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In-situ phase transition to form porous h-MoO3@C
nanofibers with high stability for Li+/Na+ storage
Zhi Chen1†, Yongkang Liu1†, Hang Zhang2, Shuangshuang Ding1, Taihong Wang1 and Ming Zhang1*

ABSTRACT Porous h-MoO3@C nanofibers with a large

specific surface area of 400.2 m2 g−1 were successfully synthe-

sized with hot HNO3 oxidizing MoO2@C nanofibers without

obvious damage to carbon shells. As anodes for lithium ion

batteries (LIBs), the porous h-MoO3@C nanofibers electrodes

show a reversible capacity of 302.9 mA h g−1 at 2 A g−1 after

500 cycles. As anodes for sodium ion batteries (SIBs), they also

can deliver a good rate capacity and hold 108.9 mA h g−1 at

2 A g−1 after 500 cycles, even can have 91 mA h g−1 at 5 A g−1

after 1200 cycles. The excellent electrochemical performances

of the porous h-MoO3@C nanofibers are attributed to the

unique structure which not only can maintain the structure

stability but also provide enough active sites for Li+/Na+. At

the same time, the tunnel structure of h-MoO3 can lead to

separate electron–hole and offer a great deal of special posi-

tions for cation (Li+/Na+) insertion/extraction. The present

method may be helpful for the synthesis of transition metal

oxides (TMOs)-carbon composites with high valence metal

atoms in the field of batteries and catalysts.

Keywords: electrospinning, in-situ phase transition, lithium ion

battery, sodium ion battery, core shell nanofibers

INTRODUCTION
Lithium ion batteries (LIBs) have received wide attention
in the commercial market of portable electronic devices
[1,2], energy storage systems [3–4], and electric vehicles
[5–6] due to their excellent characteristics, such as long
cycling life, high energy density, and no memory effect [7–
9]. However, with the rapid development of science and
technology, the researches of higher capacity and longer
cycling performance of LIBs have become urgent. On the
other hand, sodium ion batteries (SIBs) have recently re-
ceived wide publicity as an energy storage system due to

more natural abundance of Na reserves [10,11]. The the-
oretical capacity of the traditional commercial graphite
anode is only 372 mA h g−1 for LIBs [12,13], even lower for
SIBs [14,15], limiting the application of high efficiency
energy demand with high stability both for LIBs and SIBs.
Thus, it has been drawing wide attention to develop new
anode materials, which not only have relatively high ca-
pacity but also maintain good cycling stability.

In recent years, transition metal oxides (TMOs) in optics
[16,17], magnetism [18,19], catalysis [20,21] and electronic
fields [22,23] show superior performance, and the nano-
sized TMOs have been used as anode materials for LIBs,
and considered as promising candidates to solve the above
mentioned problems [24–28]. Compared to graphite an-
odes, they have high theoretical capacity, such as MoO3

(1,117 mA h g−1) [29,30], including the well-known ther-
modynamically stable normal phase α-MoO3 [31,32], and
metastable phase h-MoO3 [33,34]. As reported, metastable
structures often demonstrate new or enhanced properties
compared to their thermodynamically stable forms. For
example, the tunnel structure of h-MoO3 can lead to se-
parate electron hole and offer a great deal of special po-
sitions for the cation (Li+/Na+) insertion/extraction [35].
And the electrical conductivity of h-MoO3 is better than
that of the stable phase α-MoO3 [36]. However, h-MoO3

still faces the risk of volume expansion, leading to poor
kinetics and capacity decrease during the charge/discharge
process [37].

So the urgent issue is how to enhance the stability of the
structure. Carbon composite structures have been widely
studied, such as core shell structure [38–40], which is
considered as an effective structure to solve the above
problems. For instance, Xia et al. [41] synthesized MoO3/C
nano-composites with a capacity of about 500 mA h g−1 at
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the 100th cycle at a current density of 0.1 A g−1 for LIBs.
Pan’s group [42] have prepared MoO3/reduced graphene
oxide delivering a capacity of about 208 mA h g−1 at
0.05 A g−1 after 50 cycles for SIBs. Hence, the shell, such as
carbon or graphene, is the key factor to improve the sta-
bility and electroconductivity of the structure, which fur-
ther affects the performance of the batteries. More
importantly, according to previous studies [43–45], the
existence of porous structure can improve the electro-
chemical performance of carbon materials, boosting the
electron transfer at the electrode/electrolyte interface and
reducing the structural collapse caused by the volume
change. Herein, porous h-MoO3@C nanofibers have been
successfully synthesized with hot HNO3 oxidizing
MoO2@C nanofibers, which are prepared by a single
electrospinning. On the one hand, MoO3 has a higher
theoretical specific capacity than MoO2. On the other
hand, some of MoO2 nanoparticles in the nanofibers are
dissolved by hot HNO3, and the rest coated by carbon
undergo in-situ phase transition and then are oxidized to
form porous h-MoO3@C nanofibers. So the porous na-
nofiber structures not only provide free space for volume
expansion, but also facilitate the migration of Li+/Na+. At
the same time, the surface modification (–OH, C=O, C–
NO2, –NH2) by hot HNO3 on the surface of the porous h-
MoO3@C nanofibers can further enhance the cyclic sta-
bility. As anodes for LIBs and SIBs, the porous h-MoO3@C
nanofiber electrode shows excellent performance. This
strategy provides a new route to synthetize core shell na-
nomaterials, which are both for LIBs and SIBs.

EXPERIMENTAL SECTION

Synthesis of MoO2@C nanofibers

The mixture of ammonium molybdate tetrahydrate
(AMM, (NH4)6Mo7O24∙4H2O, 99%) and polyvinyl alcohol
(PVA, [C2H4O]n, Mw=80,000, 1 g) were dissolved in deio-
nized water (10 g) at 60°C with continuous stirring for 8 h,
which formed a mixed solution of a viscous gel. The dis-
tance between the tip of the spinneret and the collector was
adjusted to 16 cm. The voltage and the speed were 17 kV
and 0.4 mL h−1, respectively. The as-prepared precursors
in vacuum were dried at 80°C overnight, and then heated
at 650°C for 2 h at a rate of 1°C min−1 in Ar to obtain
MoO2@C nanofibers. The pure MoO3 was obtained by
annealing AMM at 650°C for 2 h in air.

Synthesis of porous h-MoO3@C nanofibers

The MoO2@C nanofibers (0.1 g) were added to the mixed
solution of deionized water (60 ml) and concentrated ni-

tric acid (5 mL, about 14.4 mol L−1) at 80°C for 20 h. Fi-
nally h-MoO3@C nanofibers were obtained by
centrifugation several times, and then dried at 60°C.

Characterization

The samples were characterized by X-ray diffraction (XRD
Cu Kα irradiation, λ=1.5418 Å), scanning electron mi-
croscopy (SEM, Hitachi S4800), transmission electron
microscopy (TEM, JEOL-2010), X-ray photoelectron
spectroscopy (XPS), Brunauer-Emmett-Teller (BET),
Fourier-transform infrared (FTIR, AVTA-TAR, 370), X-
ray photoelectron spectroscopy (XPS) and thermogravi-
metric analysis (TGA).

Electrochemical measurements

The electrochemical performance was tested using
CR2025-type coin cells. The active materials (70 wt.%),
conductivity agent carbon black (15 wt.%) and binder
sodium carboxymethyl cellulose (CMC, 15 wt.%) were
mixed in deionized water and absolute alcohol mixture by
stirring at a constant speed for 8 h, and a homogeneous
slurry was obtained, which acted as the electrode materials.
The mixed slurry was then spread onto a copper foil and
dried at 80°C in a vacuum oven for 12 h. The electrolyte
contained a solution of 1 mol L−1 LiPF6 in diethyl carbo-
nate/ethylene carbonate/dimethyl carbonate (1:1:1, in wt./
wt.). These cells were assembled in an argon filled glove-
box (O2 and H2O levels less than 0.05 ppm). The charge/
discharge capacities were calculated based on the com-
posite active materials (h-MoO3@C nanofibers or
MoO2@C nanofibers). Cyclic voltammetry (CV) curves
were tested using Chen Hua CHI 660E electrochemical
station. The charge discharge measurements were carried
out on an Arbin BT2000 system with the potential window
of 0–3 V.

RESULTS AND DISCUSSION
The synthesis of porous h-MoO3@C nanofibers is briefly
outlined in the schematic diagram, as shown in Fig. 1a.
First of all, AMM/PVA precursor was prepared by elec-
trospinning. After annealing at 650°C in Ar, the MoO2@C
nanofibers were synthesized. Then after the hot HNO3

treatment, some of MoO2 nanoparticles in the nanofibers
were dissolved and others coated by carbon were oxidized
by in-situ phase transition, forming a porous structure of
MoO3@C nanofibers. At the same time, some oxygen-
containing functional groups were modified on the surface
of the MoO3@C nanofibers. The crystal structures of
MoO2 and h-MoO3 are provided, as shown in Fig. 1b,
which more vividly elaborates the transition from MoO2 to
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h-MoO3.
The micro morphologies of the as-synthesized products

were analyzed by SEM. The image of the MoO2@C na-
nofibers after annealing at 650°C with a rate of 1°C min−1

in Ar is shown in Fig. 2a, which clearly reveals the core
shell structures. The XRD diffractions can be readily in-
dexed to MoO2, which shows that the AMM is absolutely
converted to MoO2, as shown in Fig. 2c. The content of
MoO2 in the MoO2@C nanofibers is 63% in Fig. S1
(Supplementary information) by TGA. After acid treat-
ment, the XRD of the product is shown in Fig. 2d, and all
the identified peaks can be indexed to h-MoO3 (JCPDS
No. 21-569), which is due to the oxidation of MoO2, but
the content of MoO3 becomes only 26.24 % in Fig. S1, the
reason for which is that some of the MoO2 nanoparticles
were dissolved in HNO3 solution and the rest underwent
phase transition and then were oxidized to form h-
MoO3@C nanofibers. So in Fig. 2b, the core shell structure
still exists and the surface of nanofibers becomes slightly
rough with lots of pores. At the same time more SEM
images of MoO2@C and h-MoO3@C nanofibers are shown
in Fig. S2. The reasons for the formation of core shell
structure were explained in our previous reports [46,47].

In order to further distinguish the micro structures of

the MoO2@C and h-MoO3@C nanofibers, TEM was
characterized. In Fig. S3, the image of the MoO2@C na-
nofibers clearly indicates that MoO2 nanoparticles are
coated by carbon. After acid treatment, the TEM image of
the h-MoO3@C nanofibers is shown in Fig. 3a with a
porous structure. Fig. 3b confirms the presence of crys-
talline h-MoO3 coated by carbon with a characteristic
plane of (410). The N2 adsorption-desorption isotherms of
the h-MoO3@C nanofibers exhibit type-IV isotherm as-
sociated with a surface area of 400.2 m2 g−1. The inset in
Fig. 3c shows that the pore-size of nanofibers is micro-
pores and mesopores. The porous nanostructure would
provide more favorable transportation route, while the
high surface area affords more adsorption sites for Li+/Na+,
serving as reservoirs for Li+/Na+ storage and channels for
easy permeation of electrolyte [47]. At the same time, the
oxygen-containing functional groups are also character-
ized by FTIR shown in Fig. 2d. With hot HNO3 treatment,
the surface of the h-MoO3@C nanofibers are modified
with oxygen-containing functional groups (–OH, –C=O),
which can form stable solid electrolyte interface (SEI)
films, further enhancing the cyclic stability [48].

In Fig. 4a, the porous h-MoO3@C nanofibers were
composed solely of C, O, N and Mo. The corresponding O
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Figure 1 (a) Schematic illustration shows the synthetic route for preparing porous h-MoO3@C nanofibers; (b) the transition of crystal structure from
MoO2 to MoO3 through hot HNO3 oxidation.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

August 2017 | Vol.60 No.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757
© Science China Press and Springer-Verlag Berlin Heidelberg 2017



10 20 30 40 50 60

(2
2

0
)

(2
0

0
)

In
te

n
s
it
y
 (

a
.u

.)

 MoO2 65-5785 

(0
0

1
)

10 20 30 40 50 60

(3
1
0
)

(3
0
0
)

(2
1
0
)

(2
0
0
)

(1
0
0
)

In
te

n
s
it
y
 (

a
.u

.)

2θ (°) 2θ (°)

 MoO3 21-569

1.00 µm 1.00 µm

a b

c d

Figure 2 (a, b) SEM images of the as-synthesized MoO2@C and h-MoO3@C nanofibers, respectively; (c, d) XRD of the MoO2@C and h-MoO3@C
nanofibers, respectively.
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Figure 3 (a, b) TEM images of the h-MoO3@C nanofibers; (c) nitrogen adsorption/desorption isotherms of the h-MoO3@C nanofibers (the inset is
the pore-size distribution); (d) FTIR spectrum of the h-MoO3@C nanofibers.
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1s spectra (Fig. 4b) exhibits signals corresponding to C=O
and C–OH at ≈ 531.2 and 533 eV, respectively. The peak at
535 eV is a fingerprint of OH groups. The result well
proved that oxygen-containing functional groups are
modified on the surface of nanofibers in line with the FTIR
result. Furthermore, the high-resolution C 1s spectra (Fig.
4c) exhibits a main peak corresponding to C–C at
284.7 eV, along with a single one for C–N at 285.4 eV, and
a further weaker band associated with C=O at 288.7 eV.
Fig. 4d shows the two peaks at 235.8 and 232.7 eV are
attributed to the binding energies of the 3d3/2 and the 3d5/2

orbital electrons of Mo6+ [29], respectively, indicating that
there is no existence of Mo4+.

The samples during charge/discharge process are tested
by CV over the voltage range of 0–3.0 V at the scanning
rate of 0.1 mV s−1 for LIBs, as shown in Fig. 5a. The peak at
2.02 V is only observed in the first discharge cycle, which
comes from a solid SEI layer and the decomposition of the
electrolyte [49–51]. In the subsequent CV steps, the main
oxidation/reduction pair is 1.2/1.46 V, associating with the
reaction of MoO3 [52,53]. The peaks (0.42 V) may be from
LixMo alloys, which is due to the Li+ insertion/extraction
with different site energies for different nanostructures

and composites [53]. The broad peak at 2.5 V should be
due to the desertion of Li+ from crystalline LixMoO3 [29].
The oxidation peaks near 0 V are attributed to the carbon,
which is more obvious and shows the electrode possesses
good electrochemical performance in the process of
charge/discharge [46].

Fig. 5b shows the charge/discharge curves for the h-
MoO3@C nanofiber electrode at the current density of
0.1 A g−1 over the voltage range of 0–3.0 V. It was observed
in the first cycle that the charge and discharge capacity of
the h-MoO3@C nanofiber electrode can reach 878.1 and
1,595.3 mA h g−1, respectively, which may be caused by
activation. And the Coulombic efficiency is estimated as
55%, which is caused by the formation of SEI and the
decomposition of the electrolyte [54,55]. In the next cycles,
the Coulombic efficiency of the electrode could reach 99%.

As illustrated in Fig. 5c, the rate performances were
tested at the current densities of 0.1, 0.3, 0.5, 1 and 2 A g−1.
The corresponding initial discharge capacities are 946.6,
751.7, 592.4, 512.2 and 271.2 mA h g−1, respectively.
Moreover, when the current density is back to 0.1 A g−1,
the discharge capacity goes back to 900 mA h g−1, which is
almost equal to the initial capacity and demonstrates that

0 200 400 600 800

O 1s

N 1s

C 1s

Mo 3d

In
te

n
s
it
y
 (

a
.u

.)

Binding energy (eV)

525 530 535 540 545

535 eV

 (O–H)

533 eV

 (C–OH)

In
te

n
s
it
y
 (

a
.u

.)

Binding energy (eV)

O 1s

531.2 eV

 (C=O)

240 238 236 234 232 230

3d3/2

3d5/2

In
te

n
s
it
y
 (

a
.u

.)

Binding energy (eV)

Mo 3d

280 285 290 295 300

288.7 eV

  (C=O)

285.4 eV

  (C–N)

In
te

n
s
it
y
 (

a
.u

.)

Binding energy (eV)

C 1s

284.7 eV

  (C–C)

a b

c d

Figure 4 Low-resolution XPS spectrum (a), high-resolution XPS spectra of (b) C 1s, (c) O 1s, and (d) Mo 3d of the h-MoO3@C nanofibers.
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the h-MoO3@C nanofiber electrode has a good rate per-
formance.

Cycle performance is an important index to evaluate the
performance of LIBs. Fig. 5d shows the cycling perfor-
mances of h-MoO3@C nanofibers at 0.5 A g−1. The
MoO2@C nanofiber electrode only has 389.9 mA h g−1 at
the 100th cycle. Compared to MoO2@C nanofiber elec-
trodes, after 100 cycles at the current density of 0.5 A g−1,
the specific capacity of h-MoO3@C nanofiber electrode
still can obtain 660.9 mA h g−1. To test the stability of h-
MoO3@C nanofiber electrode, the current density of
2 A g−1 is carried out, as shown in Fig. 5e. After 500 cycles,

the electrodes still can maintain 302.9 mA h g−1, remaining
structure of the nanofiber from SEM images after cycling
in Fig. S4. The properties are not higher than most of
publication about MoO3/C for LIBs. A possible reason
may be that the MoO3 ratio in the composites is relatively
low due to the limitations of electrospinning [56]. On the
other hand, the main objective of this study is to in-situ

transfer MoO2 to h-MoO3, resulting in the synthesis of h-
MoO3@C nanofiber with improved electrochemical per-
formance. So it is necessary to calculate the theoretical
capacity of the composites, judging the quality of the
electrochemical performance. The theoretical capacity of
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Figure 5 Electrochemical performances for Li+ storage: (a) CV curves; (b) charge/discharge curves; (c) rate performances of the h-MoO3@C nanofiber
electrode; (d, e) cycling performances of h-MoO3@C nanofiber electrode at 0.5 and 2 A g−1, respectively.
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h-MoO3@C nanofiber is 567 mA h g−1, which is calculated
in the Supporting information. With the result, the capa-
cities at 0.1 A g−1, even at 0.5 A g−1 are higher than the
theoretical capacity of h-MoO3@C nanofiber hybrid.
Certainly, the electrochemical performances of MoO2@C
nanofiber and pure MoO3 at 0.5 A g−1 are provided in Figs
S5, S6, respectively, which are both lower than that of the
h-MoO3@C nanofibers. There are several reasons for the
reversible capacity. One is the reversible formation of Li2O
and Mo at nanoscale, according to the following reaction:
MoO3 + 6Li+ + 6e−↔ 3Li2O + Mo. It has been proved that
the small size effect of Mo nanoparticles can greatly in-

crease the electrochemical reactivity and make the con-
version between Li+ and Li2O reversible [57–58]. So nano-
Mo metal can probably make extra Li2O reversibly convert
to Li+. Another is the porous nanofiber structure, pro-
viding enough active sites for Li+. So it is possible that the
specific capacity was higher than theoretical capacity.

It is interesting that the Na+ storage performance of the
porous h-MoO3@C nanofiber electrode is also excellent,
especially the stability. Fig. 6a shows the CVs of the h-
MoO3@C nanofiber electrode at a scan rate of 0.1 mV s−1

from 0 to 3.0 V. The oxidation/reduction peaks are
0.4/0 V, associating with the reaction of carbon. The peak

0 1 2 3
−0.12

−0.08

−0.04

0.00

0.04
C

u
rr

e
n

t 
(m

A
)

Voltage (V)

 1st

 2rd

0 150 300 450 600
0

1

2

3

V
o

lt
a

g
e

 (
V

)

Capacity (mA h g−1)

 1st

 2nd

 3rd

0 50 100 150
0

300

600

900

0.1

1

0.1

1
0.

50.
20.

1

 

Cycle number

C
a
p
a
c
it
y
 (

m
A

 h
 g
−1

)

unit: A g−1

0.
05

2

0

20

40

60

80

100

C
o
u
lo

m
b
ic

 e
ff
ic

ie
n

c
y
 (

%
)

0 20 40 60 80 100
0

250

500

750

1000

C
a
p
a
c
it
y
 (

m
A

 h
 g
−1

)

Cycle number

0

20

40

60

80

100
 

  
C

o
u
lo

m
b
ic

 e
ff
ic

ie
n

c
y
 (

%
)

0.1 A g−1

0 50 100 150 200
0

150

300

450

600

 

Cycle number

C
a
p
a
c
it
y
 (

m
A

 h
 g
−1

)

0

20

40

60

80

100

 C
o
u
lo

m
b
ic

 e
ff
ic

ie
n
c
y
 (

%
)

0.5 A g−1

0 400 800 1200
0

100

200

300

400

Cycle number

C
a
p
a
c
it
y
 (

m
A

 h
 g
−1

)

0

25

50

75

100

5 A g−1

 C
o
u
lo

m
b
ic

 e
ff
ic

ie
n
c
y
 (

%
)

2 A g−1

a b

c d

e f

Figure 6 Electrochemical performances for Na+ storage. (a) CVs; (b) charge/discharge curves; (c) rate performance of the h-MoO3@C nanofiber
electrode; cycling performance of MoO2@C (d), h-MoO3@C (e, f) nanofiber electrode at 0.1, 0.5, 1, 2 and 5 A g–1, respectively.
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of MoO3 reaction is not obvious. The similar phenomenon
is also reported [42,59].

The galvanostatic voltage profile of the h-MoO3@C
nanofiber electrode was investigated at current density of
0.05 A g−1 over the voltage range of 0–3 V. As shown in
Fig. 6b, the initial discharge and charge specific capacity of
h-MoO3@C electrodes is 567.2/335.2 mA h g−1, respec-
tively. The large capacity losses are attributed mainly to the
excessive surface reactions on the SEI films [60].

The rate performances of the h-MoO3@C nanofiber
electrodes at 0.05, 0.1, 0.2, 0.5, 1, and 2 A g−1 are shown in
Fig. 6c. They deliver initial reversible capacity of 567.6,
291.2, 248.4, 205.7, 169.9 and 125.7 mA h g−1, still re-
maining at 141.5 mA h g−1 after 100 cycles at 1 A g−1. This
result proves that the h-MoO3@C nanofiber electrode
shows a good rate capability. To study the stability of the
h-MoO3@C nanofiber electrode, the cycling performances
were tested. In Fig. 6d, after 100 cycles, the MoO2@C
nanofiber electrode shows poor stability and capacity re-
tention at the current density of 0.1 A g−1. Compared to
the MoO2@C nanofibers, the porous h-MoO3@C nanofi-
bers structures not only provide free space for volume
expansion, but also facilitate the migration of Na+. As
expected, the h-MoO3@C nanofiber electrode can main-
tain 300.9 mA h g−1 at the current density of 0.1 A g−1 after
100 cycles, when increased to 0.5, 1 and 2 A g−1, respec-
tively, the capacities can still hold 223.1, 153.8 and
108.9 mA h g−1 at the 200th, 500th and 1000th cycle, re-
spectively (Fig. 6e, f). After pre-cycling at 0.1 A g−1, the
higher current density (5 A g−1) is carried out in Fig. 6f,
showing excellent stability with 91 mA h g−1 at 1200th cy-
cle. The electrochemical performances of MoO2@C na-
nofibers and pure MoO3 at 0.1 A g−1 are also provided in
Figs S7, S8, showing the unsatisfactory stability and per-
formances. On the contrary, the porous h-MoO3@C na-
nofiber can obtain better stability, even higher than
relevant publication of MoO3 for SIBs [42,57,61], the
reasons for the performance of the porous h-MoO3@C
nanofiber electrode for SIBs are summarized as follow: the
rich porous structures could not only provide more elec-
trochemical active sites and boost the lithiation/delithia-
tion kinetics, but also facilitate the migration of Na+; the
oxygen-containing functional groups on surface form
stable chemically bonded SEI films, further enhancing the
cyclic stability [47].

CONCLUSION
In summary, we synthesized porous h-MoO3@C nanofi-
bers by nitric acid oxidizing MoO2@C for LIBs and SIBs.
The carbon shell can not only maintain the stability of the

structure, but also enhance the conductivity. Moreover,
the core shell porous structures provide a large specific
surface area of 400.2 m2 g−1, which further facilitates
structural stability. As the anode materials for Li+/Na+

storage, the porous h-MoO3@C nanofiber electrodes ex-
hibit excellent rate and cycle performances. Therefore, we
developed the nitric acid oxidation method to synthesize
porous h-MoO3@C nanofibers, which were of improved
properties as compared to MoO2@C both in LIBs and
SIBs.
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原位液相转变制备多孔h-MoO3@C纳米线用于锂/钠离子储存

陈智1†, 刘永康1†, 张航2, 丁双双1, 王太宏1, 张明1*

摘要 基于金属氧化物存储机制, MoO3比MoO2具有更高的理论容量. 本文通过热的硝酸氧化MoO2@C纳米线成功制备出具有400.2 m2 g−1高比
表面积的多孔h-MoO3@C纳米纤维, 且碳壁没有明显破坏. 作为锂离子电池的负极, 与MoO2@C纳米线相比多孔h-MoO3@C纳米纤维电极表现
出更好的性能,其中在2 A g−1的电流密度下500循环后展现出302.9 mA h g−1的可逆容量.作为钠离子电池的负极, h-MoO3@C电极同样具有很好
的倍率性能. 在2 A g−1的电流密度下500循环后仍具有108.9 mA h g−1的容量, 并且在2 A g−1的电流密度下1200循环后还能保持91 mA h g−1的容
量. 由于碳壁可以维持结构的完整性且可提高导电性; 同时h-MoO3 的隧道结构可作为分离电子孔并为Li+/Na+ 嵌入脱出提供更多的特有位置,

使得该复合纳米线作为电极材料表现出更好的性能. 本工作为合成具有高价的过渡金属氧化物/碳复合材料在电池和催化剂领域的运用提供
了依据.
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