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Abstract. We present in situ observations of meteoric smoke

particles (MSP) obtained during three sounding rocket flights

in December 2010 in the frame of the final campaign of the

Norwegian-German ECOMA project (ECOMA = Existence

and Charge state Of meteoric smoke particles in the Middle

Atmosphere). The flights were conducted before, at the max-

imum activity, and after the decline of the Geminids which

is one of the major meteor showers over the year. Measure-

ments with the ECOMA particle detector yield both profiles

of naturally charged particles (Faraday cup measurement)

as well as profiles of photoelectrons emitted by the MSPs

due to their irradiation by photons of a xenon-flash lamp.

The column density of negatively charged MSPs decreased

steadily from flight to flight which is in agreement with a

corresponding decrease of the sporadic meteor flux recorded

during the same period. This implies that the sporadic me-

teors are a major source of MSPs while the additional in-

flux due to the shower meteors apparently did not play any

significant role. Surprisingly, the profiles of photoelectrons

are only partly compatible with this observation: while the

photoelectron current profiles obtained during the first and

third flight of the campaign showed a qualitatively similar

behaviour as the MSP charge density data, the profile from

the second flight (i.e., at the peak of the Geminids) shows

much smaller photoelectron currents. This may tentatively be

interpreted as a different MSP composition (and, hence, dif-

ferent photoelectric properties) during this second flight, but

at this stage we are not in a position to conclude that there

is a cause and effect relation between the Geminids and this

observation. Finally, the ECOMA particle detector used dur-

ing the first and third flight employed three instead of only

one xenon flash lamp where each of the three lamps used for

one flight had a different window material resulting in dif-

ferent cut off wavelengths for these three lamp types. Taking

into account these data along with simple model estimates

as well as rigorous quantum chemical calculations, it is ar-

gued that constraints on MSP sizes, work function and com-

position can be inferred. Comparing the measured data to a

simple model of the photoelectron currents, we tentatively

conclude that we observed MSPs in the 0.5–3 nm size range

with generally increasing particle size with decreasing alti-

tude. Notably, this size information can be obtained because

different MSP particle sizes are expected to result in differ-

ent work functions which is both supported by simple clas-

sical arguments as well as quantum chemical calculations.

Based on this, the MSP work function can be estimated to

lie in the range from ∼4–4.6 eV. Finally, electronic structure

calculations indicate that the low work function of the MSP

measured by ECOMA indicates that Fe and Mg hydroxide
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Fig. 1. Photograph of the modified ECOMA particle detector with

three flashlamps employing three different window materials and,

hence, different wavelength cutoffs. The used flashlamps are sup-

plied by Perkin Elmer, product numbers FX1162 (cutoff wave-

length at 110 nm), FX1161 (cutoff at 190 nm), and FX1160 (cutoff

at 225 nm).

clusters, rather than metal silicates, are the major constituents

of the smoke particles.

Keywords. Atmospheric composition and structure

(Aerosols and particles; Middle atmosphere – composition

and chemistry) – Ionosphere (Ion chemistry and composi-

tion)

1 Introduction

In recent years, meteoric smoke particles (MSP) have at-

tracted great interest in the middle atmosphere science com-

munity since these particles are believed to be involved in a

large number of important geophysical phenomena. Among

these are the nucleation of mesospheric ice particles (e.g.,

Rapp and Thomas, 2006), the mesospheric metal chemistry

(Plane, 2003), the D-region charge balance (e.g., Rapp and

Lübken, 2001), the heterogeneous formation of water vapour

in the mesosphere (Summers et al., 2001), and even the nu-

cleation of polar stratospheric cloud particles which play a

major role in the formation of the ozone hole (e.g., Voigt

et al., 2005). While some progress regarding the experimen-

tal investigation of these atmospheric trace species has been

made over the past years with sounding rockets (e.g., Schulte

and Arnold, 1992; Gelinas et al., 1998; Horányi et al., 2000;

Rapp et al., 2005; Lynch et al., 2005; Barjatya and Swenson,

2006; Amyx et al., 2008; Strelnikova et al., 2009; Rapp et al.,

2010), incoherent scatter radars (Rapp et al., 2007; Strel-

nikova et al., 2007; Fentzke et al., 2009), satellites (Hervig

et al., 2009, 2012), and laboratory studies (Saunders and

Plane, 2006), much of our knowledge about these parti-

cles still relies on model results (e.g., Hunten et al., 1980;

Gabrielli et al., 2004; Megner et al., 2006, 2008; Bardeen

et al., 2008). Among other things, very little is still known

about the physical and chemical properties of MSPs such as

their composition and their electrical and optical properties.

In order to contribute to filling this gap, a major inter-

national sounding rocket campaign was conducted in De-

cember 2010 from the North-Norwegian Andøya Rocket

Range (69◦ N, 16◦ E). This sounding rocket campaign was

the final in a series of campaigns in the frame of the Nor-

wegian/German ECOMA-project (ECOMA = Existence and

Charge state Of meteoric smoke particles in the Middle At-

mosphere; see Rapp et al., 2011, for a detailed project de-

scription and an overview of results from previous cam-

paigns). The primary aim of this final campaign was to in-

vestigate the effect of a major meteor shower (i.e., the Gemi-

nids) on the properties of the MSPs. In addition, an advanced

version of the ECOMA particle detector (see below) was em-

ployed in order to constrain important MSP properties such

as their work function. As the backbone of this campaign a

total of three sounding rockets were launched all carrying

largely identical instrumented payloads.

The current study primarily focuses on the results obtained

with the ECOMA particle detector during the final campaign

in December 2010. For this purpose, this article is organ-

ised as follows: In Sect. 2 we shortly review the experimental

techniques employed in this study after which we present our

observations in Sect. 3. These are subsequently discussed in

Sect. 4, thereafter we conclude in Sect. 5 in which also an

outlook for future work is given.

2 The ECOMA-particle detector: principle of operation

and improvements

The ECOMA particle detector (PD) has been described in

detail in Rapp and Strelnikova (2009) and Rapp et al. (2010).

In short, the PD is a combination of a classical Faraday cup

for the detection of charged heavy aerosol particles as first

described by Havnes et al. (1996) and a xenon flashlamp for

the active photoionization of MSP and ice particles and the

subsequent detection of photoelectrons. During the campaign

in December 2010 all three payloads carried one of these de-

tectors. In addition, in two out of these three sounding rocket

flights an improved version of the detector has been launched

which will now be described in more detail.

Figure 1 shows a photograph of this improved PD. The

main difference to its predecessor version is the addition of

two more flashlamps which are clearly visible in the cen-

tre of the PD. All of these flashlights are basically identical

Perkin Elmer FX1160-series lamps. The only difference be-

tween these three flashlamps is that they are equipped with

three different windows so that the emitted spectra have dif-

ferent lower cut off wavelengths. These range from ∼110 nm

for lamp type FX1162 (which is the one originally used and

which has consistently been used for all ECOMA-flights),

over 190 nm for type FX1161, to 225 nm for type FX1160.
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Fig. 2. Spectra of the different flash lamp types used in the improved

version of the ECOMA particle detector. These spectra have been

obtained with a vacuum ultraviolet grating spectrometer (see Ernst,

2012, for more details).

The spectral characteristics of these three different lamp

types have been characterised with a vacuum ultraviolet grat-

ing spectrometer and the results are presented in Fig. 2 (see

Ernst, 2012, for more details). This figure clearly demon-

strates that the various lamps basically emit identical spec-

tra which are, however, cut off at the different wavelengths

owing to the optical properties of the different window mate-

rials.

The functional principle of the new detector version is as

follows: as in the previous PD-versions a xenon flash and the

subsequent detection of corresponding photoelectron pulses

(sampled at a data rate of 100 kHz and a resolution of 16 bit)

occurs every 64 ms, i.e., at a rate of 15.6 Hz. However, for

this improved version each flash lamp is only triggered every

third time, i.e., the three flash lamps emit their flashes in a

cyclic manner. This means that the actual repetition time for

one given flash lamp is 192 ms as compared to 64 ms for the

older version of the ECOMA PD.

A typical data sample resulting from this measurement se-

quence is presented in Fig. 3 which shows raw data from

flight ECOMA07 (see below for more details). Each of the

prominent photoelectron peaks can be uniquely related to the

firing of one of the flashlamps by means of corresponding

data flags transmitted with the housekeeping data of the ex-

periment. As expected based on the different spectral char-

acteristics of the three different flash lamps the photoelec-

tron peaks have different amplitudes owing to the different

total number of photons available for photoionization and

their correspondingly different spectral distribution. It is this

difference between the amplitudes of the various photoelec-

tron peaks that principally contains information on the mi-

crophysical and photoelectrical properties of the ionized par-

ticles – this will be discussed in detail in Sect. 4.

Fig. 3. Time series of currents recorded with the ECOMA parti-

cle detector at a rate of 100 kHz and a resolution of 16 bit. Dia-

monds mark current peaks caused by photoelectrons reaching the

electrode shortly after the firing of corresponding flash lamps. Dif-

ferent colours mark the different flash lamp types as indicated in the

insert. In the following, the time series of photoelectron peaks are

denoted as photoelectron currents for brevity.

Summarising, this new version of the ECOMA PD pro-

vides four different data products: the “classical” Faraday

cup-current owing to naturally charged particles which can

penetrate into the detector, and the three photoelectron cur-

rents (more precisely the time series of maximum photoelec-

tron pulses) due to the three different flash lamps with dif-

ferent maximum photon energies. In contrast, the older ver-

sion of the detector only delivers the Faraday Cup-current

and one photoelectron current for flashlamp type FX1162,

i.e., the one with maximum photon energy.

3 Atmospheric observations

3.1 Morphology of MSP observations during the evolu-

tion of the Geminids

As mentioned in the introduction, the primary focus of the

campaign in December 2010 was the investigation of the

effect of the Geminids (as one of the major meteor show-

ers) on the properties of the MSPs. Consequently, the three

sounding rockets were distributed in time so that the first (la-

belled ECOMA07) was launched on 4 December well before

the onset of the Geminids, the second one (ECOMA08) was

launched close to the peak of the Geminids on 13 December,

and the final one (ECOMA09) after the shower had already

decayed, i.e., on 19 December. See Table 1 for a summary of

flight dates, times and launch conditions. In order to illustrate

the meteor activity during the campaign period, Fig. 4 shows

half-hourly meteor count rates as observed with the IAP me-

teor radar located in the vicinity of the Andøya Rocket Range

(see Stober et al., 2012, for a detailed analysis of these radar

www.ann-geophys.net/30/1661/2012/ Ann. Geophys., 30, 1661–1673, 2012



1664 M. Rapp et al.: MSP work function

Table 1. Date, time and launch conditions during ECOMA-2010.

Label Date Time [UT] Apogee [km] Launch conditions

ECOMA07 4 Dec 2010 04:21 135.7 before Geminids, extremely quiet D-region

ECOMA08 13 Dec 2010 03:24 138.3 peak of Geminids, moderately dist. D-region

ECOMA09 19 Dec 2010 02:36 135.5 after Geminids, moderately dist. D-region

Fig. 4. Time variation of half-hourly meteor count rates as observed

with the IAP meteor radar located in the vicinity of the Andøya

Rocket Range in December 2010. The blue curve shows the total

count rate, whereas the red curve is for Geminid meteors and the

black curve for the background sporadics. Green dashed vertical

lines indicate the launch times of the three ECOMA sounding rock-

ets.

observations). This figure clearly shows the very different

meteor count rates during the three rocket flights and under-

lines that the mission plan to launch one rocket before, one

at the peak and one after the peak activity was indeed met.

We next turn to the corresponding MSP observations and

present the Faraday cup data from all three flights in Fig. 5.

Before going into detail, we note that the lower altitude cut

off seen in the data at about 80 km is a well known feature

of this type of measurement and is caused by aerodynami-

cal effects. This means that owing to the density enhance-

ment before the supersonically moving instruments (i.e., the

“shock front”) light particles are deflected away from the in-

strument and, hence, can not reach the PD electrode. This

effect leads to an altitude dependent limit of detectable par-

ticle sizes which strongly increases with decreasing altitude

(and increasing density) so that at altitudes below ∼80 km

this type of instrument essentially has zero detection effi-

ciency for small MSP (Horányi et al., 1999; Hedin et al.,

2007; Strelnikova et al., 2009).

Considering further details presented in Fig. 5 we see that

the measurements obtained on the upleg part of the rocket

trajectory generally show negative values indicating the pres-

ence of negatively charged MSP at the lower altitudes. At

larger altitudes, the profiles all turn to positive values and

remain positive until apogee (at ∼130 km; here only shown

up to 105 km). Since charged meteoric particles are not ex-

pected to exist at these large altitudes, we assume that these

positive signatures are not evidence of positively charged

particles, but likely contamination of the measurements with

leakage currents due to positive ions. This hypothesis is in-

deed supported by considering the measurements obtained

on the downleg part of the rocket trajectory when the PD

is no longer facing the ram direction of the rocket. Since

all ECOMA rockets were spin-stabilised, the ECOMA PD

which is mounted on the top deck of the payload is in the

wake of the rocket on the downleg. Hence, naturally charged

particles can by no means enter the detector volume such that

current signatures measured during this part of the flight are

clear evidence for leakage currents from the ambient plasma.

These downleg data are shown with light blue lines in all

three panels in Fig. 5. Comparing upleg and downleg mea-

surements reveals that the positive currents at the upper al-

titudes are indeed caused by these leakage currents since

they both show very similar structures at altitudes above the

MSP-layers. As a first approximation, the downleg data can

be used to correct the upleg data and remove the leakage

current contribution (of course assuming similar background

plasma conditions on up- and downleg – which is generally

supported by our onboard plasma measurements with var-

ious instruments). We note, however, that the plasma densi-

ties observed during ECOMA09 were about twice as large on

downleg as on upleg so that the used method possibly leads to

an overcorrection (Bekkeng et al., 2012). Nevertheless, this

procedure works generally well for the three rocket flights

which underlines that the positive currents seen at some alti-

tudes on upleg must be considered as artifacts. Therefore, for

the following discussion, we will only focus on the negative

particle signatures which are summarised in Fig. 6.

Figure 6 reveals that the observed MSP “layers” indeed

showed a large variation over the three sounding rocket

flights. Surprisingly, however, there appears to be a steady

decay of the total MSP amount as is most clearly seen

when determining the column charge density of the observed

particles, i.e., the vertical integral over the particle layers.

This reveals that the column charge density decreased from

5.2 × 107 e cm−2 on 4 December, over 4.3 × 107 e cm−2 on

13 December, to 3.0 × 107 e cm−2 on 19 December. Also,

it appears that the uppermost altitude of particle detection

decreased from about 95 to 87 km and that the lowermost

Ann. Geophys., 30, 1661–1673, 2012 www.ann-geophys.net/30/1661/2012/
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Fig. 5. Overview of all Faraday cup measurements of charged MSP obtained during ECOMA-2010. Black lines show upleg-data. Light blue

lines show downleg data smoothed over 5000 data points. Taking the difference between both allows us to largely eliminate contamination

due to positive ions (see text for details). The corrected profiles are shown in red.

Fig. 6. Overview of all measurements of negatively charged me-

teor smoke particles during ECOMA-2010. The legend identifies

the three different rocket flights (see Table 1) and further states the

negative charge column density (Cd) observed in each flight.

altitude of particle detection decreased from about 82 to

80 km over the course of the three rocket launches. Since

the same general features are also seen in the completely in-

dependent photoelectron data (see Fig. 7 and corresponding

discussion below) we are confident that this observed change

is caused by a change of the smoke distribution and not an

artifact caused, for example, by varying ambient plasma con-

ditions.

We note that this observed variation of the MSP column

charge density is in stark contrast to an intuitive expectation

according to which a larger meteor flux (i.e., during a major

meteor shower) should result in a larger amount of MSPs.

However, the total mass flux generated by a meteor shower

depends on the particle size of the corresponding meteoroids.

According to Ceplecha et al. (1998) the maximum mass flux

into the upper atmosphere occurs at masses around 10−9 kg

Fig. 7. Overview of photoelectron currents obtained during all

ECOMA flights outside the polar summer, i.e., ECOMA01,

ECOMA07, ECOMA08 and ECOMA09 obtained with the flash-

lamps with the largest photon energy, i.e., type FX1162 (i.e., λ >

110 nm).

and drops steeply to both smaller and larger particle masses.

In the companion paper by Stober et al. (2012), however,

it is shown that the Geminid meteor shower contains more

larger than smaller particles with an observed peak of the

mass distribution at about 10−7 kg. Hence, the contribution

of the Geminids to the total mass input into the middle at-

mosphere can be considered as almost negligible. This issue

is further discussed in the companion paper by Dunker et al.

(2012) who also consider the time evolution of the Na layer

during this period as well as the evolution of the sporadic

meteor flux. They show that both the flux of sporadic mete-

ors, the sodium column density and the column density of

MSPs steadily decreased over the time of the ECOMA cam-

paign which possibly implies that a reduced flux of sporadic

www.ann-geophys.net/30/1661/2012/ Ann. Geophys., 30, 1661–1673, 2012
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meteors is the cause for the decay of the two other quantities

(while apparently the additional flux of the Geminids had no

obvious measurable impact; see Dunker et al. (2012) for a

detailed discussion). Here, we will next consider whether the

ECOMA photoelectron measurements show a similarly co-

herent picture.

To start, we first compare the photoelectron currents from

all three rocket flights for the flashlamp type which was oper-

ated on all payloads, i.e., the lamp type with the largest pho-

ton energy, type FX1162. The corresponding altitude pro-

files from all three flights are presented in Fig. 7. This figure

shows an unexpected result: While the data from the flights

ECOMA07 and ECOMA09 show a similar tendency with re-

gard to the general extent of the layer as the Faraday cup

data (broader MSP layer during ECOMA07 and and lower in

altitude MSP detection during ECOMA09), the most strik-

ing fact is the much reduced photoelectron currents during

ECOMA08, i.e., at the peak of the Geminids. This untyp-

ically low level of the photoelectron current is further un-

derlined when additionally taking into account the results

from ECOMA01 which was also launched outside the po-

lar summer season and during which the same instrument

type as during ECOMA08 was used. The photoelectron cur-

rent of ECOMA01 is similar to the ones of ECOMA07 and

ECOMA09, but the one from ECOMA08 is indeed signifi-

cantly smaller.

Puzzled by this finding, we double checked whether the

corresponding flashlamp was possibly erroneously mixed up

with a different lamp type. As the outcome of this check,

we are in a position to rule out this possibility. Also, all

housekeeping information during this rocket flight support

the nominal function of the instrument and its flashlamp.

In addition, we note that other external factors such as pay-

load charging do not show any striking differences between

the three rocket flights (see Bekkeng et al., 2012, for de-

tails). Furthermore, we note that laboratory tests conducted

before launch with all three lamps reveal that the lamp

launched onboard ECOMA08 had similar characteristics as

the one launched onboard ECOMA09 and that both were

even ∼20 % stronger (i.e., resulted in larger photoelectron

currents when flashed at a lab target; see Fig. 6 in Rapp

and Strelnikova (2009) for a description of the correspond-

ing laboratory experiment) than the one launched onboard

ECOMA07. Finally, we note that the ECOMA08-data itself

confirms that the proper flash lamp was installed and that

the instrument was functioning as it was supposed to: This

can in fact be inferred from the large current increase seen

above 100 km which must be due to he photoionization of

NO (see the corresponding discussion in Rapp and Strel-

nikova, 2009). Note that the corresponding increase of NO

as compared to ECOMA07 is caused by strong auroral par-

ticle precipitation as confirmed by the onboard photometer

measurements (J. Hedin, private communication). Since only

flash lamp type FX1162 emits sufficiently energetic photons

to photoionize NO, this is strong support that the lamp was

functioning as it should. This is also further confirmed by the

fact that corresponding maximum currents fall into the range

of values seen during previous flights.

Taking all these arguments into account, we conclude

that the reduced photoelectron current observed during

ECOMA08 at altitudes below 100 km must be considered as

a real geophysical result. What we may conclude from this

is that our observations provide strong indications that the

MSP observed during ECOMA08 were of different compo-

sition (i.e., had different photoelectric properties) than dur-

ing ECOMA07 and ECOMA09 while other properties like

number density and charge were similar. This is implied by

their similar Faraday cup currents (which to first order are

proportional to the MSP number density), but their very dif-

ferent photoelectron currents. Whether or not this different

composition is related to the flux of Geminid meteors (which

have been reported to have a composition different from spo-

radic meteors, see Borovicka, 2006) or just evidence of natu-

ral variability cannot be resolved based on our data, but will

require new additional measurements in the future.

3.2 Spectral characteristics of MSP photoelectron data

Next, we turn to the information obtained from the im-

proved versions of the ECOMA PD as launched onboard

ECOMA07 and ECOMA09. The upper panels of Fig. 8 show

the photoelectron currents due to the three different flash

lamp types for both flights. Note that we have also indi-

cated the 2 σ noise level of these data as the black dotted

horizontal lines. Comparing the measured current profiles

to this noise level clearly shows that in both flights, signa-

tures of MSP have been recorded with all flash lamps. Fur-

thermore, this comparison clearly shows that only the photo-

electron currents due to flash lamp type FX1162 with largest

photon energies (shown by the black diamonds) exceed the

noise level above altitudes of about 95 km (ECOMA07) and

90 km (ECOMA09), respectively. Since only flash lamp type

FX1162 emits photons which may ionize atmospheric NO,

this result provides strong support to our earlier hypothesis

that these large altitude photoelectron currents are not related

to MSP, but rather to NO (Rapp and Strelnikova, 2009; Rapp

et al., 2010). In fact, we may find even stronger support based

on the data of ECOMA07 since photometer measurements

on this payload provide an independent estimate of the NO

number density (see Hedin et al., 2012, for details). While the

analysis of Hedin et al. (2012) reveals that estimates of abso-

lute NO number densities based on both techniques diverge

by a factor of ∼4–5, here we simply scale the photometer-

based NO-profile to the photoelectron current above 100 km

(orange curve in left upper panel in Fig. 8). This exercise

shows that the two profiles fit perfectly at altitudes above

100 km and, hence, strongly support our hypothesis that these

large altitude currents are indeed a measure of NO. Even

more to that, this agreement suggests that the scaled pho-

tometer profile can be used to correct the photoelectron data

Ann. Geophys., 30, 1661–1673, 2012 www.ann-geophys.net/30/1661/2012/
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Fig. 8. Upper panels: Photoelectron currents measured during flights ECOMA07 (left) and ECOMA08 (right). Black, green and red symbols

indicate currents owing to different flashlamps (see legend). The dotted horizontal line marks the 2 σ -noise level of the unsmoothed mea-

surements. In the upper left panel, the orange curve further shows the current-contribution from NO which was independently measured with

photometers by the Stockholm group. Unfortunately, such data are not available for ECOMA09. The dark blue symbols mark the data of the

FX1162 flashlamp corrected for the contribution owing to NO. Lower panels: Profiles of current ratios along with their 2 σ -error bars, for

altitude ranges in which both measurements exceeded the 2 σ -noise level of the unsmoothed measurements.

of the FX1162 flash lamp for its contamination due to NO.

The corresponding difference between the originally mea-

sured photoelectron currents and this scaled NO-current is

shown with the dark blue diamonds in the same figure. Com-

paring this corrected photoelectron current profile with the

profiles due to the different flash lamps reveals that the gradi-

ent of all three profiles seen above 95 km is in fact very close

which further supports the trustworthiness of the performed

correction.

The next thing to notice is that the currents due to the flash-

lamp with the largest maximum photon energy are largest

whereas the currents due to the flashlamp with lowest max-

imum photon energy is lowest. At first sight this might be

seen as a trivial result since also the total number of photons

available for photoionization varies accordingly (see Fig. 2

and corresponding discussion). However, we will see below

that there is more information contained in the relative varia-

tion of the photoelectron currents owing to the three different

flash lamps.

In order to compare the photoelectron current profiles

more quantitatively, we have next determined ratios between

the different profiles for all values which exceeded the 2 σ

noise level in both profiles. These ratios are presented in the

lower two panels of Fig. 8. To start with the most obvious fea-

ture, all of these ratios vary considerably with height, with a

general increase, with increasing altitude (even though there

are admittedly large variations and also deviations seen from

this general behaviour). Note that this is a clear indication

that the current ratios are not just trivially caused by differ-

ent photon fluxes, but that they contain information on the

microphysical properties of the particles. This issue will be

discussed in detail in Sect. 4 below.

www.ann-geophys.net/30/1661/2012/ Ann. Geophys., 30, 1661–1673, 2012
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4 Discussion

For a further in depth discussion of the information contained

in the photoelectron current ratios presented above, it is in-

structive to recall the physical basis of the recorded photo-

electron currents. Following Rapp and Strelnikova (2009)

the ECOMA photoelectron current for monodisperse parti-

cles with radius rp and number density Np can be written as

I = Np ·







ve·1t
∫

2,5cm

hc/Wp
∫

λmin

·
dF

dλ
· σ(rp,λ) · P · dl · dλ






·

e

1t
(1)

where e is the electron charge, ve is the velocity of a pho-

toelectron, 1t = 10 µs is the sampling interval during which

photoelectrons are recorded, h is Planck’s constant, c is the

speed of light, and Wp is the threshold energy for photoion-

ization/photodetachment of a particle, i.e., the work function

or electron affinity of the corresponding material. dF/dλ

is the number of photons per wavelength interval emitted

in one flash, and l is the distance from the particle detec-

tor. P = S/(4πl2) is the probability that the photoelectron

is emitted towards the detector electrode with area S and dl

and dλ are the length and wavelength elements over which

the integrations above are carried out. Note that the integra-

tion over the wavelength λ starts at the flash lamp dependent

cut-off wavelength λmin which is defined by the transmission

properties of the three different window materials and which

is clearly seen in Fig. 2 as the minimum wavelength at which

the measured intensity departs from zero. For lamp type

FX1160, where the cut-off wavelength could not be properly

observed, we extrapolated linearly from the measured value

at the lowest detectable wavelength to zero at the nominal

cut-off wavelength of 225 nm. We note that the final result of

the calculations presented below did not vary considerably

if a slightly different extrapolation to zero was chosen. Fi-

nally, σ(rp,λ) is the photoionization/photodetachment cross-

section of particles with radius rp at photon wavelength λ.

This equation shows that there are two factors which could

lead to an altitude variation of the observed current ratios,

namely a corresponding altitude variation of the work func-

tion Wp and the photoemission cross-section σ . Even though

not obvious at first sight, we note that both quantities are ac-

tually not independent, but are both a function of the particle

size. While this appears obvious for the case of the photoe-

mission cross-section (see e.g., Rapp, 2009, and the discus-

sion therein), this size dependence might not be that obvious

for the case of the work function.

Assuming that MSP may be treated as small conducting

spheres, it has been shown by Wood (1981) and Burtscher

et al. (1982) that the corresponding work function depends

on the following way on particle radius rp and the number of

positive elementary charges p:

Wp = Wp0 +
e2(p + 1)

4πǫ0rp
−

5

8

e2

4πǫ0rp
(2)

where Wp0 is the bulk work function, e is the elementary

charge and ǫ0 is the permittivity of space.

At this point, we also have to note that we do not consider

the process of photodetachment any further for the explana-

tion of our observations. This is because photodetachment

is typically induced by visible photons, because electron at-

tachment energies are small (<3 eV). Since all three flash

lamps have pretty much identical spectra at wavelengths be-

yond 300 nm (Fig. 2), this implies that there should not be

much difference in the photoemission currents produced by

the 3 lamps if photodetachment is dominant. However, since

there is in fact a large change, we argue that it is photoioniza-

tion (and not photodetachment) that is mostly taking place.

Figure 9 now shows calculated photoelectron current ra-

tios using Eq. (2) in Eq. (1) for a variety of cases: Top, middle

and lower panels show calculated current ratios for the com-

binations FX1162/FX1160 (top), FX1162/FX1161 (middle)

and FX1161/FX1160 (bottom), respectively, where the nec-

essary flash lamp spectra have been taken from our own lab-

oratory measurements (see Fig. 2 and corresponding discus-

sion). Furthermore, the left panels are for calculations where

the photoemission cross-section has been approximated by

a Rayleigh absorption cross-section for Fe2O3-particles and

assuming that the photoelectron yield is equal to 1 (see Rapp,

2009, for a discussion of this highly idealized assumption).

In contrast, the right-hand side panels show the same type

of calculations, but this time arbitrarily assuming that the

photoemission cross-section is constant. Finally, different

coloured lines in each panel denote different assumed bulk

work functions of the material (see middle panels for colour

code).

These calculations show several interesting features: To

start, Fig. 9 shows that there are only marginal differences

between the cases with different assumptions for the photoe-

mission cross-section (i.e., comparing the left panels with the

right panels) so that we may tentatively conclude that the ac-

tual choice of this cross-section is not critical for the overall

observed variation of the photoelectron current ratios. As a

robust result, we further see that the current ratios increase

with decreasing particle radius. This is caused by the fact

that decreasing particle radius results in a larger overall work

function (Eq. 2) of the particles with corresponding effect on

the wavelength integration limit in Eq. (1). Finally, the re-

sults shown in Fig. 9 also show that the choice of the bulk

work function shifts the current ratios up and down and also

determines at which particle radius the current ratio starts to

deviate significantly from a constant behaviour with radius.

How do these calculations fit to our observations? In the

observations, we generally see an increase of the current ra-

tios with increasing altitude. According to the calculations

shown in Fig. 9, this suggests that we observed smaller
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Fig. 9. Calculated photoelectron current ratios for two different assumptions for the photoemission cross-section (i.e., left panels and right

panels) and for different combinations of flash lamp types (see title over each panel). In each panel different coloured lines are for different

assumed bulk work functions (see insert in middle row panels for colour code).

particles at larger altitudes – which is indeed consistent with

all available microphysical models of MSPs (e.g., Hunten

et al., 1980; Gabrielli et al., 2004; Megner et al., 2006). Also,

comparing absolute values of observed and calculated cur-

rent ratios, we can further infer that the radii of observed

particles must have been in the range from ∼0.5–∼3 nm

– which is again consistent with the model results quoted

above. In addition, we may tentatively convert the observed

current ratios into a plausible range of MSP work functions

by comparison to Fig. 9. While the lowest work functions

(i.e., <∼4 eV) considered in our calculations appear to be un-

realistic (which reconfirms our earlier argument that we are

dealing with photoionization rather than photodetachment)

since they do not lead to any considerable variation of the

www.ann-geophys.net/30/1661/2012/ Ann. Geophys., 30, 1661–1673, 2012
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Fig. 10. Optimised geometries of possible embryonic meteoric smoke particles: (FeOH)4, (MgOH)4, (FeSiO3)3 and (Mg2SiO4)4. The

vertical ionization potentials are shown alongside each cluster.

Fig. 11. Ionization potentials for a variety of Fe and Mg clusters

shown as a function of cluster size, calculated at the B3LYP/6-

311+g(2d,p) level of theory.

currents with radius (and, hence, with altitude), the largest

work functions (i.e., >∼4.6 eV) appear to lead to unrealisti-

cally large current ratios. Hence, the real work function is

probably between 4–4.6 eV. As we discuss below, a work

function in this range is quite hard to account for and con-

strains the likely composition of the MSP.

We now use electronic structure calculations to explore the

possible constituents of MSP. The major elements produced

by meteoric ablation are Fe, Mg and Si (Vondrak et al., 2008).

Below 90 km, oxidation by O3 and O2 converts Fe and Mg

into oxides such as OFeO2 (Rollason and Plane, 2000) and

Si is oxidized to SiO2 (Gómez Martı́n et al., 2009). Labo-

ratory experiments in a photochemical reactor show that a

mix of these species will produce Fe-Mg-SiO4 nano-particles

(Saunders and Plane, 2012). It is, therefore, possible that

MSPs have an olivine-type composition. However, in the up-

per mesosphere there is a large excess of H2O over these

meteoric constituents (by a factor of ∼104). Reactions in-

volving H2O and H atoms (produced by H2O photolysis)

are, therefore, likely to convert metal oxides into hydroxides

such as FeOH (Plane and Whalley, 2012; Self and Plane,

2003). Furthermore, theory indicates that SiO2 should hy-

drolyse to form OSi(OH)2 and Si(OH)4 (Plane, 2012), and

that these hydrated forms are unreactive towards Fe and Mg
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compounds. It is, therefore, possible that MSP consists of

separate populations of metal hydroxide and silicon hydrox-

ide particles. One piece of evidence for this is a recent re-

port that the meteoritic contamination observed by optical

extinction in noctilucent ice clouds are Mg-Fe-O compounds,

rather than silicates (Hervig et al., 2012).

For the present study, we have carried out theory cal-

culations using the Gaussian 09 suite of programmes

(Frisch et al., 2009). The hybrid density functional-Hartree

Fock B3LYP method was employed together with the 6-

311+G(2d,p) triple zeta basis set. This is a large, flexible

basis set which has both polarization and diffuse functions

added to the atoms. The geometry of each neutral molecu-

lar clusters was first optimised and then the vertical ioniza-

tion potential (IP) was calculated (i.e., the geometry remains

frozen during the process of photoionization). At this level

of theory, previous theoretical benchmarking studies indicate

an expected uncertainty in the IPs on the order of ±0.3 eV

(Foresman and Frisch, 1996).

Figure 10 shows a selection of molecular clusters and

Fig. 11 their ionization potentials (IPs) up to a cluster size

of 3 or 4. Note that for the larger clusters the dimensions

already exceed 1 nm. Although in all cases there is a de-

crease in IP with cluster size, the only clusters whose IPs

fall below 5.5 eV are FeOH and MgOH. These IPs should de-

crease into the range of 4–4.6 eV for larger clusters approach-

ing the dimensions of MSP inferred above (radius = 1–3 nm).

The IPs of the silicates FeSiO3, MgSiO3 and Mg2SiO4 (as

an example of an olivine) are well in excess of 7 eV and,

thus, unlikely to fall below 4.6 eV even for larger clusters.

These results, therefore, indicate that the MSP which exhibit

photo-electric emission at wavelengths greater than 300 nm

are probably composed primarily of Fe and Mg hydroxides.

5 Conclusions

In the current paper, we have presented in situ measurements

of MSP from three sounding rocket flights conducted in De-

cember 2010. The launch dates were chosen to cover the

period of the Geminids which is one of the major meteor

showers of the year. One of the scientific objectives to be

addressed was whether the additional meteoroid influx dur-

ing the Geminids resulted in a corresponding increase in rel-

evant MSP properties such as their number density and/or

size. Each of the three payloads carried an ECOMA parti-

cle detector (PD). This PD is a combination of a classical

Faraday cup for the detection of charged heavy aerosol parti-

cles and a xenon flashlamp for the active photoionization of

MSP and the subsequent detection of photoelectrons. As an

additional advance, the PD used in the first and third rocket

flight contained three instead of only one flash lamps. Since

these three flash lamps were identical except for their dif-

ferent window materials, these two advanced PD types not

only provided one profile of photoelectron currents, but also

additional information on the spectral content of this photo-

electron current which may be used to infer information on

the MSP size and work function.

The main results obtained from these three flights are as

follows:

– The column density of negatively charged MSPs de-

creased steadily from flight to flight which is in agree-

ment with a corresponding decrease of the sporadic me-

teor flux recorded during the same period. This implies

that the sporadic meteors are a major source of MSPs,

whereas the additional influx due to the shower meteors

did not play any significant role.

– Surprisingly, the profiles of photoelectron currents ob-

tained with the flash lamp type used in all three flights

are only partly compatible with this observation: while

the photoelectron current profiles obtained during the

first and third flight of the campaign showed a qualita-

tively similar behaviour as the MSP charge density data,

the profile from the second flight (i.e., at the peak of the

Geminids) shows much smaller photoelectron currents.

This may tentatively be interpreted as a different MSP

composition (and, hence, different photoelectric prop-

erties) during this second flight. We note, however, that

we are not in a position to conclude that there is a cause

and effect relation between the Geminids and this ob-

servation at this stage.

– The spectral content of the photoelectron data measured

during the first and third flight was compared to a simple

model of the photoelectron currents. From this compar-

ison, we tentatively conclude that we observed MSPs in

the 0.5–3 nm size range with generally increasing par-

ticle size with decreasing altitude. Notably, this size in-

formation can be obtained because different MSP par-

ticle sizes are expected to result in different work func-

tions. Importantly, we were able to support this size de-

pendence of the work function by both simple classical

arguments as well as quantum chemical calculations.

– Based on the same comparison of spectrally resolved

photoelectron currents and the simple model mentioned

above the MSP work function can be estimated to lie in

the range from ∼4–4.6 eV.

– Finally, electronic structure calculations indicate that

the low work function of the MSP measured by

ECOMA indicates that Fe and Mg hydroxide clusters,

rather than metal silicates, are the major constituents of

the smoke particles.

We note that the results presented in this manuscript remain,

to some extent, ambiguous until the composition of MSP and

the corresponding photoelectrical properties have been di-

rectly determined by sampling experiments and correspond-

ing laboratory investigations. However, our results may be
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useful in guiding such future experiments and, in particular,

the spectrally resolved photoelectron data obtained within

this campaign will be an important dataset for future eval-

uations of model and laboratory results regarding MSP com-

position.

Acknowledgements. The ECOMA project was sponsored by

the German Space Center under DLR-grants 50OE0301 and

50OE0801. The Norwegian Space Center and the Research

Council of Norway supported the Norwegian contribution to the

ECOMA programme with funding through grants 197629 and

191754. Thanks to S. Skruszewicz and J. Tiggesbäumker of the
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Gómez Martı́n, J. C., Blitz, M. A., and Plane, J. M. C.: Kinetic

studies of atmospherically relevant silicon chemistry. Part II: Sil-

icon monoxide reactions, Phys. Chem. Chem. Phys., 11, 10945–

10954, 2009.

Havnes, O., Trøim, J., Blix, T., Mortensen, W., Næsheim, L. I.,

Thrane, E., and Tønnesen, T.: First detection of charged dust par-

ticles in the Earth’s mesosphere, J. Geophys. Res., 101, 10839–

10847, 1996.

Hedin, J., Gumbel, J., and Rapp, M.: On the efficiency of rocket-

borne particle detection in the mesosphere, Atmos. Chem. Phys.,

7, 3701–3711, doi:10.5194/acp-7-3701-2007, 2007.

Hedin, J., Rapp, M., Khaplanov, M., Stegman, J., and Witt, G.: Ob-

servations of NO in the upper mesosphere and lower thermo-

sphere during ECOMA 2010, Ann. Geophys., 30, 1611–1621,

doi:10.5194/angeo-30-1611-2012, 2012.

Hervig, M. E., Gordley, L. L., Deaver, L. E., Siskind, D. E.,

Stevens, M. H., III, J. M. R., Bailey, S. M., Megner, L., and

Bardeen, C. G.: First satellite observations of meteoric smoke

in the upper atmosphere, Geophys. Res. Lett., 113, L18805,

Ann. Geophys., 30, 1661–1673, 2012 www.ann-geophys.net/30/1661/2012/

http://dx.doi.org/10.1029/2007JD009515
http://dx.doi.org/10.1029/2006JA011806
http://dx.doi.org/10.1017/S1743921307003134
http://dx.doi.org/10.1016/j.jastp.2009.09.002
http://dx.doi.org/10.5194/acp-7-3701-2007
http://dx.doi.org/10.5194/angeo-30-1611-2012


M. Rapp et al.: MSP work function 1673

doi:10.1029/2009GL039737, 2009.

Hervig, M. E., Deaver, L. E., Bardeen III, C. G., J. M. R., Bailey,

S. M., and Gordley, L. L.: The content and composition of me-

teoric smoke in mesospheric ice particles from SOFIE observa-

tions, J. Atmos. Sol. Terr. Phys., 84–85, 1–6, 2012.
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