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ABSTRACT: Understanding and controlling the formation of nanoparticles at the surface of 

functional oxide supports is critical for tuning activity and stability for catalytic and energy 

conversion applications. Here we use a latest generation environmental transmission electron 

microscope to follow the exsolution of individual nanoparticles at the surface of perovskite oxides, 

with ultra-high spatial and temporal resolution. Qualitative and quantitative analysis of the data 

reveals the atomic scale processes that underpin the formation of the socketed, strain-inducing 

interface that confers exsolved particles their exceptional stability and reactivity. This insight also 

enabled us to discover that the shape of exsolved particles can be controlled by changing the 

atmosphere in which exsolution is carried out and additionally, this could also produce intriguing 

heterostructures consisting of metal-metal oxide coupled nanoparticles. Our results not only 

provide insight into the in situ formation of nanoparticles, but also demonstrate the tailoring of 

nanostructures and nano-interfaces. 

KEYWORDS: nanoparticles, in situ exsolution, perovskites, environmental transmission electron 
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Functional materials consisting of metallic particles dispersed on the surface of oxides have been 

instrumental in enabling various catalytic and energy conversion applications.1–3 For the last 

decades, such materials have been generally prepared by deposition methods whereby catalyst 

precursors are deposited over the surface of the oxide support, followed by various thermal 
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decomposition or reduction processes to form the metallic nanoparticles. In the last decade, an 

alternative preparation route has emerged whereby the catalyst in its ionic form is substituted into 

the crystal lattice of an oxide support under oxidising conditions and subsequently released as 

metallic nanoparticles at the surface, upon reduction at temperature (Fig. 1). This process has been 

referred to as solid state recrystallisation4 or intelligent self-regeneration5 when carried out in a 

reversible manner, and as redox exsolution6 when particle release at the surface is irreversible.  

As compared to particles prepared by deposition methods which usually form relatively shallow 

interfaces with the oxide support, exsolved particles are not only more uniformly dispersed but are 

also partly immersed (or socketed) into the surface of the host oxide support.7 In turn, this makes 

them considerably better anchored and more resistant to degradation by agglomeration or carbon 

deposition, and, at the same time, strained, which provides opportunities for accessing higher 

catalytic activity.7,8 Therefore, exsolution has emerged as an exciting platform for the design of 

advanced nanostructures, unlocking additional levels of reactivity and stability for various 

applications including fuel cells,9–13 H2O, CO2 and/or CH4 (co)electrolysis,14–19 chemical looping 

H2 production,20 membrane reactors21 and catalysis of CO and NO oxidation,8 CO2 reduction,22 

photocatalysis23 and hydrocarbon reforming.24–26  

So far, several aspects of the exsolution mechanism have been investigated aiming to understand 

the factors that control the size, population27,28 and energetics of particle formation,29–32 as well as 

the role of defects within the perovskite host lattice.6,33–35 However, the formation of the defining 

structural aspect of exsolved particles – their socketed, epitaxial interface with host oxide – 

remains difficult to understand due to the challenges of observing atomic scale processes with 

sufficiently high spatial and temporal resolution. Understanding their genesis would not only allow 
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further tuning of their functionality, such as stability and reactivity, but could also provide insights 

for creating advanced interfaces with superior functionality.  

Here we use a latest generation environmental transmission microscope to capture the exsolution 

dynamics of individual nanoparticles with ultra-high spatial and temporal resolution. This allowed 

us to reveal and describe quantitatively the atomic scale processes that underpin the formation of 

the distinctive particle-host lattice interface as well as the stepwise, discrete nature of particle 

growth which seems to correlate with the highly uniform manner in which exsolved particles 

emerge. Additionally, the results also provide proof of concept for controlling the exsolution 

process to create advanced nanostructures. 

RESULTS AND DISCUSSION 

The challenges of observing exsolution in situ. To follow the dynamics of nanoparticle 

exsolution, we select two compositions with vastly different content of exsolvable ions (x = 0.06 

and 0.4 in A1-αB1-xMxO3), to cover the currently reported range of exsolved structures and 

applications. The sample with a relatively low content of exsolvable Ni ions is 

La0.43Ca0.37Ni0.06Ti0.94O3,
15 while the one with relatively high content is La0.8Ce0.1Ni0.4Ti0.6O3.

6 The 

relative content of exsolvable ions in the perovskite crystal lattice can be visually compared in Fig. 

1. We employ these samples in powder or lamella form, as detailed later in the text. 
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Figure 1. Exsolution from perovskites with different substitution level. Illustration of the number 

of perovskite unit cells required to form one metal unit cell (14 metal atoms) from perovskites 

A1-αB1-xMxO3 with substitution of M: (a) x = 0.06 (6x6x6 cells), (b) x = 0.4 (3x3x3 cells). 

Exsolved particles, as required by various applications, are grown routinely in the size range of 

5-50 nm.2 To monitor their growth, one would have to use imaging techniques suitable for this 

scale, such as electron microscopy. Transmission electron microscopy (TEM), in particular, has 

the advantage of reaching an atomic-scale spatial resolution in the recorded image by passing an 

electron beam though a small area of the sample, thus providing a “see-through” image of the 

particle, the host oxide and their interface, at the same time. However, in order to obtain an image, 

the region analysed needs to be thin-enough, that is, “electron-transparent” (usually at the edge of 

grains, Fig. 2a) and preferably oriented along a major crystallographic axis to facilitate data 

interpretation. Carrying out TEM imagining under gas environment and at temperature brings 

additional challenges in terms of maintaining resolution and avoiding sample drift and 

misalignment due to thermal effects upon heating.36 To address the above, we employed a latest 

generation FEI TITAN G2 80–300 kV environmental transmission electron microscope (ETEM) 

equipped with an objective Cs aberration corrector and equipped with a double tilt holder, which 
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can operate under gas pressure up to at 20 mbar and temperatures up to 1300 °C.37,38 To minimise 

thermal drift upon heating up we secure the samples on high-performance DENSolutions nano-

chips. The instrument is capable of continuous recording of video files at 4K pixel resolution at a 

spatial resolution of 0.09 nm in TEM mode and at a rate of 20-30 frames per second equivalent to 

a time resolution of ~50 ms.     

Particle-perovskite socket formation. To obtain information on the formation of the particle-

socket interface in conditions representative for a wide range of applications, we used a powder 

sample of La0.43Ca0.37Ni0.06Ti0.94O3, under a H2 atmosphere (20 mbar), at 900 oC. We then followed 

the structural evolution of different areas across the edge of a perovskite grain (Fig. 2a,b), over the 

first few minutes of particle growth which are considered to be the defining moments in the genesis 

of exsolved particles and their distinctive characteristics, as well as being the most difficult to 

investigate. Fig. 2c shows the time evolution of a representative area over 250 s, while Fig. 2d-g 

plots corresponding particle and perovskite dimensions of interest extracted from these data. Due 

to the very fast nature of the exolution process and due to the difficulty of anticipating the location 

where a particle would nucleate, we were unable to capture the very first moments of nucleation. 

At the time labelled as t = 0 s the particle appears to have nucleated instantaneously, displaying an 

approximate apparent height and width of 1 and 3 nm, and growing to 1.7 and 4.5 nm, respectively, 

by t = 250 s. Interestingly, most of the particle growth occurs in under 100 s suggesting that short 

reduction times and/or reduction pulses might be sufficient to tailor exsolved particles as compared 

to the relatively long reduction times typically used in the literature, which are of the order of 

hours. However, it should also be noted that this result is consistent with a previous report 

indicating that exsolved particles can be formed via electrochemical reduction in just a few tens of 

seconds.15 Particle growth is not only fast, but also apparently isotropic, that is, dimensionally the 
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particle grows proportionally in all directions, as evidenced by a plot of a particle height as a 

function of corresponding width (Fig. 2e). Additionally, throughout the growth process, the 

particle remains locked in close crystallographic orientation (in [110] direction) with respect to the 

perovskite lattice, which is one of the key structural elements that confers exsolved particles their 

stability.  

  

 

  

  

Figure 2. Particle-socket formation during in situ growth under H2. (a) Schematic illustration of a 

perovskite particle in a suitable orientation for monitoring one of its edges by electron microscopy 

imaging. (b) TEM of a La0.43Ca0.37Ni0.06Ti0.94O3 perovskite powder highlighting an edge of a grain 

where particle growth was followed. (c) Selected region followed throughout the reduction process 

at 900 °C, under H2, showing snapshots at different times (t) of the gradual formation of a particle-

socket and nucleation of two additional particles. (d) Schematic illustration of a particle within 

socket annotated with the dimensions used to quantify its evolution over time. (e) Plot of the 
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particle height vs width. (f) Plot of the elevation of the perovskite lattice in the region adjacent to 

the particle, as a function of time. (g) Plot of the particle width and height as a function of time 

together with various models identifying the rate-limiting step in particle growth. 

One subtle, yet intriguing structural aspect that develops as the particle grows, is the evolution 

of the perovskite lattice around the particle. At t = 0 s, the surface of the perovskite lattice is 

seemingly flat. However, as the particle grows, the perovskite lattice rises concomitantly at the 

point of junction with the particle (see annotations in Fig. 2d and a plot of the values in Fig. 2f). 

This becomes apparent at around t = 33 s when the elevation of the perovskite lattice relative to 

the starting level (at t = 0 s) reaches about 0.3 nm and becomes clearly defined by t = 99 s, when 

this value reaches about 1 nm. Two key observations can be made which indicate that the rise of 

the perovskite lattice around the particle is indeed illustrating socket formation. First, the ratio 

between the final values of the perovskite lattice rise and particle diameter (width) is about 1/3, 

which is the value reported previously for the degree of immersion of exsolved particles, as 

measured under ambient conditons.7 Secondly, fitting the particle growth data with models 

developed in the literature provides indications on particle confinement. Generally, three key 

factors have been previously identified in the literature to describe the rate limiting process of 

particle growth during exsolution: the availability or concentration of exsolvable ions in the lattice 

(essentially the substitution level, Eq. 1), the diffusion of the exsolvable ions (Eq. 2) to the surface 

and the strain associated with the formation of the particle and that of the particle-perovskite 

interface (Eq. 3).27,31 In these equations 𝑑, 𝑡 and 𝜏 denote particle dimension (at a given time and 

at equilibrium), time and time constant, respectively. 
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𝑑𝑠(𝑡) = 𝑑𝑠0 (𝑙𝑛 (1 + 𝑡𝜏𝑠))
13
 

 (Eq. 1) 

𝑑𝑐(𝑡) = 𝑑𝑐0 (1 − 𝑒𝑥𝑝 (− 𝑡𝜏𝑟))13 

 (Eq. 2) 

𝑑𝑑(𝑡) = 𝑑𝑑0 ( 𝑡𝜏𝑑)16 

 (Eq. 3) 

By fitting the particle size versus time data obtained in our current ETEM experiment with these 

models, it becomes apparent that the growth of the particle size is limited by the concentration of 

exsolvable ions and by strain. This indicates that the particle is indeed evolving in a confined 

environment delimited by the perovskite lattice rising around it. Overall, the kinetic data discussed 

above illustrates that the genesis of the particle and of the socket are intimately linked, occurring 

in a concerted manner.  

Another notable aspect revealed by inspection of Fig. 2c is that the location of the particle-socket 

does not change during the time scale of the experiment implying that the nanostructure is 

seemingly locked in place once formed. This seems to be additionally supported by the fact that 

throughout the duration of this experiment two additional particles form within nanoscale 

proximity of the first one but neither of these move or drift under the electron beam. This also 

indicates that particle-support interactions strongly dominate over particle-particle interactions. 

Overall, these observations explain the outstanding anchorage of exsolved particles, at relatively 

high temperatures of 900 oC, which so far have only been inferred from indirect measurements, 

but never observed directly.  

In order to probe if particle mobility becomes more prominent during the later stages of growth 

and when there is a higher concentration of particles or exsolvable ions available, we employ the 
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higher concentration sample. To facilitate simultaneous tracking of multiple particles, within a 

relatively narrow field of view but on different “grains”, we prepared this sample as a lamella (Fig. 

3a) and proceed to heat it quickly to produce multiple internal fractures (Fig. 3b).  

  

 

 

 
 

Figure 3. Monitoring particle anchorage during in situ growth under H2. (a) Schematic illustration 

of a lamella prepared by FIB extraction from a regular sample, in a suitable orientation for electron 

microscopy imaging. (b) TEM of a lamella from a La0.8Ce0.1Ti0.6Ni0.4O3 sample. (c) Selected area 

of the lamella (top) before and (bottom) after particle exsolution carried out in the ETEM under 

H2 atmosphere, at 650 oC. (d) Selected area A1 of the lamella at different times during growth, 

highlighting tracked particles. (e) Selected area A2 of the lamella before particle exolution and at 
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different times during growth, highlighting tracked particles. (f) Particle size for the tracked 

particles at (light blue) early growth stage and (blue) later growth stages. 

We then monitor the evolution of multiple particles during the later stages of particle growth for 

two selected areas (Fig. 3c). Fig. 3c shows that upon exsolution, a large number of particles were 

formed, in nanoscale proximity of each other. Fig. 3d shows the evolution of seven tracked 

particles before and after 10 and 30 minutes of elapsed time. Clearly, the particles grow in size by 

about 40% (Fig. 3f) over this duration, but still do not appear to move across the surface, consistent 

with the behaviour observed during the early stages of growth. Similarly, Fig. 3e provides a closer 

view of tracked particles in a second area, A2, which demonstrate a similar behaviour, although 

their growth seems to have stabilised faster than those in area A1. 

Various particle formation scenarios have been envisaged in the literature so far to explain the 

formation of the socket and the corresponding interface, with various degrees of supporting 

evidence. The generally accepted view is that the metallic nanoparticles would nucleate just under 

the free surface, growing to a critical size at which they would be expelled from the host lattice, 

while remaining partly immersed.29 While this perspective accounts for the socket formation, 

nucleation within an oxide lattice has recently been shown to be unfavourable due to relatively 

high energy barriers arising from strain and oxide lattice reconstruction around the particle.27,39 At 

the same time, this mechanism assumes metal particle transport through the perovskite lattice 

which is inconsistent with our current direct observations which do not show particles moving on 

the timescale of their growth. Our results suggest that during exsolution, particles grow epitaxially 

and isotropically, maintaining the same location where they initially nucleated, while the 

perovskite lattice concomitantly rises around it (Fig. 4a, b). As the particle grows, perhaps due to 

its nucleation within the surface and isotropic expansion, it pushes the perovskite lattice laterally, 
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forming a “volcano”-shaped socket (Fig. 4c). Over time, this volcano-like nanostructure relaxes in 

order to minimize surface tension (Fig. 4d), eventually approaching a more moderate shape with 

a subtle perovskite surface rise at the junction with the nanoparticle. Evidence of this evolution 

can be seen in Fig. 3e for example particles 8 and 12 and also by re-examining previous literature 

reports through the lens of the current observations.24,35,40,41 Overall, the evidence presented above 

captures the dynamics of the exsolution process at the defining stages for developing the structural 

characteristics that endow exsolved particles their distinctive properties. 

 

Figure 4. Schematic illustration of particle-socket genesis during exolution. (a) Nucleation at 

different length-scales depicting the particle as partly embedded within the perovskite surface as a 

consequence of the metal segregating out of the perovskite lattice. (b) As the particle grows 

isotropically (laterally and vertically), it pushes the perovskite lattice, lifting it slightly. (c) Further 

growth of the particle leads to a volcano-shaped nanostructure around it. (d) the volcano-shape 

interface eventually relaxes but retains confinement of the particle. 

Visualising exsolution dynamics from nucleation to growth. As outlined above, the 

observation of the very first moments of the particle nucleation is very challenging to capture. The 

difficulty largely seems to reside in the tremendously fast and unpredictable process with which 
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this occurs. In order to slow down this process, we attempted to carry out exsolution under ETEM 

vacuum environment, in absence of an actively reducing gas atmosphere, at 900 oC, for the lower 

substituted sample, La0.43Ca0.37Ni0.06Ti0.94O3. Interestingly, such conditions were sufficient to 

observe extensive particle exsolution (see Fig. 5a and next section), and also enabled to us to 

capture the dynamics of both the nucleation and growth processes (Fig. 6).  

  

  

Figure 5. Particle-perovskite interface alignment. (a) TEM of a Ni metal nanoparticle grown under 

vacuum, in the ETEM, at 900 °C from La0.43Ca0.37Ti0.94Ni0.06O3. (b) Zoom in of the particle-

perovskite interface with an overlay of the Ni metal and perovskite lattices in their respective 

orientations, marked with the black rectangle in a showing the epitaxial growth. (c) 3D model 

constructed based on the crystallographic relationships highlighted in a and b. (d) detail of the 3D 

model in c highlighting the diffusion pathway of Ni2+ ions throughout the perovskite lattice.  

The particles produced under high vacuum, ETEM observation conditions are still metallic Ni 

(based on crystal structure and lattice spacing), but strongly faceted, as shown in Fig. 5a. A closer 

look at these indicates that they still share strong structural similarities to those produced under H2 
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atmosphere. They still appear to be partially immersed in the perovskite host lattice and also 

strongly epitaxial with it, as illustrated in Fig. 5a,b. The epitaxial relationship is similar to the one 

seen above (and in the literature6) for particles produced under H2 although here the 

crystallographic alignment between the two lattices is strikingly precise with respect to all major 

directions [100], [110] and [111]. The exposed facets of the particle are (111) and (11-1) laterally 

and (100) parallel to the surface of the perovskite. The identified crystallographic orientation 

allowed us to create a 3D model of the particle which is shown in Fig. 5c,d. The orientation 

relationship is consistent with previous reports whereby the diffusion direction for B-site ions in 

perovskites is along the [110] orientation.42,7  

Fig. 6 shows TEM snapshots of the time evolution of a nanoparticle over 15 minutes of 

continuous monitoring. The width and height of the particle were calculated from multiple such 

snapshots across the entire time range which enabled us to reveal insights into the dynamics of 

particle nucleation and growth during exsolution, as summarised in Fig. 7. Close inspection of the 

TEM images (Fig. 6) in conjunction with a plot of the particle dimensions as function of time on 

a logarithmic scale (Fig. 7a) reveals that nucleation occurs in a very short timescale of under 0.2 s 

with the particle growing to a critical size of just under 1 nm within 0.4 s. This initial ultrafast 

growth is followed by a hiatus where no growth occurs for a duration of about 10 s. This is then 

followed by a period of 10-100 s when the particle seems to display a relatively accelerated growth 

before reaching its apparent equilibrium size. Nonetheless, across the entire time range, particle 

evolution remains isotropic, growing proportionally in both height and width simultaneously (see 

Fig. 7b), consistent with the behaviour observed above for the particles grown under H2 

atmosphere. The outstanding spatial and temporal resolution provided by the ETEM was 

instrumental in revealing that interestingly, throughout the entire growth process, the growth 
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kinetics are not monotonic, but increase in a discrete, stepwise manner, alternating between periods 

of hiatus and periods of sudden growth. This “quantic” growth indicates that exsolution is a highly 

controlled process down to individual particle. This, together with the highly uniform patterns in 

which nanoparticles emerge in terms of particle size and interparticle separation, shows that 

exsolution is a highly controlled and discreet multiscale nano-structuring process.   

 

Figure 6. Direct observation of particle nucleation and growth, in situ, under vacuum. TEM 

snapshots of the exsolution of a Ni metal particle at the surface of a La0.43Ca0.37Ti0.94Ni0.06O3 

powder, at different times during an in situ ETEM reduction carried out under vacuum at 900 °C. 

The light blue contours highlight the growing nanoparticle. 

Knowing the crystallographic orientation of the particle (Fig. 5a) and that fact that it grows 

isotropically enabled us to construct 3D models corresponding to the key stages of growth, as 

illustrated in Fig. 7c. In turn, this allowed us to estimate the number of Ni atoms contained in the 
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particle and therefore number of atoms exsolved at each time step; a plot of these can be seen in 

Fig. 7d. This kinetic data is essential in order to understand the factors that limit the exsolution 

process at this scale. In order to better understand this, we analyse these data with the same rate-

limiting models discussed above (Eq. 1-3). Fig. 7d illustrates that the particle growth data is best 

described by the model where growth is limited by the availability of exsolvable ions, with the 

strain-limiting model being a close match. Overall, this is a surprising, yet insightful result for the 

design of exsolved materials. It shows that cation diffusion, which is expected to be the rate 

limiting step due to the relatively low diffusion of cations, does not seem to limit particle growth 

at this temperature. Instead, particle growth is limited by the locally available concentration of 

exsolvable ions and by the strain incurred due to the confined nature of exsolved particles. The 

depth from which ions are extracted from the perovskite to form the ~3 nm particle is plotted in 

Fig. 7e and is of the order of 10 nm while the relative volumes of the perovskite required for 

exolution and of the particle can be visualised in Fig. 7f. The depth of perovskite that needs to be 

depleted of exsolvable ions is considerable, as illustrated in Fig. 7f, suggesting that ions do need 

to travel across a few tens of perovskite unit cells to reach the surface and form the particle. The 

relative size between the particle size and exolution depth is consistent with the literature showing 

that generally for ~30 nm particles exsolution does not draw ions from further than about 100 

nm.7,8 Overall, these observations highlight the need to design exsolved materials that have grain 

size which scale with the desired extent of exsolution or particle size and population in order to 

maximise the exsolution process. 
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Figure 7. Atomic scale mechanistic insight into particle exsolution. (a) Plot of the width and height 

of the particle as a function of time, based on the TEM data selectively shown in Fig. 6. (b) Plot 

of the particle width vs height corresponding to the data shown in a. (c) 2D and 3D models of the 

time evolution of a particle during exolution, constructed based on Fig. 6. (d) Plot of the number 

of Ni metal atoms contained within the particle as a function time, together with various models 

describing the rate-limiting processes that govern particle growth. (e) Plot of the average particle 

size and corresponding depth within the perovskite that has been depleted of Ni2+ ions. (f) 3D 

model of a particle in final stages of growth and the corresponding perovskite volume required to 

form it. 

Advanced exsolved nanostructures based on shape control and emergent heterostructures. 

To the best of our knowledge, all the particles produced so far by exsolution reported in the 

literature display quasi-spherical or ellipsoidal geometry. The same shape can be observed in the 

first part of our experiments illustrated by Fig. 2,3. All of these have in common the fact they are 
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produced under the same H2 containing reducing atmosphere. In direct contrast to this, the particles 

grown under vacuum ETEM environment are distinctly faceted. Particle growth in these conditions 

still appears to be homogenously dispersed, much like their H2 grown analogues occurring at 

different locations on the surface, an atomically flat surface or near step edges (Fig. 8a). However, 

it should be noted that irrespective of growth location, all particles shared identical shape and the 

same orientation relationship with the support, suggesting that this is an extensive phenomenon, 

not a local one. Furthermore, this indicates that the shape of exsolved particles may be controlled 

via the atmosphere in which exsolution is carried out. This premise was confirmed by carrying out 

reduction in a CO atmosphere which interestingly, produced cubic-shaped particles, as shown in 

Fig. 8b. Furthermore, by using slightly humidified H2 at higher temperatures (1000 °C) another 

interesting effect was observed; the growth of an oxide appendage (likely La2TiO5) adjacent to the 

particles, forming heterostructures, as shown in Fig. 8c,d. This phenomenon appears to be similar 

to the growth of SrO nanorods adjacent to Fe particles exsolved under slightly humidified H2,
43 

although here these heterostructures seem to occur on a larger, more controlled scale.  

The above results have key consequences, in how  the exsolution process may be tailored. First, 

by controlling the nature (e.g. gas type) and the pO2 of the reducing atmosphere, the shape of 

exsolved particles may be modified. This is very important for many catalytic processes where 

specific exposed facets are more desirable than others. Second by  expanding the exsolution 

process beyond production of simple metal nanoparticles and producing coupled metal-metal 

oxide heterointerfaces with applications in catalysis and beyond. 
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a b c d 

   

 

Figure 8. Advanced exsolved nanostructures based on particle shape control and heterostructures. 

(a) Faceted particles grown under vacuum, in the ETEM, at 900 oC from La0.43Ca0.37Ti0.94Ni0.06O3. 

(b) Cubic-shaped particles grown under 5% CO atmosphere at 900 oC, for 10 h, from 

La0.8Ce0.1Ti0.6Ni0.4O3. (c) Ellipsoid-shaped particles interfaced with ad-grown oxide (La2TiO5), 

under 2.5% H2O / 5% H2 atmosphere, at 1000 oC, for 10 h, from La0.8Ce0.1Ti0.6Ni0.4O3. (d) 

Quantitative Rietveld refinement analysis of the XRD pattern corresponding to sample c, showing 

that one mole of initial perovskite forms approximately: 0.25 mols of Ni, 0.15 mols of La2TiO5 

and 0.6 mols of residual perovskite. 

CONCLUSIONS 

The present work demonstrates the use of advanced environmental transmission electron 

microscopy to monitor qualitatively and quantitatively the nucleation and growth of exsolved 

particles with ultra-high spatial and temporal resolution. These results provide powerful 

mechanistic insight into the atomic scale processes that underpin the formation of the particles and 

their highly functional interface with the perovskite lattice. By direct observation, we confirm 
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previous assumptions that during exsolution, particles grow epitaxially and isotropically, 

maintaining the same position where they initially nucleated. We observe that as the particle 

grows, the perovskite lattice concomitantly rises around it, forming the socket, seemingly 

confining and straining the particle throughout its growth. Quantitative analysis allowed us to 

construct 3D models of the stages of particle formation, revealing that in the defining stages of 

growth exsolution generally appears to be a stepwise, discrete process, from a kinetic point of 

view. Moreover, this also allows us to demonstrate that exsolution appears to be limited by the 

availability of exsolvable ions and not by their diffusion to the surface, which means that the extend 

of exsolution can be modified by controlling the particle size and perovskite grain or crystallite 

size.  

Additionally, we have shown that these results enabled us to discover that the nature of the 

environment in which exsolution occurs (e.g. the gas atmosphere and pO2) has a profound effect 

in dictating the shape of the exsolved particles. This could be used advantageously to control the 

shape of exsolved particles and expose crystal facets that could be more desirable for increasing 

catalytic reactivity. At the same time, the nature of the growth environment controls the formation 

of more advanced, dual-phase heterostructures with potentially useful physical and chemical 

properties and applications in catalysis and beyond.  

MATERIALS AND METHODS 

Perovskite oxide powders were prepared by a modified solid state synthesis described in detail 

previously.6 The phase purity and crystal structure of the prepared perovskites was confirmed by 

room temperature XRD by using a PANalytical X’Pert Pro Multipurpose X-ray diffractometer 

operated in reflection mode. Rietveld refinement analysis was carried out using GSAS II. The 
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following parameters were gradually unlocked and refined: background (shifted Chebyshev 

polynomial, 3-6 terms), peak shape, unit cell parameters, atomic coordinates, site occupancies, 

thermal displacement parameters and microstrain. High-resolution secondary and backscattered 

electron images were obtained using a FEI Helios Nanolab 600 scanning electron microscope 

(SEM).  

A cross-sectional sample (lamella) for transmission electron microscopy (TEM) analysis was 

made by means of standard focus ion beam (FIB) lift-out sample preparation by a FEI Quanta 3D 

FEG instrument SEM/FIB. Prior to FIB milling, a Pt protective layer was deposited. 

An FEI TITAN ETEM G2 80–300 kV instrument equipped with an objective Cs aberration 

corrector was used for the observations of the catalyst (0.09 nm resolution in TEM mode and 0.136 

nm STEM-HAADF mode). The ETEM can operate under gas pressure up to at 20 mbar and 

temperature up to under 1300 °C. The gas provider was ALPHAGAZ TM 1 Air Liquide. The 

microscope was also equipped with an energy dispersive X-ray (EDX) analyzer (SDD X-Max 

80 m m2 from Oxford Instruments), a Gatan Imaging Filter Tridiem ERS (Gatan Instruments) and 

a Gatan OneView Camera. The samples were crushed in a mortar and dispersed in ethanol, the 

solution was ultrasonically stirred before dropping it on a MEMS chip that were then installed on 

DENSolutions wild fire sample holder. Crystal structures were constructed using CrystalMaker X 

for Windows. 
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