealed that the reaction rate is strongly dependent only on the amount of the protic 

liquid. For example, the reaction profiles were almost identical when using only 20 μL of ethanol 

as the LAG additive, or ethanol (20 μL) together with chloroform (40 μL). Furthermore, 

increasing the ethanol content in the liquid mixture led to higher conversions and reaction rates 

(Figure 4b). 
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Figure 4. The amount of the protic liquid additive affects the reaction yield. (a) With lower 

amount of the methanol liquid additive, the yield is correspondingly lower, and (b) mixing the 

protic additive with aprotic liquid will have almost no effect on the reaction rate and yield. 

Relative scale of HKUST-1 intensities is explained in the Experimental section. 

 

 

 

Intermediates in mechanosynthesis of HKUST-1 

Our studies also reveal that the LAG additives can have an important role in governing the 

reaction pathway for the mechanochemical formation of HKUST-1. Analysis of the 

mechanochemical reactions forming of HKUST-1 from copper(II) acetate monohydrate revealed 
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the intended product as the only crystalline phase formed when all LAG additives other than 

ethanol and DMF were used. With these latter additives, an intermediate phase (1) was observed, 

as evidenced by the appearance of a strong characteristic low-angle X-ray reflection (d = 14.7 Å; 

2 = 6.1 for CuK1). While 1 was present, a significant amount of unreacted copper(II) acetate 

monohydrate was still evident in the reaction mixture (Figures 5a, S18), along with the partially 

formed HKUST-1 product. At the same time the diffraction signals of H3btc were no longer 

visible after around 5 min milling. Phase 1 appears in the reaction mixture immediately after the 

milling is initiated and disappears after ca. 12 minutes, along with the remaining copper(II) 

acetate monohydrate, to yield HKUST-1 as the only crystalline phase. However, formation of 1 

is not related exclusively to ethanol and DMF. Repeated LAG experiments with longer-chain 

alcohols, and THF or ethyl acetate as additives (Table 1) revealed the same stepwise reaction 

pathway which resulted with HKUST-1 as the only product. 
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Figure 5. (a) In situ monitoring of the reaction between copper(II) acetate hydrate and H3btc (3:2 

molar ratio) with ethanol as liquid where the intermediate 1 is visible in the first 15 min milling 

and b) same mechanochemical reaction followed by stepwise ex situ analyses by stopping the 

mill and sampling. 

Table 1. Effect of milling in the LAG processes on the occurrence of the intermediate phases and 

the product of milling. In typical experiment, 250 mg of reactants in total would be milled with 

60 μL of liquid. In all experiments (except experiments with 1-butanol, 1-hexanol and 

benzonitrile), opening of the jar for sampling would lead to formation of intermediate 2 and 

finally to formation of HKUST-1. 

Liquid Protic Permeability Monitoring Intermediate Product 

Hexane  1.88 in situ – –* 
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Cyclohexane  2.02 in situ – –* 

Toluene  2.38 in situ – –* 

Chloroform  4.81 in situ – –* 

Dichloromethane  6.00 in situ – –* 

      

DMSO  46.7 in situ – HKUST-1 

Acetonitril  37.5 in situ – HKUST-1 

Methanol + 35.2 in situ – HKUST-1 

Acetone  20.7 in situ – HKUST-1 

2-propanol + 19.92 in situ – HKUST-1 

2-butanone  18.59 in situ – HKUST-1 

      

Ethanol + 24.8 in situ 1 HKUST-1 

1-propanol + 20.33 in situ 1 HKUST-1 

1-butanol + 17.51 in situ 1 HKUST-1 

1-hexanol + 13.30 in situ 1 HKUST-1 

Tetrahydrofuran  7.58 in situ 1 HKUST-1 

Ethyl acetate  6.00 in situ 1 HKUST-1 

Diethylformamide  29.02 in situ 1 HKUST-1 

Benzonitrile  25.2 in situ 1 HKUST-1 

* Although HKUST-1 is not a product of milling procedure, it forms upon aging of the milled 
reaction mixture in the air. 

 

In order to isolate and characterize 1, we conducted a series of experiments in which the 

milling was stopped at predetermined periods, allowing samples to be taken and analyzed by ex 

situ PXRD. Surprisingly, another intermediate phase (2), different from 1, was observed (Figures 

5b, S20). Analysis of the PXRD pattern of the reaction mixture revealed the formation of 

compound 2 along with copper(II) acetate monohydrate and HKUST-1, while the reflections of 

H3btc were no longer observable after 3 minutes milling (Figure 5b). This suggested that a lower 
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ratio of Cu(II) to H3btc might be beneficial for the isolation of 2. Indeed, the intermediate 2 was 

isolated in pure form after milling copper(II) acetate and H3btc in the 1:2 stoichiometric ratio for 

5 minutes. The crystal structure of 2 was solved from powder X-ray diffraction data, revealing 

that the compound crystallizes in the monoclinic P21/c space group (Table S1). The structure 

solution revealed a coordination compound with two H2btc– anions and two water molecules 

coordinated to a single Cu(II) ion (Figure 6). The crystal structure exhibits extensive hydrogen 

bonding between the carboxylic acid functionalities of the anionic ligand and water, giving rise 

to a complex supramolecular network. While the central Cu(II) cation is coordinated with four 

ligands arranged in a square-planar fashion, two oxygen atoms belonging to water molecules 

from the neighboring complexes are only ≈2.86 Å away, extending the coordination sphere of 

each Cu(II) into an elongated octahedron. The nearest contact between two copper ions is with 

copper centers from the complexes donating apical oxygen atoms, where the Cu···Cu distance is 

≈3.654 Å, with the angle (O(apical)···Cu···Cu) of 32.83° (Figure S23). It seems thus that the 

stopping the mechanochemical reaction and opening of the jar for sampling induces dissociation 

of a paddlewheel SBU of the copper(II) acetate and formation of simple mononuclear 

intermediate which, in the right stoichiometry of reactants, reacts with the remaining metal 

precursor to form HKUST-1. 
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Figure 6. (a) Molecular structure of intermediate 2 and (b) hydrogen-bonded network in crystal 

structure of 2 as viewed down the crystallographic a axis. Hydrogen bonds are represented by 

dotted lines. 

Detection and isolation of 2 exclusively upon stepwise reaction monitoring highlights the fact 

that opening and closing of the milling vessel can affect the pathway of the mechanochemical 

reaction. It was previously shown that the opening of the reaction vessel and the interruption of 

the milling process can steer the reaction towards products which differ from those obtained by 

uninterrupted milling.35 In this case, exposing the reaction mixture to atmosphere resulted most 

likely in partial evaporation of liquid components used (acetic acid, water and ethanol), and at 

the same time cooling and relaxation of reaction mixture followed by the formation of 2. For that 

reason, we revisited the LAG syntheses of HKUST-1 with non-polar and non protic liquids 

(hexane, cyclohexane, toluene, chloroform, dichloromethane), where the formation of HKUST-1 

was extremely slow and diffraction signals of HKUST-1 could be barely visible after milling was 

finished. Opening of the jar for sampling resulted again in the formation of the intermediate 

phase 2, with the formation of HKUST-1 having been observed upon further milling (Table 1).  
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In situ monitoring of reactions with methanol, acetonitrile, 2-propanol, acetone, 2-butanone and 

DMSO as additives showed direct formation of HKUST-1 with no observable intermediate 

(Table 1). However, opening of the jar for sampling and ex situ analyses also led to HKUST-1 

formation via intermediate 2.  

Although the opening of the jar offers a simple way for the synthesis of 2, the in situ observed 

phase 1 was not visible pure in any of the PXRDs collected by stepwise monitoring. In order to 

isolate 1, we attempted the synthesis of HKUST-1 from different copper(II) source, namely 

copper(II) hydroxide (which does not have the paddlewheel SBU) and H3btc in a 3:2 molar ratio 

under LAG conditions using ethanol as the liquid additive so as to slow down the formation of 

HKUST-1, which is almost immediately visible in reactions from copper(II) acetate 

monohydrate. Using copper hydroxide as the metal source resulted in intermediate 1 being 

observed as a lasting intermediate with strong and sharp reflections, indicating its high 

crystallinity. It was formed quickly upon initiation of milling and its corresponding reflections 

persisted for almost 20 min before their reduction in intensity was accompanied by the 

appearance of those of HKUST-1 (Figure 7). 
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Figure 7. Time-resolved diffractogram for the LAG of copper(II) hydroxide and H3btc (3:2 molar 

ratio) using ethanol as the liquid additive. Peaks belonging to intermediate 1 are enclosed in the 

white rectangle. 

Based on these results we have switched to copper(II) hydroxide as the copper precursor and 

used other alcohols as LAG additives in further attempts to isolate the intermediate 1. Even 

though in situ monitoring did not reveal formation of 1 when using 2-propanol, stepwise analysis 

reveals increasingly facile formation of 1 formation when using longer-chain alcohols. By using 

LAG with 1-butanol and a 1:2 stoichiometric ratio of copper(II) hydroxide to H3btc, we were 

able to isolate 1 as a pale-blue solid and to collect its high-resolution X-ray powder diffraction 

pattern. Repeating the experiments using the same reaction conditions but with other alcohols 

(ethanol, 1-propanol, 1-hexanol), we again obtained 1 with an identical diffraction pattern. We 

were however unable to determine the crystal structure of 1. The strong low-angle reflection is 

characteristic of layered structures and we were able to index the diffraction pattern with an 

orthorhombic unit cell. Diffraction pattern of intermediate 1 and the Pawley fit confirming the 
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unit cell are given in Supporting information (Figure S24). Since the best results were again 

gained with 1:2 molar ratio and no other compounds were observable by PXRD or spectroscopic 

analyses, we assume the molecular composition of 1 to be similar to the composition of the 

intermediate 2. This was further corroborated by their FTIR-ATR spectra which are almost 

identical. Also, in the spectra of both 1 and 2, the characteristic peak corresponding to the C=O 

stretching vibrations lie at 1703 cm–1 indicating the presence of still free carboxylic groups from 

the H3btc ligand (Figure S26). 

Magnetic properties of mechanochemically prepared HKUST-1 and the intermediate 

phases 1 and 2 

To gain insight into the local environment of the copper cation in both intermediates and to 

compare their magnetic properties with the properties of two used precursors and the 

mechanochemically prepared HKUST-1, we employed electron spin resonance (ESR) 

spectroscopy. ESR spectra of all investigated compounds at the lowest measured temperature (78 

K) are presented in Fig. 8. The recorded spectra of two used precursors, copper(II) acetate 

monohydrate and Cu(OH)2 as well as of HKUST-1 are in agreement with the spectra found in 

the literature; all are well known and thoroughly characterized. In paddlewheel unit of 

[Cu(OAc)2(H2O)]2, there are two strongly antiferromagnetically coupled copper ions with spin S 

= 1/2 with ground singlet and an excited triplet state and its ESR spectra can be described by the 

total spin S = 1.36 Copper(II) hydroxide is a low-dimensional antiferromagnet with Néel 

temperature TN  20 K37 and in X-band, it is ESR silent, from room down to liquid helium 

temperature.38 Here observed very weak and broad signal could be assigned to defects that occur 

during an aging of the sample, in agreement with similar results found in the literature.38-39 The 

spectrum of HKUST-1 is a superposition of two contributions; the first stronger contribution 
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observed at magnetic field  330 mT corresponds to paramagnetic copper ions with spin S = 1/2 

and the second weaker contribution belongs to two coupled copper ions with total spin S = 1.40 In 

accordance with literature, this main resonance originates from [Cu(OH2)6]
2+ complex, a defect 

formed during the synthesis, heterogeneously distributed over the HKUST-1 pores. The second 

weaker contribution, whose part of the spectrum is shown enlarged in Figure 8 below HKUST-1 

spectrum, has origin in strongly antiferromagnetically coupled copper ions and due to similar 

paddle-wheel building block, it is similar to the spectrum of copper(II) acetate hydrate. Beside 

this S = 1 dimer signal, there is also another contribution from the exchange coupling between 

dimers.40a, 41 
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Figure 8. ESR spectra of the investigated compounds at T = 78 K. The signals marked with 

asterisks originate from the ESR cavity.  

 

Contrary to the magnetically coupled copper(II) ions in the both precursors and HKUST-1 

product, ESR spectra point to the presence of the monomeric copper(II) structures in intermediate 

compounds. The temperature dependence of the spectra and more detailed ESR analysis of two 

intermediates is given in SI. From the spectral simulation, the following values of g-tensors were 

obtained: gx1=2.068, gy1=2.140, gz1=2.258; gx2=gy2=2.075, gz2=2.350, for intermediate 1 and 2, 

respectively (Figure S27). "Axial" parameters with gz>gy = gx  obtained for 2 reveal the dx2-y2 

orbital as the ground state of copper unpaired electron, in agreement with the crystallographic 

structure of  2.42 "Rhombic" parameters with gz>gy>gx obtained for 1 point to "intermediate 

situation", with geometry between octahedral, square pyramidal or square planar on one side and 

compressed octahedral or trigonal bipyramidal on the other side.42  A comparison with 

crystallographic parameters are not possible due to the unknown crystal structure of 1 but the 

parameter R = (gy - gx)/(gz - gy) = 0.61 < 1 reveals that the ground state in 1 is also predominantly 

dx2-y2.
42 The results from ESR suggest that both intermediate phases 1 and 2 are complexes with 

mononuclear copper(II) cores. 

CONCLUSION 

In situ synchrotron PXRD monitoring of the mechanochemical synthesis of HKUST-1 from 

copper(II) acetate hydrate revealed a lively participation of the liquid additive in the formation of 

HKUST-1, with three different reaction pathways determined. While some additives support the 

direct transformation of copper(II) acetate and H3btc to HKUST-1, without any observable 

crystalline intermediate phases, using ethanol and higher alcohols was found to steer the 
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HKUST-1 formation via an intermediate phase 1. In our experimental setup, dry milling and 

LAG using aprotic and non-polar liquids would not yield any significant amount of HKUST-1 

during milling but HKUST-1 would form after aging of the milled reaction mixture in air. 

Furthermore, ex situ study revealed that relaxation of the reaction mixture and temperature 

variations through repeated stopping and starting of the milling process as well as opening of the 

reaction vessel induced formation of another intermediate 2, no matter of the liquid additive 

used. Data collected from in situ and fast ex situ monitoring helped us to tune the reaction 

conditions and stoichiometry of the reactants, and to isolate intermediates 1 and 2 as pure phases, 

allowing their spectroscopic and structural characterization. Both intermediates are mononuclear 

complexes, meaning that the paddlewheel SBU of copper(II) acetate dissociated in LAG with 

ethanol or higher alcohols, forming a compounds with a mononuclear copper core, which further 

reacted to form HKUST-1. Such reactivity using different liquids, or the same liquid but in 

different amounts, further stresses the importance of the liquid additive for the formation of 

HKUST-1. Clearly, the role of the liquid is not only to populate the voids in the nascent MOF, 

but even more so to activate the reactants and direct its mechanochemical formation. Our future 

work will be focused on studying in detail the specific liquid-MOF interactions responsible for 

MOF formation and stabilization.   
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Synopsis. High-energy synchrotron powder X-ray diffraction was applied for studying the role 

of liquid additives on the mechanochemical synthesis of archetypal metal-organic framework 

HKUST-1. The in situ monitoring revealed three different reaction pathways depending on the 

additive used and mechanochemical reaction conditions, and also helped in isolating and 

characterizing two new intermediates in mechanosynthesis of this widely investigated metal-

organic framework. 


